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Abstract 

Building a Bayesian network is a cyclic 
procedure that includes identifying variables, 
constructing the graphical structure of the BN 
model using those variables, evaluating the 
conditional probability tables (CPTs) with the 
subject matter experts’ inputs. This process 
repeats until content experts are satisfied that the 
Bayesian network is a valid representation for 
the domain. The current paper describes the steps 
of the procedure used to build a Bayesian 
network for an educational game called Physics 
Playground, emphasizing the elicitation tools. 
The process starts with initial consultation from 
physics experts to draw possible graphs for the 
relationship among the proficiency variables and 
tasks. Then, we calculate CPTs based on the Q-
matrix. Next step describes how we are 
translating the R code into natural language so 
that the content experts can validate that the 
CPTs are sound. 
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1. INTRODUCTION AND 
BACKGROUND 

Bayesian networks are often used to represent student 
knowledge in educational games (De Klerk, Veldkamp, & 
and Eggen, 2015). As students play the game, their 
performance in each game level provides evidence about 
their knowledge, skills and abilities.  Querying the Bayes 
net may provide accurate sets of information about 
students’ ability that can be reported to a student or 
teacher (Almond et al., 2009) both in the form of 
assessment for learning or formative assessment, and 
assessment of learning or summative assessment (Shute & 
Rahimi, 2017). The Bayesian network can also be used to 
select an optimal sequence of activities (Shute, Hansen & 
Almond, 2008).  This paper describes an effort to build 

the Bayesian network representing Physics competency in 
the game Physics Playground.  In particular, it describes a 
natural language representation of the conditional 
probability tables used to elicit key parameters of the 
network and validate the network. 

1.1. PHYSICS PLAYGROUND 

The previous version of Physics Playground (PP; Shute 
& Ventura, 2013) was nonlinear: players could choose 
any level in the game to play or replay in any sequence. 
The goal of all 75 levels (or problems) in the previous 
version of PP was only to guide a green ball to hit a red 
balloon. Using the mouse, players drew coloured objects 
on the screen, which “come to life” as physical objects 
when the mouse button was released. These objects 
interacted with the game environment according to 
Newtonian mechanics and could move the ball towards 
the goal. When objects interacted within the game 
environment, they act as agents of force and motion—
these are analogous to simple machines in formal physics: 
ramp, lever, pendulum, and springboard. The general 
proficiencies measured were force and motion, linear 
momentum, energy, and torque.  

The current version of the PP still has game levels with 
similar mechanics mixed with new manipulation 
levels/tasks. In addition to the existing 75 levels, we are 
designing about 75 new game levels. The main difference 
between current and older version of the game is that the 
current version allows users to directly manipulate 
physics parameters such as gravity, mass, and air 
resistance and add external forces through blowers to 
solve the tasks (i.e., hit the balloon with the ball) Figure 1 
shows an example:  The player manipulates gravity and 
the mass of the ball using the sliders in the upper right to 
spin the bow tie and get the ball to drop to the center. The 
new levels expand physics content (i.e., Newtonian laws 
of motion; torque and conservation of momentum; and 
energy and dissipative forces).  

Additionally, new kinds of feedback providing verbal and 
visual hints will be included in the game. 



 

Figure 1: A new level in PP with sliders 

 

 

The project has multiple teams with different 
responsibilities: the physics’ pedagogy expert team, the 
level design and learning support team, the technical 
support and programming team, and the measurement 
team. The teams came together and built the competency 
model in an iterative process over the course of three to 
four months. Since each team focused on and had 
expertise in a different area, everyone needed to minimize 
the technical language when communicating with other 
teams. Therefore, the measurement team had to translate 
what they were doing into language that the rest of group 
could understand.  This would allow the other teams—
especially the physics team—confirm the important 
inputs.  

2. METHOD 

2.1. DEFINING THE VARIABLES 

The first step was to have the experts identify the 
variables—competencies and sub-competencies—that we 
needed to turn them into variables and build a Bayesian 
network with. The experts created an “Evidence 
Statements” (ES) spreadsheet to show the competency 
hierarchy. Table 1 is a screenshot of the ongoing 
spreadsheet.  

The ES spreadsheet has four columns: (1) Competency, 
(2) Sub-competency, (3) Explanation, and (4) Evidence.  
In the competency column, the experts listed five 
competencies (i.e., force and motion, linear momentum, 
energy, torque, and science and engineering practices) 
based on the Next Generation Science Standards for  

 

Middle School Physics (<<Needs Ref, talk to Ginny>>). 
Each of the competencies contains 1-2 sub-competencies 
For instance, Force and motion includes Newton’s three 
laws. Linear Momentum is divided into two sub-concepts: 
properties of momentum and conservation of momentum. 
Energy can be broken down to two things: (1) energy can 
transfer and (2) energy can dissipate. Torque includes 
properties of torque and equilibrium. The sub competency 

of science and engineering practices is the use of iterative 
design to solve a problem.  

The third column, explanation, is where the experts put a 
succinct definition of each sub-competency. For example, 
the two hard and fast rules about Newton’s 2nd law are: 
(1) mass and acceleration are inversely related; and 
(2) net force and acceleration are directly related. 
Properties of momentum, according to the experts, is 
directly related to mass, velocity, and is parallel to 
velocity. This column is especially useful for the learning 
support team when creating new game levels. The 
statements for each competency can be thought of as 
concrete learning objectives that we want a player to 
achieve in the levels of PP. A level designed to assess the 
properties of momentum sub-competency should be 
difficult to solve for players who lack a solid 
understanding of the relationships between momentum, 
mass, and velocity. In the evidence column, the experts 
briefly described what specific in-game behaviours (i.e., 
evidence) of a player can reveal each targeted 
competency. To assess whether a player understands 
static equilibrium in Newton’s 1st law, the experts 
suggested that we should observe how a player applies or 
adjusts a force (e.g., nudge, blow, gravity, air resistance) 
to keep an object stationary. If we want to elicit evidence 
for conservation of momentum, we will need to see 
whether a player manipulates something to cause a 
collision to affect the motion of the other object.  

2.2 ASSOCIATING COMPETENCIES WITH 
GAME LEVELS 

One way that educational testing differs from other 
applications is that if a system lacks sufficient evidence to 
assess the state of a particular variable (in this case a 
competency variable), it is usually possible to add new 
tasks or items to the instrument to provide the additional 
measurement.  In a game-based assessment, this translates 
to new levels for the game.    

The Q-matrix is a tool that allows the designers to rapidly 
assess how much evidence is available for the various 
competencies in the game (Almond, 2010; Almond et al., 
2015). Table 2 shows an example.  The columns represent 
the (sub)competencies and the columns the tasks (game 
levels).  A one in a particular cell means that the 
competency is useful for solving the task.  Eventually, 
this will mean that an edge will appear in the final 
Bayesian network from the competency variable to one or 
more observable outcome variables from the task.  For 
example, On the Upswing game level requires Newton’s 
1st Law as a primary necessary skill where Newton’s 
second and third law skills are not observed. 



 

Table 1: ES Spreadsheet 

Competency Sub-competency Description Evidence 

Force and Motion Newton's 1st Law Static equilibrium 
(a=0 and v=0) 

Player applies or adjusts a 
force (e.g., nudge, blow, 
gravity, air resistance) to 
keep an object stationary in 
at least one dimension. 

Force and Motion Newton's 2nd Law Net force and 
acceleration are 
directly related 

Player applies or adjusts a 
force acting on an object to 
cause it to accelerate at a 
desired rate. 

Linear Momentum 

Properties of momentum Momentum is directly 
related to mass 

Player adjusts the mass an 
object to affect the amount of 
momentum it transfers to a 
second object after the two 
collide. 

 

Energy 

 

Energy can transfer 

 

Energy can transform 
from one type to 
another (e.g., GPE to 
KE) 

Player changes parameters 
(e.g., mass, position, speed) 
to tranform more or less 
energy of one type to another 
(e.g., KE, GPE, EPE) of the 
same object. 

 

Torque 

 

Properties of torque 

 

 

Force and torque are 
directly related. 

Player adjusts the magnitude 
of a force to cause a 
corresponding change in the 
magnitude of a torque. 

 

Science and Engineering 
Practices 

Use iterative design to 
solve a problem 

Solve a problem by 
making variations on 
previous strategies 

Player makes successive 
adjustments of the same 
parameter to solve a level. 



 

 
Table 2: Q-matrix designed by the learning support team 

 Force and Motion 

 Newton's 
1st Law 

Newton's 2nd 
Law 

Newton's 3rd 
Law 

On the Upswing 1 0 0 

Lead the Ball 0 0 0 

Scale 1 0 0 

Spider Web 0 0 0 

On the Upswing 0 0 0 

 

Eventually, the Q-matrix will be augmented to provide 
additional information used for building the conditional 
probability tables, but for now the focus is just the 
structural Q-matrix:  the pattern of ones and zeros.   In 
particular, counting the number of ones in a particular 
column gives a crude estimate of how much evidence is 
available for a certain competency.  This allowed the 
design team to focus their efforts on the competencies for 
which there was the least evidence.   

After the first draft of the ES spreadsheet was completed, 
one of the first tasks of the design team was to inventory 
the existing game levels and fill out the corresponding 
rows of the Q-matrix.  The physics experts then reviewed 
the Q-matrix.  In the process, both teams I identified 
issues related to the definitions of the competencies.  This 
would result in a revision of the ES spreadsheet followed 
by updating the Q-matrix, providing a check on the 
revision of the ES spreadsheet. 

The ES spreadsheet gives working definitions for the key 
variables needed for building the Bayesian network of 
PP.  The Q-matrix provides a mechanism for checking the 
adequacy of the definitions. Both also serve as a job-aid 
for game level design.  

2.3. BAYESIAN NETWORK CLASS STEP 

The next step was for the measurement team to take the 
variables defined in the ES spreadsheet and produce the 
graphical structure for the Bayesian network.  They used 
Netica (Norsys, 2012), but at this stage only as a drawing 
tool; no numbers have been added yet. They produced 
two candidate networks, shown in Figures 2 and 3.  Both 
have the hierarchical structure, from the ES spreadsheet 
(competencies are coloured salmon and sub-competencies 
are coloured orange) and but the cross loadings are 
different.  

 

 

 

Presenting more than one possible Bayes net to the 
physics experts (i.e., Figures 2 and 3) was important 
because were it forced the experts to think about the 
nature of the relationships and not just rubber stamp what 
the analysts did.   

The differences between Figures 2 and 3 were chosen to 
facilitate discussions between the measurement and 
physics experts about key modelling assumptions. For 
example, in Figure 2 the science and engineering 
practices node is separated from the physics 
competencies, while in Figure 3 they are all connected 
through the overall Physics node. Also, Figure 3 has an 
overall Physics node while Figure 2 does not.  
Furthermore, in Figure 3, Newton’s three laws are all 
conditionally independent given force and motion, but in 
Figure 2 they are dependent. Giving the experts two 
examples allowed the measurement team to both explain 

Figure 2: First candidate Bayesian net for PP 

Figure 3: Second candidate Bayesian net for PP 



 

what the decisions meant and get expert input about 
critical questions of conditional independence.  

One issue that the measurement and physics teams needed 
to discuss was the type of relationship embodied in each 
link.  Some links represented the hierarchical relationship 
among the concepts (Section 2.1).  Others represented 
prerequisite knowledge:  for example, usually students 
learn the properties of momentum before learning 
conservation of momentum.  Still others represented 
concepts which are learned together.  For example, 
Newton’s first and second law are usually introduced at 
the same time.  One other type of relationship arose that 
we did not expect.  The physics experts pointed out that 
some concepts represented different ways of looking at 
the same problem.  For example, Newton’s third law (that 
forces are balanced) is related to the conservation of 
energy. This latter discovery posed problems for the 
design team who needed to design levels that provided 
evidence for one or the other of the two ways of looking 
at the same problem. 

Another class of question represented in the Figures 2 
and 3 related to the colour of the nodes.  The higher level 
skills (directly connected to Physics in Figure 3) were 
coloured salmon, and the low level nodes were coloured 
orange.  Some of the questions revolved around at which 
level of node the game would report scores to students.  
Other questions were about whether there were so many 
competencies in the model that they could not be assessed 
in a reasonable period of game play. 

Figure 4 shows the result of several iterative revisions of 
the network. The main changes are as follows:  (1) The 
experts liked the overall Physics node, but retained some 
of the cross-loadings from Figure 2.  (2) Mechanical 
energy became simply energy, which covered only two 
sub-competencies—energy can transfer between types 
(potential and kinetic) and energy can dissipate due to 
forces (e.g., air resistance).  (3) Two (orange) sub-
competencies were added under torque:  properties of 
torque and static equilibrium.  

The network was finalized at a joint meeting of all of the 
project teams.  As the competency model would be the 
focus of much of each team’s work, it was important to 
makes sure that everyone had a chance to make input.  
Once the network structure was finalized, the 
measurement team could begin work on the conditional 
probability tables. 

 

 

2.3 THE DIBELLO-NORMAL MODEL  

For PP, the domain experts were physicists; so they had 
some prior experience with probability.  They understood 
the concept of probability and understood what a 
conditional probability table was when that was 
explained.  However, they were not used to thinking in 
those terms, so questions like “Suppose we have 100 
students who are low in physics, how many of them 
would be low in force and motion, too?” were not easy for 
them to answer. 

Almond (2010) suggested using the joint correlation 
matrix of the competency variables as a way of assessing 
conditional probability tables in the competency model.  
(This is especially handy if existing studies are available 
to estimate this correlation matrix.  Unfortunately, this 
was not true for PP.)  The correlation matrix could be 
converted to a series of regressions, which could be 
discretised to produce the conditional probability table. 

Instead of assessing the whole correlation matrix at once, 
the measurement team decided to directly elicit the 
parameters for the regressions.  These have simple to 
interpret parameters (slopes, an intercept and a scale 
parameter related to the residual variance).  This method 
had also been successfully used to build the Bayesian 
network for ACED (Shute, Hansen & Almond, 2008). 

The DiBello–normal model combines a regression model 
with a simple trick introduced by Lou DiBello for 
representing discrete variables with continuous ones 
(Almond, et al. 2015).  Consider a node with K parent 
variables in the graphical structure.  For each parent 
variable, assign a continuous variable 𝜃!and assume that 
its distribution in the population of interest follows a 
standard normal (mean 0, variance 1) distribution.  Then 
the effective theta of the child variable will be: 

Figure 4: Final version of Bayesian net for PP 



 

𝜃 =
1
𝐾

𝑎!𝜃!

!

!!!

− 𝑏              (1) 

The factor of 1/√𝐾 is for variance stabilization.  As each 
𝜃! has a standard normal distribution, the variance of the 
sum is 𝑎!!/𝐾.  In particular, changing the number of 
parent variables does not change the scale of the child.  
By convention from educational testing, the negative 
intercept (or difficulty) is used instead of the intercept. 

Equation 1 is a deterministic function of the parent 
variables.  Most of the time, there should be some random 
variability around  𝜃.   To make Equation 1 a regression 
add a residual variance, 𝜖, which follows a normal 
distribution with mean 0 and standard deviation 𝑎!. 

To go from the regression model to a conditional 
probability table, it is necessary to discretise the thetas.  
First, consider a 𝜃! corresponding to a parent variable 𝑋! 
which has 𝑚! states.  As 𝜃! follows a normal distribution, 
divide the real line up into 𝑚! parts with equal area.  The 
cut between State s and State 𝑠 + 1 is Φ!!( !

!!
), where 

Φ!!(⋅) is the inverse normal cumulative distribution 
function.   Now associate each state, s, with the midpoint 
with respect to the normal distribution of that interval so 
that when 𝑋! = 𝑠 then 𝜃! = Φ!!(!!!/!

!!
) . 

As each row of the conditional probability table 
corresponds to a mapping of 𝑋! to a state, 𝑠_𝑘, it is 
straightforward to calculate an effective theta,  𝜃, for each 
row.  The conditional probability distribution is then 
approximately a normal distribution with mean  𝜃 and 
standard deviation 𝑎!.  Discretising this normal 
distribution yields the values for the row of the 
conditional probability distribution.    

To discretise the child variable, let m be the number of 
states.  As before, set up the normal cut points and let 
𝑐! =  −∞ and 𝑐! =  +∞.  Then the probability that the 
child variable will fall in State s is 
Φ !!!!

!!
− Φ !!!!!!

!!
  .  This can be used to calculate all 

of the values for each row of the conditional probability 
table. 

The Peanut package (Almond, 2015, 2017a) provides 
functions that compute the conditional probability tables 
in the R language (R Core Team, 2017).  Peanut also 
provides a mechanism for associating the parameters (the 
slopes or alphas, the intercept or beta, and the link scale 
parameter 𝑎!) with the node in the network.  Thus the 
conditional probability distributions for all of the nodes in 
the competency model could be expressed with a series of 
statements in R. 

2.4. TRANSCRIPTION THE CODE TO A 
WORD DOCUMENT 

The Peanut package works by associating meta-data with 
each node about how to build its conditional probability 
table.  Figure 5 shows an example for the node 
ForceAndMotion which has a single parent, Physics 
(Figure 4). The first line of code simply picks binds the 
node to a variable.  The assignments of 
PnodeRules(fam) to “Compensatory”,  and the 
assignment of PnodeLink(fam) to “normalLink” 
establish that model to be used is an additive 
(compensatory) regression (normal link).  In other words, 
it selects the model parametrisation described in 
Section 2.3.   The last three lines of code set the 
parameters of the distribution.  PnodeAlphas(fam) 
sets the slope (discrimination) parameters 𝑎!.  Note that 
this is a labelled vector of numbers, as if there was more 
than one parent, each parent would get a separate slope. 
PnodeBetas(fam) sets the difficulty (negative 
intercept).  The PnodeLinkScale(fam) function sets 
the residual variance, 𝑎!. 

 

fam <- PP.High$ForceAndMotion 

PnodeRules(fam) <- "Compensatory" 

PnodeLink(fam) <- "normalLink" 

PnodeLinkScale(fam) <- sqrt(.2) 

PnodeAlphas(fam)<-c(Physics=sqrt(.8)) 

PnodeBetas(fam) <- -.5 

Figure 5: R code to describe the competency model 

The numbers are default numbers supplied by the 
measurement team.  The negative value for the beta value 
indicates that the ForceAndMotion skill is somewhat 
easier than the parent Physics skill; that is more students 
should be at a higher level of mastery of ForceAndMotion 
than of Physics (in general).   

The link scale and alpha parameters are best understood 
as a unit.  In particular, the multiple correlation 
coefficient for the regression is: 

𝑅! =
∑𝑎!!/𝐾

∑𝑎!!/𝐾 + 𝑎!!
 

The values of 𝑎! = √.8 and 𝑎! = √.2 were chosen so that 
𝑅! = .8; in other words, changes in the parent variable 
explain about 80% of the variability of the child variable. 
 
Unlike the graphical structure, where the measurement 
team presented two choices, for the parameters, the 



 

measurement team presented a single choice.  This will 
activate the anchoring heuristic (Tversky & Kahneman, 
1974) influencing the Physics experts to provide numbers 
closer to the ones suggested by the measurement experts.  
In our previous experience, this is necessary because 
experts are used to working with observed score 
correlations, not the correlations between the latent 
variables (tetrachoric correlations).  Thus the 
measurement team deliberately starts with a high 𝑅! 
hoping to anchor the physics experts towards the higher 
values. 
 
The plan was for the measurement team to make the first 
pass suggesting numbers for the conditional probability 
table, and then have that work reviewed by the physics 
experts.  However, the R code will not be a friendly 
representation for the experts.  Therefore, the 
measurement team transcribed the R code into natural 
language.  The transcription of the code from Figure 5 is 
shown in Figure	6.	
 
Force and Motion: its parent is physics only. 
We are setting a regression of force and motion on 
physics understanding.  

Link scale parameter only gives us R-squared, which is 
the percent of the explained variance by the predictors 
on the outcome variable. The value of R-squared is 0.8. 

The shift of about half of the standard deviation (.5) up 
towards more people having the skill. The shift is 
telling us a person who is medium on the on the parent 
variable is going to be somewhere about half way 
between medium and high. Most of the weights were 
split between medium and high.  

Figure 6: Transcription of the R code for physics experts 

In addition to transcribing the code into natural language, 
the measurement team calculated the conditional 
probability table for the experts. Table 3 shows the CPTs 
corresponding to the parameters in Figure 5. 

Table 3: CPT for force and motion with physics 
 Force and Motion 
Physics High Medium Low 
High 0.98 0.02 0.00 
Medium 0.56 0.42 0.02 
Low 0.04 0.52 0.44 
 

Table 3 shows the effect of the difficulty parameter.  The 
shift of  ½ standard deviation means that students who are 
low in Physics are evenly divided between medium and 
low on Force and Motion.  Students at the medium level 
of Physics are split between high and low, and almost all 
students who are high in Physics are high in Force and 

Motion.  (The zero in the first row is not a structural zero, 
but rather a small probability that rounds to zero). 

Figure 7 shows another example for the node Energy 
which has two parents: Physics and ForceAndMotion. 
The code is similar to that used in Figure 5 except for the 
fourth line. Since Energy has two parents, 
PnodeAlphas(eng) sets the two slopes parameters at 
the same time; the values are tagged as to which parents 
they belong to. Note that, the choice of the 
"Compensatory" rule in the code actually makes a 
difference because the node Energy has two parents.  

 

eng <- PP.High$Energy 

PnodeRules(eng) <- "Compensatory" 

PnodeLink(eng) <- "normalLink" 

PnodeLinkScale(eng) <- sqrt(.2) 

PnodeLnAlphas(eng)<- 
log(c(Physics=sqrt(.7),ForceAndMotion=
sqrt(.9))) 

PnodeBetas(eng) <- 0 

Figure 7: R code to describe a one child two parents 
competency model 

Figure 8 shows the transcription of Figure 7 into natural 
language. Now the general R2 shows that the parent 
variables jointly explain about 80% of the variability in 
the child variable.  The relative values of the coefficients 
shows that force and motion, which is often taught right 
before energy, is more important than general physics 
understanding. 



 

Energy Can Transfer: its parents are Physics 
Understanding and Force/Motion 

This skill has a compensatory rule, which determines a 
combination of the necessary skills with weights.  

We are setting a regression of force/motion and energy 
on physics understanding. This model has two 
predictors naturally. Energy has both direct and 
indirect effect on physics understanding. Indirect effect 
goes through force/motion. 

One skill can offset another skill in this model. Link 
scale parameter only gives us R-squared, which is the 
explained variance by the predictors. The average 
value of R-squared is 0.8.  

0.8 comes from an average of physics=0.7 and 
force/motion=0.9. 

There is no difficulty shift. Somebody who is medium 
on the average of the parent variables will be roughly 
medium on the child variable. 

Figure 8: Transcription of the R code for physics experts 

Table 4 presents one child and two parents’ CPT. Node 
Energy does not have a difficulty shift. The table shows 
the general structure of a compensatory model:  the 
distribution of each row tends to centre around the 
average of the parent values.  When both are the same, the 
distribution has a mode at that value.  When the parent 
variables differ by one value, then most of the mass is 
split between those values in the child.  For the two rows 
where one parent is high and the other low, most of the 
mass is in Medium. 

Table 4: CPT for Energy having parents of force and 
motion and physics 

Physics Force 
and 
Motion 

Energy-
High 

Energy-
Medium 

Energy-
Low 

High High 0.96 0.04 0.00 
Medium High 0.69 0.30 0.01 
Low High 0.21 0.66 0.13 
High Medium 0.62 0.36 0.01 
Medium Medium 0.17 0.66 0.17 
Low Medium 0.01 0.36 0.62 
High Low 0.13 0.66 0.21 
Medium Low 0.01 0.30 0.69 
Low Low 0.00 0.04 0.96 
 

2.5. GETTING CONSULTATION FROM 
CONTENT EXPERTS 

As of this writing, the conversion into natural language is 
complete.  The document has been presented to the 
Physics team for their review, although given the number 
of things they need to review and approve they have not 
yet completed their review.  We expect this to be 
completed by the time of the conference so we be able to 
report on our experiences with this approach. 

As before, we expect it will be an iterative process, with 
the experts making changes and the measurement team 
updating the numbers, regenerating the tables and the 
experts checking again.  Furthermore, after the numbers 
are entered into the Bayesian network (again, done by the 
same R code), the network itself can be made available to 
check that more complicated queries have answers that 
match expectations. 

3. FUTURE WORK 
The next obvious step is an evaluation of how well this 
representation works.  Working through the process of 
assigning conditional probability tables to the competency 
model with the physics experts should allow us to test the 
wording of the natural language descriptions as well as 
get feedback of which representations the physicists find 
useful and which are not.  We hope to be able to discuss 
at least preliminary findings at the conference. 

Another obvious next step is to automate the natural 
language generation.  The text in Figure 6 is mostly 
template text, so writing functions in Peanut to generate it 
should be straightforward.  Code to go in the other 
direction isn’t necessary, as probably only a few numbers 
will change at each iteration; however, a web tool that 
made the natural language a form and then updated the 
numbers immediately might make the user experience 
even better. 

Another issue which the proposed field trial should 
address is whether or not the parameters described in 
Section 2.3 are the right ones for elicitation.  One simple 
question is, is it better to use the intercept or 
discrimination (negative slope).  While the negation is 
simple to do in one’s head, like negatively worded 
questions it adds cognitive load to the elicitation process.   

A more complicated question is whether it is better to use 
𝑅!instead of the residual standard deviation, 𝑎!.  The 
square of the multiple correlation is more familiar from 
elementary statistics and more directly interpretable.  
Suppose that in place of 𝑎!, 𝑎!,… , 𝑎!the parameters were 
given as 𝑅!, 𝑎!,… , 𝑎!.  Then 𝑎! = √(1 − 𝑅!) and  

𝑎! = 𝑎!
𝑅!

𝑎!
! /𝐾

 . 



 

The reparametrized model has another advantage.  The 
neutral value for  𝑎! is now one, with more important 
parents having higher values and less important parents 
having lower values. 

Although the use of the graphical structure of the model 
in elicitation has been well known for a long time 
(Howard, 1989), translating the conditional probability 
tables into natural language adds a tool which could be 
useful in other projects.  In particular, when combined 
with the regression model for conditional probability 
tables (Almond, 2010; Almond et al., 2015), it helps 
translate conditional probability tables into a language 
that might be more familiar to experts. 
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