--- title: "XIC" author: "Russell Almond" date: "10/15/2020" output: html_document --- ```{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE) ``` ## Deviance $p(Y|\theta)$ -- probability of observing the data given the parameters of the model _Deviance_ a measure of model fit. $$ -2*\sum_{i=1}^{N} \log P({\bf y}_i|\theta)$$ * With normal models, the deviance is more or less the sum of squared residuals, so minimal deviance is least squares. * Minimum deviance is maximum likelihood. * Really useful when we move from `lm` to `glm`. ## AIC -- Akaike Information Critereon * Deviance always goes down when we add a parameter. * So add penalty for more parameters. $$AIC = 2k - 2*\sum_{i=1}^{N} \log P({\bf y}_i|\theta)$$ Where $k$ is the number of parameters. ## BIC -- Bayesian (Schwarz) Information Criteria $$BIC = k \log N - 2*\sum_{i=1}^{N} \log P({\bf y}_i|\theta)$$ Equivalent to minimum description length ## DIC -- Deviance Information Criteria $$ DIC = - 2*\sum_{i=1}^{N} \log P({\bf y}_i|\theta) + 2p_{DIC}$$ $$ p_{DIC} = 2(\log P(Y|\tilde\theta) - E_{post}[\log P(Y|\theta)]) $$ $p_DIC$ = Average Deviance - Deviance at average ## WAIC -- Watanabe Akaike Information Criterion Similar to DIC, but uses different method to calculate effective dimenisons ### Method 1 $$p_{WAIC1} = 2 \sum_{i=1}^N ( \log (E_{post}[p(y_i|\theta)]) - E_{post} [\log(p(y_i|\theta))]$$ ### Method 2 $$p_{WAIC1} = 2 \sum_{i=1}^N \text{var}_{post} [\log(p(y_i|\theta))]$$ ## LOO-CV Let $p_{post(-i)}$ be the posterior distribution leaving $y_i$ out of the sample. $$lppd_{LOO-CV} = \sum_{i=1}^N \log p_{post(-i)} (y_i|\theta)$$ Bias correction $$ b= lppd - \overline{lppd}_{-i}$$ $$ \overline{lppd}_{-i} = \sum_{i=1}^N\sum_{j=1}^n \log p_{post(-i)} (y_j|\theta)$$