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Calculating the Reliability and Validity of Physics Playground

This paper presents a case study in calculating reliability and validity for a cognitively diagnostic assessment
of Physics using the game Physics Playground. The game is part of a game-based learning system, so that
students received instruction and feedback related to Physics as they played. The game contained an internal
measure of Physics built with a Bayesian network. In the Spring of 2019, a field trial involving 199 students
played the game for 5 class periods and also took an external measure of Physics understanding. This allows
for studying validity in the sense of correlation with the external measure.

Figure 1: Proficiency Model

The proficiency model for Physics used in Physics Playground consists of for high-level proficiencies (colored
salmon in the figure) and nine low-level proficiencies. Each of these nodes is represented by an ordered
variable with three states, High, Medium and Low. The Bayes net provides a probability distribution over
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these possible states for each node. There are thus three possible statistics for each node that can be used as
scores.

• Margin – This is a vector valued score with the probabilities for High, Medium and Low. The values will
always add to 1. Note that any one of the three components can be used as a continuous score.

• Mode – This is High, Medium or Low depending on which one has the highest probability. This is a
categorical score.

• EAP (Expected A Posteriori) – Assign the value +1 to High, 0 to Medium and -1 to Low and then
calculate the expected value. This can be also expressed as Pr(High) − Pr(Low). The score runs from
+1 (high) to -1 (low). (In the implementation, .97 and -.97 was used, so the actual scores do not every
quite reach +1 or -1).

The EAP score is the one we primarily use for reporting. Its reliability can be calculated using a split-half
strategy and correlation. The categorical score is an alternative, however, the same split-half strategy can
be used but this time with Cohen’s kappa. An improved categorical reliability can be calculated using the
marginal scores (Almond et al, 2015). The paper illustrates all three methods using the data from the Spring
2019 field trial.

Physics Playground

Physics Playground (Shute et al, 2019) is a 2d Physics game that consists of a number of levels. Each level is
a puzzle in which the player must use the principles of Newtonian Physics to move the ball to the target
balloon. Players win a gold trophy for an efficient solution and a silver trophy for any solution. The game also
records how long the player took, how many objects were drawn and how many manipulations were made.

Each game level has multiple observable outcome variables. All levels had variables related to the trophy one
and the time spent on the level. Depending on the content of the level other variables were also available,
such as how many objects did the player create and how many times did the player manipulate sliders which
controlled gravity, air resistance and other parameters. One of the advantages of working with Bayesian
networks is that they can be readily extended to multiple observations per task.

Each game level was coded with a primary and secondary physics competency (one of the nine low-level nodes
in Figure 1). The levels were also rated as to difficulty along two dimensions, Physics Understanding and
Game Mechanics. The former is related to the difficulty of the items and the latter the discrimination. These
were used to build extended Q-matrixes for Physics Playground. These are stored in an online spreadsheet.
This Bayesian networks used for scoring are built directly from this spreadsheet using the Peanut and the
EABN packages (Almond, 2020a, b).

In the Fall 2020 study, players were randomized into three different conditions which determined the order
of the game levels. The players in the linear condition saw the game levels in a fixed sequence, players in
the adaptive condition saw a sequence determined by the scoring engine, and players in the user control
condition could choose which level they played next. Due to some technical problems (now resolved) the
adaptive condition did not show much player-to-player variability. There were 75 game levels available to the
players, but most players completed substantially fewer. As the Bayesian network can produce a score after
the completion of any number of levels, levels that were not attempted were simply not scored.

Split-Half Reliabilities for EAP Scores

The use of the Q-matrix and the difficulty indexes made it easy to create matched half-tests. The forms were
balanced according to (a) the primary and secondary skills tapped (i.e., the Q-matrixes has approximately
the same structure as each other and the full test) as well as physics understanding and game mechanics
difficulty metrics. They were also balanced as to whether the levels appeared early or late in the default
sequence, so that the number of not-reached levels should be approximately the same in both forms.
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https://docs.google.com/spreadsheets/d/16LcEuCspZjiBoZ3-Y1R3jxi1COXmh9vuTa9GwH1A_7Q/
https://github.com/ralmond/Peanut
https://github.com/ralmond/EABN


It is a straightforward extension of the basic scoring algorithm for the game to score the two half-forms. Player
observables were stored in a database. To score Form A, the observables from Form A levels were marked as
unprocessed and the assessment was rescored. The same trick was applied to Form B. This produced a score
on each of the 14 nodes of the proficiency model from both forms. The correlation among those forms in our
measure of reliability.

For the Fall 2019 data, we got the following reliability numbers for the EAP scores of the high-level nodes:

Table 1: Correlations between Form A and B sub-forms.

Measure Reliability
Physics 0.229
Force and Motion 0.135
Linear Momentum 0.080
Energy 0.456
Torque 0.139

These numbers are somewhat disappointing, however, they are also prior to any refining or calibration of the
network. Figure 2 show the correlation for the Energy node which had the best performance, while Figure 3
shows the correlation for Linear Momentum, which had the worst.
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Figure 2: Energy EAP scores, Forms A and B
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Figure 3: Linear Momentum EAP scores, Forms A and B
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Table 2: Crosstabulation betwen Form A and Form B Modal scores.

H M L
H 0 0 0
M 0 40 17
L 0 89 53

Table 3: Marginal Physics scores for Student 124, Form A

High Med Low
0.016 0.271 0.713

Split-Half Consistency Scores

Turing to the modal scores, each student has a modal score from Form A and Form B. We can make this to use
a simple cross-tabulation as in Table 2. Note that no student was classified as High in Physics understanding.
This indicates that the model is likely not well calibrated. It also may be the case that the game is more
difficult than expected. (Games typically tend to be more difficult that conventional assessments as the
challenge is part of the game-like aspect.)

Cohen’s kappa for this table is 0.05, which is disappointing. There are a number of possible problems which
could lead to such low results.

One known problem with the modal score is that it looses information. In particular, a student who is on the
borderline between Medium and Low and a student who is on the borderline between Medium and High can
both be classified as Medium. Looking using the marginal scores instead of the modal scores gets around this
problem. Consider a randomly chosen student. That students marginal Physics scores on Form A and Form
B are:

Taking the outer product of those two vectors, we get a probabilistic confusion matrix:

Summing these across all 199 students yields a similar crosstab.

Cohen’s kappa remains unchanged at 0.05. This suggests that the problem is with the assessment. Candidate
issues include the lack of calibration of the evidence and proficiency models, a task mix that is too difficult,
or a much smaller effective test length and students mostly did not complete the whole assessment.

Correlations with Pretest and Posttest

As the Fall 2019 data collection involved a pretest and post-test, it is possible to look at the correlation
between the subscores from the Bayesian network and the scores on the pretest and post-test items designed
to measure the same aspects of proficiency. In all cases, we averaged the pretest and post-test to get alonger
effect test length for the criteriom measure, and did the correlation with the EAP scores from the full form.

While the pre-test and post-test hang together fairly well, the correlation with the overall Physics score is
disappointingly low. A large part of the problem is likely the same issues causing low reliability.

Table 4: Marginal Physics scores for Student 124, Form B

High Med Low
0.015 0.673 0.313
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Table 5: Expected crosstabulation for Student 124

H M L
H 0.000 0.011 0.005
M 0.004 0.183 0.085
L 0.010 0.479 0.223

Table 6: Expected crosstabulation, all 199 students.

H M L
H 0.11 1.48 1.06
M 2.84 42.65 29.66
L 3.49 62.45 55.26

Turning to the four high-level nodes, we can also look at the correlation with items on the pretest and
post-test designed to tap those aspects of proficiency. In this case, we add the pretest and post-test scores
together to make a longer instrument.

Again, these results are somewhat disappointing. However, the same steps necessary to increase the reliability
should increase the validity as well.

ECD and Validity

Correlations with an external post-test are just one part of a complete validity argument (Kane, 2006). Here,
the evidence-centered design methodology used in the game’s construction (Shute et al, 2019) provides a
more qualitative approach to validity. In particular, the work with experts in Physics pedagogy to validate
the Q-matrix is an important part of the validity argument. In particular, each game level represents valued
work in the domain of Physics.

That said, the reliabilities were disappointing, but looking at reliabilities at the subscore rather than overall
score level offers insight into where and how the assessment can be improved. One obvious first step is to
do a calibration and move from the expert first guesses in discrimination and difficulty to something which
incorporates the observed data. Another approach is to look closely at both the game levels and the scoring
models (particularly the choice of observables) for the low information levels to see if improvements can be
made.

Finally, the fact that different tasks are attempted by different numbers of students adds a number of
complications into the study of reliability and validity. It is quite possible that the different reliability of
different measures is related to how many tasks students usually attempted in those areas. In particular, a
specific reliability/validity study where the tasks are scheduled to provide a more uniform exposure might
improve the reliability measures. In this scheduling, the system would cycle through all of the sub-domains,
while the activity selection algorithms for Physics Playground have attempted to deliberately stay within

Table 7: Correlation of Physics EAP score with whole pretest and posttest.

preScore postScore Physics_EAP
preScore 1.000 0.698 0.226
postScore 0.698 1.000 0.182
Physics_EAP 0.226 0.182 1.000
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Table 8: Reliability (sub-form correlations) and Valitity (corrlation with pretest + posttest)

Measure Reliability Validity
Physics 0.229 0.220
Force and Motion 0.135 0.153
Linear Momentum 0.080 0.061
Energy 0.456 0.223
Torque 0.139 0.174

a sub-domain for an extended period to maximize learning. This suggests that different data collections
may be needed for evaluating the effectiveness of Physics Playground as a learning environment and as a
measurement tool.
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