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Abstract

Response-to-intervention (RTI) is an educa-
tional framework for placing students into
an appropriate level of support. The ability
of the students is measured at several time
points and the lowest performing students are
placed into supplemental Tier 2 instruction.
This framework is naturally modeled with a
partially observed Markov decision process
(POMDP), but using the POMDP model for
planning requires an estimate of the effect of
the Tier 2 instruction. This can be estimated
from historical data, but unless the mecha-
nism by which the treatments were assigned
in the historical data are causally indepen-
dent, the estimate will be biased. In partic-
ular, if the treatment (action) assignment is
made purely on the basis of observed data,
then the causal effect can be identified, but if
teacher judgment, or some other unrecorded
variable, is used to determine the treatment,
the data will not meet the backdoor criteria
for causal identifiability. This paper explores
the implications of the lack of causal identi-
fiability through a simple simulation study.
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1 Introduction

Partially observed Markov decision processes
(POMDP Boutilier, Dean, & Hanks, 1999) pro-
vide a variety of algorithms for finding an optimal
sequence of decisions; however, these algorithms all
rely on having an estimate of the effects of various
actions that can be taken at each time point. If the

effects are unknown, they must be estimated from
an existing database of measurements. However, in
many databases, the mechanism by which actions
is assigned is not randomized, thus the treatment
(action) assignment may depend on observed or even
unobserved variables. In this case, the effects of the
action may not be causally identified.

As an example, consider the educational policy of
response-to-intervention (RTT Fuchs & Vaughn, 2012).
In RTT students are split into two (or three) tiers based
on their scores on a pretest: Tier I, regular class-
room instruction, and Tier I regular instruction sup-
plemented by small group instruction. Clearly Tier IT
is more expensive, and the goal is to maximize stu-
dent performance subject to a budget constraint on
how many Tier II seats are available. The weakly cou-
pled POMDP algorithms of Boutilier and Liu (2016)
seem ideal for this, but the algorithm requires an esti-
mate of the treatment effect for the Tier II instruction.
Instructors are supposed to monitor student perfor-
mance for Tier II students, adapting the instruction if
the student is not properly responding to the interven-
tion. Here the ability of POMDP models to produce
forecasts under different policies seems like a tool that
would be helpful.

RTI has been implemented in classrooms for quite
some time, and there exist suites of tools, such as
easyCBM (Alonzo, Tindal, Ulmer, & Glasgow, 2006),
which support teachers implementing an RTI pro-
gram. Consequently, large databases of student mea-
surements exist, but as these are gathered over a vari-
ety of schools and districts different policies are used
for assigning students to Tier II. While many schools
use a strictly mechanical rule based on the screening
test scores, others allow teacher’s discretion (Mellard,
McKnight, & Woods, 2009; Jenkins, Schiller, Backo-
rby, Thayer, & Tilly, 2012). Worse, in the real data
there is often a mixture of policies, and establishing
what the policy is for each school and district is pro-
hibitively expensive.



This paper looks at the issue of identification of the
effects of actions in a POMDP when there exists a
potential unmeasured relationship between the treat-
ment assignment and the latent variable. It attempts
to find bounds on the causal effects using a sensitivity
analysis.

2 A Simplified
Response-to-Intervention Model

RTT is method for delivering educational interventions
which has been shown to be effective in closing achieve-
ment gaps (Fuchs & Vaughn, 2012). Although the de-
tails vary, in a typical RTI situation, students are given
a screening test three times in an academic year. On
the basis of the screening test, students are assigned
to one of three tiers of instruction. Tier 1 is continued
whole class instruction, Tier 2 is small group instruc-
tion in addition to the whole class instruction, and
Tier 3 is individual instruction. In some implementa-
tions, Tier 3 is an assignment to a special education
classroom. For simplicity, this paper only considers
Tiers 1 and 2.

There is considerable variability in how the assignment
to the tiers is done (Mellard et al., 2009; Jenkins et al.,
2012). Often it is implemented as a simple cut score
on the screening test, but in some cases the teacher
could use expert judgment to override the cut score.
In many cases, there is a limit to how many students
can be assigned to Tier 2 based on constraints such
as the amount of time the teacher, aid, or specialist
can spend on small group work. These limits could
be set at the classroom, school or district level (for
example, a reading specialist could be shared across
several schools).

The name response-to-intervention comes about be-
cause of what happens within Tier 2. In Tier 2 stu-
dents are given more frequent (often weekly) progress
monitoring tests. If students are not making “ade-
quate progress” the intervention should be changed;
possibly changing the intensity (meeting more fre-
quently, for longer periods or with smaller group sizes)
or the curriculum or approach changed. In extreme
cases, the student might be moved to Tier 3 or, if the
student did unexpectedly well, returned to Tier 1. The
definition of adequate progress is vague, and it is clear
that a planning system could help educators forecast
the effects of changing the educational plan for a stu-
dent.

For the purposes of this paper, the RTI process will
be simplified by simply considering the Tier 1 and
Tier 2 assignments without looking at the progress
monitoring. Also, for simplicity only one intensity of

Tier 2 treatment will be considered. Finally, addi-
tional screening tests will be included so that there
are more decision points. The goal is to estimate the
effect of the Tier 2 assignment so that it can be used
in planning.

2.1 Common Data Layout

Let I be the number of students, and T; be the num-
ber of measurements made on Student ¢. Let T4z =
max;er 1;.

Let obs;; be the observation for Student ¢ on the ¢th
measurement occasion. Let T'ime;; be the elapsed
time between measurement occasion ¢ and ¢ + 1 for
Student i and let Dose;; be the dosage of treatment
received by Student ¢ between times ¢t and t+1. In gen-
eral the dose will be the treatment intensity multiplied
by the elapsed time.

Let 6, ; be the proficiency of Student i at measurement
occasion t. For simplicity, both 6;; and obs;; will be
taken as unidimensional even though the multidimen-
sional case is more interesting (e.g., if the overall profi-
ciency is reading, the students ability to decode works
and comprehend sentences could be separate measures
and addressed with different interventions).

Note that the indexes are backward from the usual
description so these can be described as a one-
dimensional array of vectors in Stan (Stan Develop-
ment Team, 2013).

3 Common Evidence Model

Another problem that arises with the educational con-
text is that the measurement instruments are different
at each time point. In contrast, in a model trying
to find the position of a robot, the same instruments
(with the same measurement properties) are used to
measure the robot’s position at each time point. In an
educational setting the instrument is a test, but the
same test cannot be used repeatedly. For example, if
the same reading passage was used over and over in-
creases in comprehension or reading fluency could be
due to familiarity with the specific passage. Therefore,
the measurement models consist of a collection of in-
struments for each time point, each with potentially
different relationships to the target latent variable, 6.

Almond, Tokac, and Al Otaiba (2012) illustrate an-
other possible identification issue which arises if both
the average growth rate and the difficulty (negative
intercept in a regression model) and discrimination
(slope in a regression model) of the instrument must
be estimated from the same data. If on average the
students score higher at Time 2 than at Time 1, it



is impossible to tell if an observed difference is score
is due to student improvement, or a difference be-
tween the forms of the test administered at Time 1
and Time 2, or some combination. Almond, Goldin,
Guo, and Wang (2014) identify two approaches to this
problem: (1) perform some kind of data collection de-
signed to put all of the instruments on a common scale,
and (2) assume that the average growth is the same
as the average change in difficulty and examine devia-
tions from stationarity.

The easyCBM product (Alonzo et al., 2006) uses the
first approach. A separate calibration study was done
where a number of different forms of the progress mon-
itoring instruments were given to students at about the
same time so that they could be placed on a common
scale. Furthermore, this initial calibration study es-
tablishes the parameters that link the observations to
the latent variable. This is the approach taken in this
simulation.

The relationship between the latent variable and the
observation is assumed to be a simple latent regression:

Obsy; ~ N(0bsint + 0bSsiopeby i, T€Sstd) (1)

The three parameters which control equation 1 are fur-
ther defined in terms of other parameters. In Psy-
chometrics, the reliability of an instrument is defined
as the correlation between two different readings from
an instrument taken under identical conditions. Let
obsye; be the reliability of the instrument, obss:q1 be
the standard deviation of the scores at the first mea-
surement occasion, and 0bsy,eqn,1 be the mean of those
scores. To identify the latent scale, §;; is assume to
have a standard normal distribution. Therefore,

0bsins = Obsmean,l

Obsslope = Obsstd,t V Obsrel
T€Sstd = 0bSstd 1, \/ 1 — 0bSrer

This should ensure that the scale at the initial time
point is properly identified.

3.1 Variable Slopes Model

The model used in this study assumes that students’
abilities grow according to a Wiener process with drift.
That is, between each time point there is an inde-
pendent increment to each student’s ability, and those
increments accumulate over time. The process is as-
sumed to have drift as the students are actively receiv-
ing instruction, and the average trend will depend on
the instruction received.

The average growth (or drift) has two components
a natural growth component and a treatment effect.
Students in Tier I receive the normal instruction and
only exhibit normal growth. Students in Tier II receive
both normal instruction and some kind of supplemen-
tal instruction; thus, their growth with have both nat-
ural and treatment effects. The variable Dose; ; indi-
cates how much supplemental instruction each student
receives between measurement points ¢ and ¢+ 1. It is
zero for students in Tier I and positive for students in
Tier II.

Using this decomposition for the average learning gain,
the change in the latent proficiency can be decomposed
as:

Oi11,; = 015+ slope; x T'imey ; +-treates s x Dosey ; + €

(2)
In this equation, the natural growth rate, slope;, varies
by person, but the treatment effect does not. Also,
it is assumed that the treatment effect and natural
growth rate are additive. Finally, to make this a
Wiener process, the variance of the innovation term,
€;,; depends on the elapsed time, T¥me, ;; in particu-
lar, €,; ~ N(0, \/varipnovTimey ;).

Willett (1988) notes that there is often a correla-
tion between the slope and the initial value in growth
curves.! This is because the first measurement occa-
sion is often not the true time zero. Consider a growth
curve for reading in Kindergarten students. Most stu-
dents will have received some kind of pre-reading in-
struction either through home or pre-school. So even if
the first measurement occasion is the first day of class,
they still will have received prior instruction. Students
who naturally grow at a faster rate are likelier to then
be at a higher level when first measured. Students en-
tering Kindergarten vary considerably in the amount
of pre-school they may have attended and the number
of reading related activities that they do in their home
life, so the effective time zero may vary from student
to student.

To capture this idea, the slope distribution is charac-
terized with three parameters, slope,., slopesq and
slopero. The last parameter is the correlation between
the slope; and ;1. To capture this relationship, the
slopes are made dependent on the initial proficiencies
as follows:

slope; = slopemy+slopesia(\/ 1 — slope2yp;+slope ox01, i,
(3)

where both 01,4 and ¢; have unit normal distributions.

XXX, personal communication, has indicated that she

has found this correlation to be both positive and negative
across many studies involving pre-school children.



3.2 Tier assignment policies

If the goal is to identify the treatment effect, treat.;y,
then ideally the treatment would be randomly as-
signed. This is often done in trials for specific inter-
ventions. However, collecting data under controlled
conditions is fairly expensive, especially when consid-
ering that often tests with pre-schoolers require human
administration and strict fidelity checks are needed to
ensure uniformity of the treatment. Even a study with
a million dollar budget can usually only afford to mea-
sure several hundred students on 3 time points in a

year.?

The alternative is to go to databases of student mea-
surement that are gathered through normal educa-
tional applications of an RTI system. There are two
problems. First, as no fidelity checks are done on the
treatment, there is likely considerable variability in the
efficacy of the implementation. Second, different dis-
tricts, schools and classrooms may use different poli-
cies for assignment into the tier groups.

Examine two different policies. The first will be based
on a simple cut score model. The second will allow the
teacher to override the cut score with expert judgment.

Cut Score Policy. This is the easiest policy to imple-
ment: if obs;; < cut; then Student ¢ is assigned to
Tier 2, otherwise to Tier 1. Mellard et al. (2009) and
Jenkins et al. (2012) surveyed a number of schools and
found a fair number of them using variations on this
policy. Often the cut score is set to allow a certain
number of students into Tier 2. In the case of the
simulation study described here, the cut score for each
time point is set to catch students who are one stan-
dard deviation down from the expected observation
score at each time point.

Cut Score with Override Policy. This policy is meant
to emulate the situation where the cut score rule is
in place, but the teacher may use expert judgment
to override the scoring rule. In this scoring rule, the
teacher uses personal observation of the student to as-
sess the student’s value of 0, ;. If the teacher chooses
to override, then the student is assigned to Tier 2 if
theta;; < cuty. It is assumed that the teacher over-
rides with a certain probability override,, and that
the override decision is made independently for each
student (and independently of 6).

The assumptions in the cut score with override policy
are unrealistic, but this is more or less designed to be
a worst case scenario for causal identification. Also,
the cut score policy is a special case of the cut score
with override policy with the override probability set
to zero, which is convenient for implementation.

2XXX, personal communication.

4 A simple simulation study

To assess whether or not the treatment -effect
could be recovered under ideal conditions, a simu-
lation study was performed. Data was simulated
for 400 student at 10 time points using both of
the two policies (simulation code is in the accom-
panying file varSlopesSim2a.R). Then the model
(varSlopes2.stan) was fit using Stan (Stan Develop-
ment Team, 2013). Five chains were run for 2000 inter-
actions each (with 1/2 used for warm up). The usual
tests indicated that for both simulations the chains
had reached the stationary distribution. (The accom-
panying file varSlopesRun2.R shows the model fitting
and checking code.)

In both simulations, the treatment effect was set to .25,
corresponding to growth of 1/4 of a standard deviation
over an academic year (a fairly typical effect size for
an educational intervention). In the simulation using
the simple cut score policy, the mean treatment effect
posterior was .13 with a standard deviation of .09, a
median of .11, and a 95% credibility interval of .01 to
.34; which contains the true simulation value. For the
cut score with override policy, the override probability
was set to .5. In this simulation, the posterior mean
was .04, the standard deviation, .03, the median, .03
and the 95% interval .00 to .12, clearly an under esti-
mate.

5 Causal Identification

So why does the policy without override produce
an apparently unbiased estimate, and allowing the
teacher to override produce a biased estimate? The
answer can be found by trying to see whether or not
the effect of the treatment is causally identified by the
data (Pearl, 2009). Examine Figure 1(a), which corre-
sponds to the cut score without override policy. In this
case, as obs; is observed, there is no backdoor path to
05 or obss from Doseq, so its effects are causally iden-
tified.

For the cut score with override policy, Figure 1(b),
there is an extra dashed edge from 6, to Dose;. This
introduces a backdoor path which destroys the causal
identification. Thus, the estimates from this model are
biased.

Note that this could also be cast as a model misspec-
ification problem rather than a causal identification
problem. In particular, if the mechanism correspond-
ing to the dashed arrow were known, and added to the
MCMC model, the act of dosing becomes another ob-
servation. The policy parameters corresponding to the
dashed line (e.g., the override probability) are not es-
timable from data, but a sensitivity analysis could be
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Figure 1: Two time points of the model under the cut score policy with (b) and without (a) override.

performed by trying a range of parameters for the over-
ride mechanism. This would at least produce bounds
for the size of the treatment effect. This is obviously
the next step for this research.

6 Discussion

Intuitively, finding an optimal policy for a POMDP
requires first finding good estimates of the probable
effects of the various actions. However, unbiased es-
timates of those effects depend on the mechanism by
which actions are assigned in the training data. In
particular, a problem might exist if all of the vari-
ables used to assign the action are not observed. In
particular, to create unbiased estimates of the action
effects one of two conditions must hold: (1) actions
are assigned only on the basis of observed variables,
or (2) the mechanism by which the action assignment
is related to the latent variables is explicitly modeled.
In the latter case, a suitable parameterization of the
model can allow bounds for the causal effect of the
action to be calculated using a sensitivity analysis.

The good news is that in a typical POMDP policy, the
action selection is made on the basis of a function of
the sequence of observations. Even though this is more
complex than the simple example provided here, it is
still sufficient to satisfy the no backdoor path criterion,
and so the causal identification holds. The problem
comes when the database used for estimate is based
on historical records where the mechanism for action
assignment was not recorded. Here the potential use
of expert judgment could open a backdoor that would

cause a problem with the causal identification.

There are several other issues with these data that
have not yet been addressed. The first is structural
missingness. Students who are assigned to Tier 2 are
typically measured more often than students who are
assigned to Tier 1. For students in Tier 2 the model is
effectively estimating slope; +treat. sy, while for Tier 1
it is only estimating slope;, but with fewer time points.
It is unclear if this will cause problems (an increase in
the posterior variance is likely).

A second issue is that it was assumed that the Tier 2
effect was uniform and did not vary from person to
person or depend on the state of 6; ;. Almond (2007)
suggested that the effect of an educational interven-
tion was likely to be highest for students at or near
the proficiency level for which it was defined. Using
a more sophisticated model for the treatment effect is
probably appropriate.

A third issue is that the Tier 2 treatment is applied
to a small group. As the Tier 2 treatment is applied
to small groups (and sampling is usually done at the
classroom or higher level so that all of the students in
the group are included in the sample), this calls into
question the stable unit treatment value assumption.
Again, a more complicated model is needed to model
this dependency. Still, the procedure explored here
provides a way to start to approach the problem of
applying Al planning techniques to classroom decision
making.
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