Package ‘RNetica’

June 2, 2021
Version 0.8-4
Date 2021/06/02
Title R interface to Netica(R) Bayesian Network Engine
Author Russell Almond
Maintainer Russell Almond <ralmond@fsu.edu>
Depends R (>= 3.0), methods, utils, CPTtools (>= 0.5-3)
Imports grDevices, R.utils, futile.logger

Description
This provides an R interface to the Netica (http://norsys.com/) Bayesian network library API.

License Artistic-2.0 + file LICENSE

URL https://pluto.coe.fsu.edu/RNetica

Collate Session.R Networks.R Node.R Edges.R Inference.R Cases.R
Experience.R Continuous.R Random.R LoadFuns.R Tester.R

R topics documented:

RNetica-package e 4
AbsorbNodes 11
AddLink oL e 13
AdjoinNetwork L e 15
CalcNodeState e 18
CaseFileDelimiter e 20
CaseFileStream e 22
CaseMemorytream oot e e e e e e e e e e e e 25
CaseStream-class 28
CliqueNode-class 31
CompileNetwork 33
CopyNetworks 35
CopyNodes e e e 37
CreateNetwork e e 39
DeleteNodeTable e e 41
dgetFromString L 42

https://pluto.coe.fsu.edu/RNetica

R topics documented:

EliminationOrder e 43
EnterFindings 45
EnterGaussianFinding 47
EnterIntervalFinding L 48
EnterNegativeFinding e 50
Extract.NeticaNode e 51
FadeCPT e 66
FileCaseStream-class e e 68
FindingsProbability 71
GenerateRandomCase 73
GetNamedNetworks e e 75
GetNetworkAutoUpdate e 77
GetNthNetwork e 79
HasNodeTable e e 80
IDname e e e 82
IS.ACHIVE . . o o vt e e e e e e 84
is.discrete e e e e 86
is.NodeRelated e 87
IsNodeDeterministic i i e e e e e e e 90
JointProbability 91
JunctionTreeReport L 93
LearnCases i i e e e e e e e e e 94
LearnCPTs e e 97
LearnFindings 103
MakeCliqueNode e e e 106
MemoryCaseStream-class e 108
MemoryStreamContents oL e e e 112
MostProbableConfig L 115
Mutuallnfo e e e e 117
NeticaBN o e e e 119
NeticaBN-class e 120
NeticaCaseStream o v it i e e e e e e e e 123
NeticaNode e e e 127
NeticaNode-class e 129
NeticaRNG e e 131
NeticaRNG-class e e e e 133
NeticaSession e e e e e e 136
NeticaSession-class 138
NeticaVersion i e e e e e e e e e 142
NetworkFindNode e 143
NetworkFootprint L 145
NetworkName e 147
NetworkNodeSetColor e 149
NetworkINodeSets e e 151
NetworkNodesInSet e 153
NetworkSetPriority 155
NetworkSetRNG e e 157

NetworkTester-class e e e 158

R topics documented: 3

Index

NetworkTitle e e e 161
NetworkUndo e 162
NetworkUserField e 163
NewDiscreteNode e e e e e 165
NodeBeliefs e 168
NodeChildren e 170
NodeEquation e 171
NodeExpectedUtils e 174
NodeExpectedValue e 176
NodeExperience e e e e 177
NodeFinding e 179
NodeInputNames i e e e e 182
NodeKind e 184
NodeLevels e 186
NodeLikelihood e 189
NodeName e e 192
NodeNet e e 194
NodeParents e e e e e 195
NodeProbs e e e e e 198
NodeSets e e e 200
NodeStates e e e 202
NodeStateTitles o e e e e e e e 205
NodeTitle e e e e 207
NodeUserField e 209
NodeValue e 211
NodeVisPos e e e e 213
NodeVisStyle e e 214
ParentStates L e e e e e 216
ReadFindings e 217
RetractNodeFinding 221
ReverseLink e 222
StartNetica e e e e e 224
testerConfusion e e e e e 227
testNetwork e e 230
WithOpenCaseStream 0 i e e 232
WOE o v v o e e e e e e e e e e e e e e e e e 234
write.CaseFile e 237
WriteFindings e e 238
WriteNetworks e e 240

4 RNetica-package

RNetica-package R interface to Netica(R) Bayesian Network Engine

Description

This provides an R interface to the Netica (http://norsys.com/) Bayesian network library API.

Details

The DESCRIPTION file: This package was not yet installed at build time.

This package provides an R interface to the Netica, in particular, it binds many of the functions in
the Netica C API into the R language. RNetica can create and modify networks, enter evidence and
extract the conditional probabilities from a Netica network.

License

While RNetica (the combination of R and C code that connects R and Netica) is free software, as
is R, Netica is a commercial product. Users of RNetica will need to purchase a Netica API license
key (which is different from the GUI license key) from Norsys(R) (http://www.norsys.com/).

Once you have a license key, you can use it in one of three ways. The currently (RNetica 0.5 and

later) recommended way of using it is to create a Netica Session object that contains it: DefaultNeticaSession
<-NeticaSession(LicenseKey="License Key from Norsys"). This will store the key in aNeticaSession
object. The special variable DefaultNeticaSession is used as a default for every function requir-

ing a session argument, so can be used to skip the need for explicitly stating the session argument.

Two other mechanisms continue to be supported for backwards compatibility. First, the license key
can be used as an argument to the function StartNetica(). This will create a session and store it
in NeticaDefaultSession. If the variable NeticalicenseKey in the R top-level environment is
set before the call to library(RNetica), StartNetica() will pick up the license key from that
location.

Without the license key, the Netica shared library will be restricted to a student/demonstration mode
with limited functionality. Note that all of the example code (and hence R CMD check RNetica) can
be run using the limited version.

Note that the NeticaSession object stores the complete Netica license key. Do not share dumps of
the session object (including the .RData file containing DefaultNeticaSession) with any third-

party.

Index

Index: This package was not yet installed at build time.

http://www.norsys.com/

RNetica-package 5

RNetica Environment and Netica Objects

Netica exists in both as a stand alone graphical tool for building and manipulating Bayesian net-
works (the Netica GUI) and as a shared library for manipulating Bayesian networks (the Netica
API). The RNetica package binds the API version of Netica to a series of R functions which do
much of the work of manipulating the network. The file format for the GUI and API version of
Netica is identical, so analysts can easily move back and forth between the two. Note that the RNet-
ica environment is separate from other Netica environments that may be created using the Netica
GUI (or API invoked from a different program); RNetica can only manipulate the networks that are
currently loaded into its environment.

There are five objects which provide a handle for objects in the Netica session. These are:

NeticaSession This is a container for the overall Netica session. It is referenced when creating
other Netica objects (NeticaBNs, CaseStreams and NeticaRNG) and contains the license key
needed to activate Netica. Its field $nets is an environment which contains references to all
of the networks which have been associate with this session.

NeticaBN This is a handle for a network object. NeticaNode objects are created within a network,
and the $nodes field is an environment which contains node references, at least for those nodes
which have been referenced in R code. Networks must have unique names within a session.

NeticaNode This is a handle for a particular Netica node. Nodes must have unique names within
a network. Many inference functions are done based on nodes.

CaseStream This is a stream of Netica case data, values for particular nodes. There are two sub-
classes: FileCaseStream and MemoryCaseStream. As of version 5.04 of the Netica API,
there are some issues with MemoryCaseStreams, so the FileCaseStreams should be used
instead.

NeticaRNG This a random number generator used by Netica for generating random cases.

All of these follow the envRefClass protocol. In particular, their fields are referenced using ‘$’.
Also, all of them have a method $isActive (which is called from the generic function is.active)
which determines whether or not the pointer to the Netica object currently exists or not. Calling
stopSession will render all Netica objects inactive.

In particular, when quitting and restarting R, the pointers will all be initialised to null, and all of
the session, node and network objects will become inactive. Some examples of how to restart an
RNetica session are provided below.

To connect R to Netica, it is necessary to create and start a NeticaSession. This is done by first
calling the constructor NeticaSession() and then calling the function startSession(session). If
you have purchased a Netica license key from Norsys, this can be passed to the constructor with the
argument LicenseKey given the value of the license key as a string. Note that the session object can
be saved in the workspace, so that it can be used in future R session (it does not need to be recreated,
but it must be restarted with a call to startSession). If it is saved to Defaul tNeticaSession, this
value will be used as a default by all of the functions that use the session as an argument.

Note that this is a change from how RNetica operated prior to version 0.5. In older versions of
RNetica, the session pointer was held inside of the C code, and the function StartNetica() was
invoked automatically when the RNetica package was attached. Nowt this needs to be done manu-
ally through a call to startSession.

The function getDefaultSession() emulates the behaviour of the previous version of RNetica.
It is the default value for all of the functions which require a session argument. When invoked,

6 RNetica-package

it looks for an object call DefaultNeticaSession in the global environment. If that exists, it is
used, if not, a new NeticaSession is created. If the new session is created, it looks for a variable
NeticalLicenseKey in the global environment. If that is present, it will use this as a license key.
Finally, if the DefaultNeticaSession is not active, it will start it.

Note that it is almost certainly a mistake to have two sessions open at the same time. Users should
either set the DefaultNeticaSession, and use the default, or always explicitly pass the session
argument to functions that need it.

The following functions take a session argument: CaseFileDelimiter, CaseFileMissingCode,
CaseFileStream, CaseMemoryStream, ClearAllErrors, CreateNetwork, GetNthNetwork, GetNamedNetworks,
NeticaVersion, ReadNetworks, ReportErrors, StartNetica, StopNetica, startSession, and
stopSession.

Netica Networks

NeticaBN objects are created through one of three functions: CreateNetwork(), ReadNetworks()
and CopyNetworks. The first two both require a session argument, while the third uses the ses-
sion from its net argument. When a network is created it is added as a symbol (using its name)
to the $nets field of the session. It can then be referenced using session$nets$netname or ses-
sion$nets[["netname”]]. The field $Session of the NeticaBN points to the NeticaSession
object in which the network was created.

Note that session$nets cache may contain inactive network objects for one of two reasons: (1) it is
a deleted network object, or (2) this is a session which has been restored from a file, and the Netica
pointers have not been reconnected. In particular, quitting R will always deactivate the network.

For networks, the simplest solution is to save each network to a file using WriteNetworks(). If a
NeticaBN object net is used in either a net <-ReadNetworks() or WriteNetworks(net) call, then
the R object will be badged with the name of the last used filename. Thus, after saving and restoring
a R session, the expression net <-ReadNetworks(net) will recreate net as an object pointing to a
new network that is identical to the last saved version.

Netica Nodes

NeticaNode objects are created through NewDiscreteNode() or NewContinuousNode(), or re-
trieved from the network using NetworkFindNode (), NetworkAl1Nodes (), NetworkNodesInSet(),
or one of a variety of other functions that return nodes. When a node is created it is added as
a symbol (using its name) to the $node field of the network. It can then be referenced using
net$nodesnodename or net$nodes[["nodename"]].

Note that if more than one network is loaded they may have identically named nodes that are not
identical. For example, netl and net2 may both have a node named “Proficiency”. If the R variable
Proficiency is bound to the NeticaNode object corresponding to the variable “Proficiency” in net!,
it can only be used to access the instance of that variable in netl, not the one in net2.

Note that the NeticaNode object is created when then node is first references in R. In particular, this
means when a network is loaded through a call to ReadNetworks, the R objects for the correspond-
ing Netica nodes are not immediately created. The function NetworkAllNodes() returns a list of
all nodes in the network, and as a side effect, creates NeticaNode object for all of the nodes found
in the network. If the network has many nodes, it may be more efficient to just create R objects for
the ones which are used. In this case the functions NetworkFindNode (), and NetworkNodesInSet
are useful for finding (and creating R objects for) a subset of nodes.

RNetica-package 7

The following procedure can be used to save and restore a Netica network across sessions. In the
first session:

DefaultNeticaSession <- NeticaSession()
startSession(DefaultNeticaSession)

net <- CreateNetwork("myNet"”,6 DefaultNeticaSession)
Work on the network.

WriteNetworks(net, "myNet.dne")

q("yes")

The variables DefaultNeticaSession and net will be saved in .Rdata. Then in the next R session

startSession(DefaultNeticaSession)
net <- ReadNetworks(net,DefaultNeticaSession)
net.nodes <- NetworkAllNodes(net)

This will read net from the place it was last saved. It will also create R objects for all of the nodes
in net. This can now be access through net$nodes or the variable net.nodes.

Creating and Editing Networks

Operations with Bayesian networks generally proceed in two phases: Building network, and con-
ducting inference. This section describes the most commonly used options for building networks.
The following section describes the most commonly used options for inference.

First, the function CreateNetwork() is used to create an empty network. Multiple networks can be
open within the RNetica environment, but each must have a unique name. Names must conform to
Netica’s IDname rules.

Nodes can be added to a network with the functions NewDiscreteNode () and NewContinuousNode().
Note that Netica makes an internal distinction between these two types of nodes and a node cannot
be changed from one type to another. Nodes must all have a unique (within the network) name
which must conform to the IDname rules.

Edges between nodes are created using the AddLink (parent, child) function. This forms a directed
graph which must be acyclic (that is it must not be possible to follow a path along the direction of the
arrows and return to the starting place). The function NodeParents(child) returns the current set of
parents for the node child (nodes which have edges pointing towards child). NodeParents(child)
may be set, which serves several purposes. First, it allows connections to be added and removed.
Second, setting one of the parent locations to NULL produces a special Stub node, which serves as a
placeholder for a later connection. Third, it allows one to reorder the nodes, which determines the
order of the dimensions of the conditional probability table.

A completed Bayesian network has a conditional probability table (CPT) associated with each node.
The CPT provides the conditional probability distributions of the node given the states of its par-
ents in the graph. RNetica provides two functions for accessing and setting this CPT. The function
NodeProbs () returns (or sets) the conditional probability table as a multi-dimensional array. How-
ever, using the array extractor “[...]” (Extract.NeticaNode) allows the conditional probability
table to be manipulated as a data frame, where the first several columns provide the states of the

8 RNetica-package

parent variables, and the remaining columns the probabilities of the the node being in each of those
states given the parent configurations. This latter approach has a number of features for working
with large tables and tables with complex structure. The double square bracket extractor “[[...]]”
(Extract.NeticaNode) words with logical IsNodeDeterministic nodes where parent configura-
tion maps to exactly one state of the child. So rather than returning a probability distribution, they
return a value table.

Finally, when the network is complete, the function WriteNetworks() can be used to save it to
a file, which can either be later read into RNetica, or can be used with the Netica GUI or other
applications that use the Netica API.

Inference

The basic purpose for building a Bayesian network is to rapidly calculate conditional probabilities.
In Netica language, one enters findings (conditions) on the known or hypothesised variables and
then calculates beliefs (conditional probabilities) on certain variables of interest.

Netica, like most Bayesian network software, uses two different graphical representations, one for
model construction and one for inference. The acyclic directed graph is use for model construction
(previous section). The function CompileNetwork() builds the second graphical representation:
the junction tree. The function JunctionTreeReport() provides information about the compiled
representation.

While compiling can take a long time (depending on the size and connectivity of the network),
repeated compilations appear to be harmless. There is an UncompileNetwork() function, but per-
forming any editing operation (adding or removing nodes or edges) will automatically return the
network to an uncompiled state. Netica tries to preserve finding information. In particular the func-
tion AbsorbNodes () provides a mechanism for removing nodes from a network without changing
the joint probability (including influence of findings) of the remaining nodes. (The network must
be recompiled after a call to AbsorbNodes () though.)

The principle way to enter observed evidence is setting NodeFinding(node) <-value. The function
NodeLikelihood () can be used to enter virtual evidence, however, some care must be taken as it
alters the meanings of several of the other functions.

The conditional (given the entered findings and likelihoods) probability distribution can be queried

at any time using the function NodeBelief's(node). If the states of a node have been given numeric

values using NodeLevels(node), then NodeExpectedValue (node) will calculate the expected nu-

meric value (and the standard deviation). The function JointProbability(nodelist) calculates the

joint distribution over a collection of nodes, and the function FindingsProbability(net) calcu-

lates the prior probability of all the findings entered into the network. The function MostProbableConfig(nodelist)
finds the mode of the joint probability distribution (given the current findings and likelihood).

Note that in the default state, when findings are entered, the beliefs about all other nodes in the net-

work are then updated. This can be time consuming in large networks. The function SetNetworkAutoUpdate ()
can be used to change this to a lazy updating mode, when the evidence from the findings are

only propagated when required for a call to NodeBeliefs() or a similar function. The function
WithoutAutoUpdate(net,expr) is useful for setting findings in a large number of nodes in net

without the overhead of belief updating.

RNetica-package 9

Node Sets

The function NodeSets () allows the modeller to attach labels to the nodes in the network. For the
most part, Netica ignores these labels, except that it will colour nodes from various sets different
colours (NetworkNodeSetColor()). Aside from a few internal labels used by Netica, these node
sets are reserved for user programming.

RNetica provides some functions that make node sets incredibly convenient ways to describe the
intended usage of the nodes. In particular, the function NetworkNodesInSet () returns a list of all
nodes which are tagged as being in a particular node set. For example, suppose that the modeller
has marked a number of nodes as being in the node set "ReportingVar". Then the following code
would generate a report about the network:

net.ReportingVars <- NetworkNodesInSet(net, "ReportingVar")
lapply(net.ReportingVars, NodeBeliefs)

Warning

The current status of RNetica is that of a beta release. The code base is stable enough to do useful
work, but more testing is still required. Users are advised to work in such a way that they can easily
recover from problems.

In particular, because RNetica calls C code, there is a possibility that it will crash R. There is also a
possibility that pointers embedded in NeticaBN and NeticaNode objects will become corrupted. If
such problems occur, it is best to restart R and reload the networks.

Please send information about both serious and not-so-serious problems to the maintainer.

Legal Stuff

Netica and Norsys are registered trademarks of Norsys, LLC, used by permission.

Although Norsys is generally supportive of the RNetica project, it does not officially support RNet-
ica, and all questions should be sent to the package maintainers.

Author(s)

Russell Almond
Maintainer: Russell Almond <almond @acm.org>

References

The general Netica manual can be found at: http://www.norsys.com/WebHelp/NETICA.htm

The Netica API documentation can be found at http://norsys.com/onLineAPIManual/index.
html.

Almond, R. G. & Mislevy, R. J. (1999) Graphical models and computerized adaptive testing. Ap-
plied Psychological Measurement, 23, 223-238.

Almond, R. G., Mislevy, R. J., Steinberg, L. S., Yan, D. & Williamson, D. M. (2015) Bayesian
Networks in Educational Assessment. Springer.

http://www.norsys.com/WebHelp/NETICA.htm
http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/index.html

10 RNetica-package

Examples

AR AR AR
Network Construction:

sess <- NeticaSession()

startSession(sess)

abc <- CreateNetwork("ABC"”, session=sess)

A <- NewDiscreteNode(abc,"A"”,c("A1","A2" ,"A3","Ad4"))
B <- NewDiscreteNode(abc,"B",c("B1","B2","B3"))

C <- NewDiscreteNode(abc,"”C",c("C1","C2"))

AddLink(A,B)
NodeParents(C) <- list(A,B)

NodeProbs(A)<-c(.1,.2,.3,.4)

NodeProbs(B) <- normalize(matrix(1:12,4,3))
NodeProbs(C) <- normalize(array(1:24,c(4,3,2)))
abcFile <- tempfile("peanut"”,fileext=".dne")
WriteNetworks(abc,abcFile)

DeleteNetwork(abc)

HEHHHHHHHEBH AR

Inference using the EM-SM algorithm (Almond & Mislevy, 1999).

System/Student model

EMSMSystem <- ReadNetworks(file.path(library(help="RNetica")$path,
"sampleNets”,"System.dne"), session=sess)

Evidence model for Task 1a
EMTaskla <- ReadNetworks(file.path(library(help="RNetica")$path,
"sampleNets"”,"EMTaskla.dne"), session=sess)

Evidence model for Task 2a
EMTask2a <- ReadNetworks(file.path(library(help="RNetica")$path,
"sampleNets”, "EMTask2a.dne"), session=sess)

Task 1a has a footprint of Skilll and Skill2 (those are the

referenced student model nodes. So we want joint the footprint into
a single clique.

MakeCliqueNode (NetworkFindNode (EMSMSystem, NetworkFootprint(EMTaskla)))
The footprint for Task2 a is already a clique, so no need to do

anything.

Make a copy for student 1

student1 <- CopyNetworks(EMSMSystem, "studentl1”)

Monitor nodes for proficiency

student1.prof <- NetworkNodesInSet(studentl,"Proficiency")

student1.tla <- AdjoinNetwork(student1,EMTaskl1a)
We are done with the original EMTaskla now
DeleteNetwork (EMTask1a)

AbsorbNodes 11

Now add findings
CompileNetwork(student1)
NodeFinding(student1.tl1a$0bslal) <- "Right”
NodeFinding(student1.t1a$0bs1a2) <- "Right”

student1.probtla <- JointProbability(studentl.prof)

Done with the observables, absorb them
AbsorbNodes(student1.tl1a)

CompileNetwork(student1)

studentl.probtlax <- JointProbability(student1.prof)

Now Task 2
studentl.t2a <- AdjoinNetwork(student1,EMTask2a,"t2a")
DeleteNetwork (EMTask?2a)

Add findings
CompileNetwork(student1)
NodeFinding(student1.t2a$0bs2a) <- "Half"

AbsorbNodes(student1.t2a)
CompileNetwork(student1)
studentl.probtla2ax <- JointProbability(studentl.prof)

DeleteNetwork(list(studentl, EMSMSystem))
stopSession(sess)

AbsorbNodes Delete a Netica nodes in a way that maintains the connectivity.

Description

This function deletes NeticaNode connecting the parents of the deleted node to its children. If
multiple nodes are passed as the argument, then all of the nodes are absorbed. The joint probability
distribution over the remaining nodes should be the same as the marginal probability distribution
over the remaining nodes before the nodes were deleted.

Usage

AbsorbNodes(nodes)

Arguments

nodes A NeticaNode or list of NeticaNodes to be deleted.

12 AbsorbNodes

Details

This function provides a way of removing a node without affecting the connectivity, or the joint
probability of the remaining nodes. In particular, all of the relationship tested by is.NodeRelated()
among the remaining nodes should remain true (or false) when we are done.

Value

Returns NULL.

Errors

There is a bug in version 5.04 (and 5.10) of the Netica API where AbsorbNodes can crash if some
nodes have visual information and some do not. For the moment, it is recommended that you call
ReadNetworks with loadVisual=FALSE to work around this problem.

Author(s)
Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: AbsorbNodes_bn()

See Also

NeticaNode, AddLink(), NodeChildren(), NodeParents(), ReverselLink(), is.NodeRelated()

Examples

sess <- NeticaSession()
startSession(sess)
anet <- CreateNetwork("Absorbent", sess)

xnodes <- NewDiscreteNode(anet,paste("X",1:5,sep="_"))
AddLink(xnodes[[1]1],xnodes[[2]])
AddLink(xnodes[[2]],xnodes[[3]1])
AddLink(xnodes[[3]1],xnodes[[4]1])
AddLink(xnodes[[3]]1,xnodes[[5]11)

stopifnot(
all(match(xnodes[4:5],NodeChildren(xnodes[[3]]),nomatch=0)>0),
is.NodeRelated(xnodes[[2]],xnodes[[3]1], "parent”),
is.NodeRelated(xnodes[[2]],xnodes[[1]], "child")

)

These are leaf nodes, shouldn't change topology, except locally.
AbsorbNodes(xnodes[4:5])
stopifnot(

Nodes 4 and 5 are now deleted

all(!is.active(xnodes[4:5])),

all(anet$listNodes() == c("X_1","X_2","X_3")),

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/AbsorbNodes_bn.html

AddLink 13

length(NodeChildren(xnodes[[3]]))==0,
is.NodeRelated(xnodes[[2]],xnodes[[3]1], "parent”),
is.NodeRelated(xnodes[[2]],xnodes[[1]1],"child")

)

This should connect X1->X3

AbsorbNodes(xnodes[[2]])

stopifnot(
Node 2 is now deleted
lis.active(xnodes[[2]]),
length(NodeChildren(xnodes[[3]1]))==0,
is.NodeRelated(xnodes[[1]],xnodes[[3]1], "parent”),
is.NodeRelated(xnodes[[3]],xnodes[[1]],"child")

)

DeleteNetwork(anet)
stopSession(sess)

AddLink Adds or removes a link between two nodes in a Netica network.

Description

Add link adds an edge from Parent to Child. Delete Link removes that edge. This states that the
distribution of child will be specified conditional on the value of parent. Consequently, adding or
removing edges with affect the conditional probability tables associated with the Child node (see
NodeProbs().)

Usage

AddLink(parent, child)
DeletelLink(parent, child)

Arguments
parent A NeticaNode representing an independent variable to be added to the condi-
tioning side of the relationship. The nodes parent and child must both be in
the same network.
child A NeticaNode representing dependent variable to be added to the conditioning
side of the relationship.
Details

After adding a link parent --> child, it may be the case that parent is in NodeParents(child)
and child is a member of NodeChildren(parent). If child already has other parents, then the
new parent will be added to the end of the list. The order of the parents can be set by setting
NodeParents(child).

14 AddLink

In general, the Bayesian network must always be an acyclic directed graph. Therefore, if parent
is a descendant of child (that is if is.NodeRelated(child), "descendant", child is TRUE), then
Netica will generate an error.

The function DeleteLink() removes the relationship, and the parent and child nodes should no
longer be in each other parent and child lists. The parent list of the child node is shortened (a stub
node for later reconnection is not created as when NodeParents(child)[i] <-1ist(NULL)).

Value

The function AddLinK invisibly returns the index of the new parent in the parent list.

The function Deletelink invisibly returns the child node.

Note

The Netica API specifies the first argument to DeleteLink_bn() as an index into the parent list.
RNetica maps from the node to the index.

Author(s)
Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: AddLink_bn(), DeleteLink_bn()

See Also

NeticaNode, NodeParents(), NodeChildren(), is.NodeRelated()

Examples

sess <- NeticaSession()
startSession(sess)

abnet <- CreateNetwork("AABB"”, session=sess)
A <- NewDiscreteNode(abnet, "A")
B <- NewDiscreteNode(abnet, "B")

AddLink(A,B)

stopifnot(
is.element(list(A),NodeParents(B)),
is.element(list(B),NodeChildren(A))
)

DeletelLink(A,B)

stopifnot(
lis.element(list(A),NodeParents(B)),
lis.element(list(B),NodeChildren(A))

)

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/AddLink_bn.html
http://norsys.com/onLineAPIManual/functions/DeleteLink_bn.html

AdjoinNetwork 15

DeleteNetwork(abnet)
stopSession(sess)

AdjoinNetwork Links an evidence model network to a system model network.

Description

This function assumes that the two arguments are networks that were designed to be connected to
one another. It copies the nodes from em into sm and then tries to resolve any stub links in the copied
nodes by connecting them to nodes in sm.

Usage

AdjoinNetwork(sm, em, setname = character())

Arguments
sm An active NeticaBN which contains the system state variables.
em An active NeticaBN which contains variables that provide evidence about the
system state.
setname An optional character vector containing names of node sets (see NodeSets()).
If supplied, all of the newly created nodes are added to the node sets. Note that
all node set names must conform to the IDname rules.
Details

This follows the System Model-Evidence Model (or Hub-and-spoke) protocol laid out in Almond
et al (1999) and Almond and Mislevy (1999). The idea is that the network sm is a complete network
that encodes beliefs about the current status of a system. In particular, it often encodes the state of
knowledge about a student and is then called a student model.

The second network em is an incomplete network: a fragment of a network, some of whose nodes
could be stub nodes referring to nodes in the sm (see NodeInputNames() and NodeKind()). The
idea is that the evidence model provides a set of observable values associated with some diagnostic
procedure, in particular, a task on an assessment.

The function AdjoinNetwork(sm,em) copies all of the nodes from em to sm, modifying sm in the
process (copy it first using CopyNetworks(sm) if this is not the intention). It then the parents of
each node, emnode, in em looking for stub nodes (cases where NodeParents(emnode)[j] has been
set to NULL for some parent. AdjoinNetworks(sm,em) then tries to find a matching parent by
searching for a system model node, smnode named NodeInputNames(emnode)[j]. If it finds one,
it sets NodeParents(emnode)[j] <-smnode; if not, it issues a warning.

The function AdjoinNetwork(sm,em) also copies node set information from the nodes in em to
their copies in sm. The value of setname is concatenated with the current node sets of the nodes in
em. This provides a handy way of identifying the evidence model from which the nodes came.

After findings are entered on the nodes in the evidence model, the can be eliminated using AbsorbNodes ().

16 AdjoinNetwork

Value

A list containing the newly copied nodes (the instances of the em nodes now in sm).

Author(s)
Russell Almond

References

Almond, R. G. & Mislevy, R. J. (1999) Graphical models and computerized adaptive testing. Ap-
plied Psychological Measurement, 23, 223-238.

Almond, R., Herskovits, E., Mislevy, R. J., & Steinberg, L. S. (1999). Transfer of information
between system and evidence models. In Artificial Intelligence and Statistics 99, Proceedings (pp.
181-186). Morgan-Kaufman

See Also

NeticaNode, AbsorbNodes (), JointProbability(), NodeSets(), CopyNodes () ,NetworkFootprint()

Examples

sess <- NeticaSession()
startSession(sess)

System/Student model
EMSMSystem <- ReadNetworks(file.path(library(help="RNetica")$path,
"sampleNets"”,"System.dne"”), session=sess)

Evidence model for Task 1a
EMTaskla <- ReadNetworks(file.path(library(help="RNetica")$path,
"sampleNets”,"EMTaskla.dne"), session=sess)

Evidence model for Task 2a
EMTask2a <- ReadNetworks(file.path(library(help="RNetica")$path,
"sampleNets"”,"EMTask2a.dne"), session=sess)

Evidence model for Task 2b
EMTask2b <- ReadNetworks(file.path(library(help="RNetica")$path,
"sampleNets”, "EMTask2b.dne"), session=sess)

Task 1a has a footprint of Skilll and Skill2 (those are the

referenced student model nodes. So we want joint the footprint into
a single clique.

MakeCliqueNode (NetworkFindNode (EMSMSystem, NetworkFootprint(EMTask1a)))
The footprint for Task2 a is already a clique, so no need to do

anything.

Make a copy for student 1
student1 <- CopyNetworks(EMSMSystem, "student1")
Monitor nodes for proficiency

AdjoinNetwork 17

student1.prof <- NetworkNodesInSet(studentl,"”Proficiency”)

student1.tla <- AdjoinNetwork(studentl,EMTaskla)
stopifnot(setequal(student1$listNodes(),
c("CliqueNodel1”, "Obslal", "Obs1a2", "Skill1", "Skill2", "Skill3")))

We are done with the original EMTaskla now
DeleteNetwork(EMTask1a)

Now add findings
CompileNetwork(student1)
NodeFinding(student1.tl1a$0bslal) <- "Right”
NodeFinding(student1.tl1a$0bs1a2) <- "Right”

studentl.probtla <- JointProbability(student1.prof)

Done with the observables, absorb them

AbsorbNodes(student1.tl1a)

stopifnot(setequal (student1$listNodes(),
c("CliqueNodel”, "Skill1", "Skill2", "Skill3")))

CompileNetwork(student1)
student1.probtlax <- JointProbability(studenti.prof)

This should be the same

stopifnot(
sum(abs(studentl.probtla-studentl.probtlax)) <.0001

)

Now Task 2
studentl.t2a <- AdjoinNetwork(student1,EMTask2a,as.IDname("t2a"))
stopifnot(

setequal (names(student1.t2a),names(NetworkNodesInSet(studentl,"t2a")))
)
stopifnot(setequal(studentl1$listNodes(),

c("CliqueNodel”, "Obs2a", "Skill1", "Skill2", "Skill3")))
DeleteNetwork (EMTask2a)

Add findings
CompileNetwork(student1)
NodeFinding(student1.t2a$0bs2a) <- "Half"

studentl.probtla2a <- JointProbability(student1.prof)

AbsorbNodes(student1.t2a)

stopifnot(setequal (student1$listNodes(),
c("CliqueNodel”, "Skill1", "Skill2", "Skill3")))

CompileNetwork(student1)

studentl.probtla2ax <- JointProbability(studentl.prof)

This should be the same

stopifnot(
sum(abs(studentl.probtla2a-studentl.probtla2ax)) <.0001

)

18 CalcNodeState

Adjoining networks twice should result in copies with incremented
numbers.
AdjoinNetwork(studentl,EMTask2b)
AdjoinNetwork(studentl,EMTask2b)
stopifnot(setequal(student1$listNodes(),

c("CliqueNodel”, "Obs2b", "Obs2b1", "Skill1", "Skill2", "Skill3")))

DeleteNetwork(student1)
DeleteNetwork (EMTask2b)
DeleteNetwork (EMSMSystem)
stopSession(sess)

CalcNodeState Calculates the state of a node based on logical functions or formulae

Description

The expression CalcNodeState (node) will return the state of node if it is known deterministically,
and NA if the exact value is not known. The expression CalcNodeValue(node) will return the
numeric value of the node (e.g., the value set with NodeLevels(node).

Usage

CalcNodeState(node)

CalcNodeValue(node)
Arguments

node An active NeticaNode object that references the node.
Details

According to the Netica manual, the way that the value of node could be known absolutely is
if it was set directly a call to NodeFinding(node) or NodeValue(node), or if the value can be
calculated exactly through logical conditional probability tables (i.e., ones with just 0’s and 1’s) or
formula (see NodeEquation().

The expression CalcNodeState(node) is appropriate when node is discrete, or has been discretized
through a call to NodeLevels(node). Otherwise it will generate an error.

The expression CalcNodeValue(node) is appropriate when node is continuous, or the states have
been assigned numeric values through a call to NodeLevels(node). Otherwise it will generate an
error.

CalcNodeState 19

Value

The expression CalcNodeState(node) will return a character scalar giving the name of the current
state of node if it can be determined, otherwise it will return NA.

The expression CalcNodeValue(node) will return a numeric scalar giving the name of the current
value of node if it can be determined, otherwise it will return NA.

Warning

This function is not behaving at all like what I expected. In particular, it is returning NA in many
cases where I expect it to produce a value. I’ve queried Norsys about this, but use with caution until
I get a clarification.

Author(s)
Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: CalcNodeState_bn(), CalcNodeValue_bn()

See Also

NodeFinding(), NodeLevels (), NodeValue(), IsNodeDeterministic(), NodeEquation(),is.continuous(),
NodeExpectedValue()

Examples

sess <- NeticaSession()
startSession(sess)

lights <- CreateNetwork("lights"”, session=sess)
switchs <- NewDiscreteNode(lights,paste(”Switch",1:2,sep=""),c("Up", "Down"))
bulb <- NewDiscreteNode(lights, "Bulb”,c("On","0ff"))

Set up a two-way switch (Xor) network
AddLink(switchs[[1]],bulb)

AddLink(switchs[[2]],bulb)

This sets up a logical table, so that the light is on iff
both switches are in the same orientation.

bulb[] <-"Off"

bulb[Switch1="Up",Switch2="Up"]<-"0n"
bulb[Switch1="Down",Switch2="Down"]<-"0On"

switchs[[1]1][] <- .5

switchs[[2]1][] <- .5

CompileNetwork(lights)

Bulb is a deterministic node.
stopifnot(IsNodeDeterministic(bulb))

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/CalcNodeState_bn.html
http://norsys.com/onLineAPIManual/functions/CalcNodeValue_bn.html

20 CaseFileDelimiter

value of node is unknown, returns NA
stopifnot(is.na(CalcNodeState(bulb)))

NodeFinding(switchs[[1]]) <- "Up"
NodeFinding(switchs[[2]]) <- "Up”

stopifnot(CalcNodeState(switchs[[1]1])=="Up")
stopifnot(CalcNodeState(bulb)=="0n")

NodeLevels(bulb) <-c(1,0)

NodeLevels(switchs[[1]]) <-c(1,0)
NodelLevels(switchs[[2]]) <-c(1,0)

I expect both of these to return 1, but they return NA
CalcNodeValue(bulb)

CalcNodeValue(switchs[[11])

DeleteNetwork(lights)

stopSession(sess)

CaseFileDelimiter Gets or sets special characters for case files.

Description
The function CaseFileDelimiter sets the field delimiter used when writing case files. The function
CaseFileMissingCode sets the character code used for missing values in case files. If called with
a null argument, then the current value is returned.

Usage
CaseFileDelimiter(newdelimiter = NULL, session=getDefaultSession())
CaseFileMissingCode(newcode = NULL, session=getDefaultSession())

Arguments

newdelimiter A character scalar containing the new delimiter. It must be either a comma, a
space, or a tab.

session An object of type NeticaSession which defines the reference to the Netica
workspace.
newcode The character to be used as a delimiter. It must be either an asterisk ("*"), a

non

question mark ("?"), a space, (" ") or the empty string ("").

CaseFileDelimiter 21

Details

Case files are essentially a comma separated value files, although tab and space are allowed as
alternative delimiters. The space and empty string are only allowed as missing value codes when
the delimiter is a comma.

The value of the delimiter is global, and applies to all case files written from this point on.

When the argument is null (the default) the current value is returned without changing it.

Value

The value of the delimiter or missing code before the function call as a string.

Note

The default R missing code "NA" does not work with Netica.

Author(s)
Russell G. Almond

References

http://norsys.com/onLineAPIManual/index.html: SetCaseFileDelimChar_ns(), SetMissing-
DataChar_ns()

See Also

WriteFindings, WriteFindings, read.CaseFile, CaseStream

Examples

sess <- NeticaSession()
startSession(sess)

defaultDelim <- CaseFileDelimiter(session=sess) # Get default
dl <- CaseFileDelimiter(”\t", session=sess)
d2 <- CaseFileDelimiter("” ", session=sess)
d3 <- CaseFileDelimiter(","”, session=sess)

defaultMiss <- CaseFileMissingCode(session=sess) # Get default
ml <- CaseFileMissingCode("x", session=sess)

m2 <- CaseFileMissingCode("?", session=sess)

m3 <- CaseFileMissingCode(" ", session=sess)

m4 <- CaseFileMissingCode("", session=sess)

Not run:

This should throw an error.

CaseFileDelimiter(” ", session=sess)

End(Not run)

m5 <- CaseFileMissingCode("?", session=sess)

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/SetCaseFileDelimChar_ns.html
http://norsys.com/onLineAPIManual/functions/SetMissingDataChar_ns.html
http://norsys.com/onLineAPIManual/functions/SetMissingDataChar_ns.html

22 CaseFileStream

d4<- CaseFileDelimiter(” ", session=sess)
Not run:
This should throw an error
CaseFileMissingCode(" ", session=sess)

End(Not run)
But this is okay
CaseFileMissingCode("*", session=sess)

stopifnot(di==defaultDelim, d2=="\t", d3==" ", d4==",")
stopifnot(mi==defaultMiss, m2=="%", m3=="7?", m4==" ", m5=="")

restore defaults
CaseFileDelimiter(defaultDelim, session=sess)

CaseFileMissingCode(defaultMiss, session=sess)

stopSession(sess)

CaseFileStream A stream of cases for reading/writing Netica findings to a file

Description

This is the constructor for FileCaseStream objects which provide a wrapper around a Netica
stream which is used to read/write cases. In this subclass, the case stream is associated with a
Netica case file (‘.cas’ extension). The function ReadFindings reads the findings from the stream
and the function WriteFindings writes them out.

Usage

CaseFileStream(pathname, session=getDefaultSession())
is.CaseFileStream(x)
getCaseStreamPath(stream)

Arguments
pathname A character scalar giving a path to the case file. Netica expects case files to end
with the extension ".cas"
session An object of type NeticaSession which defines the reference to the Netica
workspace.
stream A CaseFileStream object.

X A object to be printed or whose type is to be determined.

CaseFileStream 23

Details

A FileCaseStream object is a subclass of the CaseStream object, which is an R wrapper around
a Netica stream object, in this case one that reads or writes to a case file. Case files are tab (or
comma, see CaseFileDelimiter) separated value files where columns represent variables and rows
represent cases. Although the function WriteFindings always appends a new case to the end
of a file (and hence does not need to keep the stream object open between calls), the function
ReadFindings will read (by default) sequentially from the cases in the stream, and hence the stream
needs to be kept open between calls.

The function CaseFileStream will open a stream in Netica and create a new FileCaseStream if
necessary. The argument pathname should be the pathname of the case file in the file system. This
file should be a file previously written by WriteFindings or be in the same format. The delimiter
used should be the one given by CaseFileDelimiter, and the code used for missing values should
be the value of CaseFileMissingCode.

The function CloseCaseStream closes an open case stream (and is harmless if the stream is al-
ready closed). Although RNetica tries to close open case streams when they are garbage collected,
users should not count on this behavior and should close them manually. Also be aware that all
case streams are automatically closed when R is closed or RNetica is unloaded. The function
isCaseStreamOpen tests to see if the stream is open or closed, and the function OpenCaseStream
reopens a previously closed case stream.

The functions getCaseStreamPath returns the path on which the FileCaseStream is focused.

Value

The function CaseFileStream returns a new, open FileCaseStream object.

The functions is.CaseFileStream returns a logical value indicating whether or not the argument
is a CaseFileStream.

The function getCaseStreamPath returns a string giving the path of the file associated with stream,
or NULL if the argument is not a CaseFileStream.

Note

Internally, a weak reference system is used to keep a list of Netica stream objects which need to
be closed when RNetica is unloaded. Stream objects should also be forced closed when garbage
collected. The weak reference system is somewhat experimental, so well designed code should
manually close the streams when the program is through with it.

Stream objects are fragile, and will not survive saving and restoring an R session. However, the
object retains information about itself, so that calling OpenCaseStream on the saved object, should
reopen the stream. Note that any position information will be lost.

Author(s)
Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: NewFileStream_ns(), http://homepage.
stat.uiowa.edu/~1luke/R/references/weakfinex.html

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/NewFileStream_ns.html
http://homepage.stat.uiowa.edu/~luke/R/references/weakfinex.html
http://homepage.stat.uiowa.edu/~luke/R/references/weakfinex.html

24 CaseFileStream

See Also

See FileCaseStream for properties of file case stream objects and CaseStream for general proper-
ties of Netica streams.

CaseFileDelimiter, CaseFileMissingCode, CaseMemoryStream, WriteFindings, ReadFindings,

Examples

sess <- NeticaSession()
startSession(sess)

abc <- CreateNetwork("ABC", sess)

A <- NewDiscreteNode(abc,"A",c("A1","A2","A3","A4"))
B <- NewDiscreteNode(abc,"B",c("B1","B2","B3"))

C <- NewDiscreteNode(abc,"C",c("C1","C2"))

AddLink(A,B)
AddLink (A, C)
AddLink(B,C)

Outputfilename
casefile <- tempfile("testcase”,fileext=".cas")

filestream <- CaseFileStream(casefile, session=sess)
stopifnot(is.CaseFileStream(filestream),
isCaseStreamOpen(filestream))

Case 1

NodeFinding(A) <- "A1"

NodeFinding(B) <- "B1"

NodeFinding(C) <- "C1"

filestream <- WriteFindings(list(A,B,C),filestream,1001,1.0)

stopifnot(getCaseStreamLastId(filestream)==1001,
abs(getCaseStreamLastFreq(filestream)-1.0) <.0001)

Close it

filestream <- CloseCaseStream(filestream)

stopifnot (is.CaseFileStream(filestream),
lisCaseStreamOpen(filestream))

Reopen it

filestream <- OpenCaseStream(filestream)

stopifnot (is.CaseFileStream(filestream),
isCaseStreamOpen(filestream))

##Case 1

RetractNetFindings(abc)

filestream <- ReadFindings(list(A,B,C),filestream,"FIRST")

stopifnot(getCaseStreamLastId(filestream)==1001,
abs(getCaseStreamLastFreq(filestream)-1.0) <.0001)

##Clean Up
CloseCaseStream(filestream)

CaseMemorytream 25

DeleteNetwork(abc)
stopSession(sess)

CaseMemorytream A stream of cases for reading/writing Netica from memory

Description

This object is subclass of CaseStream so it is a wrapper around a Netica stream which is used to
read/write cases. In this subclass, the case stream is associated with a memory buffer that corre-
sponds to an R data. frame object. The function MemoryStreamContents accesses the contents as
a data frame.

Usage

CaseMemoryStream(data.frame, label=deparse(substitute(data.frame)), session=getDefaultSession())
is.MemoryCaseStream(x)
getCaseStreamDataFrameName (stream)

Arguments
data.frame A data frame in which columns correspond to Netica nodes, and rows corre-
spond to cases. See details.
label A name for the stream object.
session An object of type NeticaSession which defines the reference to the Netica
workspace.
stream A CaseStream object.
X A object whose type is to be determined.
Details

A Netica case file has a format that very much resembles the output of write. table. The first row
is a header row, which contains the names of the variables, the second and subsequent rows contain
a set of findings: an assignment of values to the nodes indicated in the columns. There are no row
numbers, and the separator and missing value codes are the values of CaseFileDelimiter(), and
CaseFileMissingCode() respectively.

In addition to columns representing variables, two special columns are allowed. The column named
“IDnum”, if present should contain integers which correspond to ID numbers for the cases (this
correspond to the id argument of WriteFindings). The column named “NumCases” should con-
tain number values and this allows rows to be differentially weighted (this correspond to the freq
argument of WriteFindings).

A simple way to convert a data frame into a set of cases for use with various Netica functions
that use cases would be to write the data frame to a file of the proper format, and then create a
CaseFileStream on the just written file. The MemoryCaseStream shortcuts that process by writing
the data frame to a memory buffer and then creating a stream around the memory buffer. Like

26

CaseMemorytream

the CaseFileStream, the MemoryCaseStream is a subclass of CaseStream and follows the same
conventions.

The function MemoryCaseStream opens a new memory stream using data.frame as the source. If
data.frame is NULL a new memory stream for writing is created. The function CloseCaseStream
closes an open case stream (and is harmless if the stream is already closed. Although RNetica tries
to close open case streams when they are garbage collected, users should not count on this behavior
and should close them manually. Also be aware that all case streams are automatically closed when
R is closes or RNetica is unloaded. The function isCaseStreamOpen tests to see if the stream is
open or closed. The function OpenCaseStreamif called on a closed MemoryCaseStream will reopen
the stream in Netica using the current value of MemoryStreamContents as the source. (If called on
an open stream it will do nothing but issue a warning).

The function getCaseStreamDataFrameName provides the value of label when the stream was
created.

Value

The function OpenMemoryCaseStream returns a new, open CaseFileStream object.

The functions is.MemoryCaseStreamreturns a logical value indicating whether or not the argument
is a CaseFileStream.

The function getCaseStreamDataF rameName returns the value of 1label used when the stream was
created, usually this is the name of the data. frame argument.

Netica Bugs

In version 5.04 of the Netica API, there is a problem with using Memory Streams that seems to
affect the functions LearnCases and LearnCPTs. Until this problem is fixed, most uses of Memory
Streams will require file streams instead. Write the case file using write.CaseFile, and then create
a file stream using CaseFileStream.

Note

In version 0.5 of RNetica, this class was renamed. It is now called MemoryCaseStream and the
constructor is called CaseMemoryStream (while previously the class and the filename had the same
name). This matches the usage of FileCaseStream and its constructor CaseFileStream.

MemoryCaseStreams are most useful for small to medium size data frames. Larger data frames are
probably better handled through case files.

Internally, a weak reference system is used to keep a list of Netica stream objects which need to
be closed when RNetica is unloaded. Stream objects should also be forced closed when garbage
collected. The weak reference system is somewhat experimental, so well designed code should
manually close the streams when the program is through with it.

Stream objects are fragile, and will not survive saving and restoring an R session. However, the
object retains information about itself, so that calling OpenCaseStream on the saved object, should
reopen the stream. Note that any position information will be lost.

Author(s)

Russell Almond

CaseMemorytream 27

References

http://norsys.com/onLineAPIManual/index.html: NewMemoryStream_ns(), http://homepage.
stat.uiowa.edu/~1luke/R/references/weakfinex.html

See Also

CaseFileDelimiter, CaseFileMissingCode, WriteFindings, ReadFindings, MemoryStreamContents,CaseStream

Examples

sess <- NeticaSession()
startSession(sess)

abc <- CreateNetwork("ABC"”, session=sess)

A <- NewDiscreteNode(abc,"A",c("A1","A2","A3","A4"))
B <- NewDiscreteNode(abc,"B",c("B1","B2","B3"))

C <- NewDiscreteNode(abc,"C",c("C1","C2"))

AddLink(A,B)
AddLink (A, C)
AddLink(B,C)

This is the file written in CaseFileStream help.

casefile <- file.path(library(help="RNetica")$path,
"testData", "abctestcases.cas"”)

CaseFileDelimiter(”\t", session=sess)

CaseFileMissingCode("*", session=sess)

cases <- read.CaseFile(casefile, session=sess)

memstream <- CaseMemoryStream(cases, session=sess)

##Case 1
memstream <- ReadFindings(list(A,B,C),memstream,”"FIRST")
stopifnot(NodeFinding(A) == "A1",
NodeFinding(B) == "B1",
NodeFinding(C) == "C1",
getCaseStreamLastId(memstream)==1001,
abs(getCaseStreamLastFreq(memstream)-1.0) <.0001)
##Case 2
memstream <- ReadFindings(list(A,B,C),memstream,"NEXT")
stopifnot(NodeFinding(A) == "A2",
NodeFinding(B) == "B2",
NodeFinding(C) == "C2",
getCaseStreamLastId(memstream)==1002,
abs(getCaseStreamLastFreq(memstream)-2.0) <.0001)
##Case 3
memstream <- ReadFindings(list(A,B,C),memstream,"NEXT")
stopifnot(NodeFinding(A) == "A3",

NodeFinding(B) == "B3",

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/NewMemoryStream_ns.html
http://homepage.stat.uiowa.edu/~luke/R/references/weakfinex.html
http://homepage.stat.uiowa.edu/~luke/R/references/weakfinex.html

28

CaseStream-class

NodeFinding(C) == "@NO FINDING",
getCaseStreamLastId(memstream)==1003,
abs(getCaseStreamLastFreq(memstream)-1.0) <.0001)

EOF
memstream <- ReadFindings(list(A,B,C),memstream, "NEXT")
stopifnot (is.na(getCaseStreamPos(memstream)))

##Clean Up
CloseCaseStream(memstream)
DeleteNetwork(abc)
stopSession(sess)

CaseStream-class Class "CaseStream”

Description

This object is a wrapper around a Netica stream which is used to read/write cases—sets of findings
entered into a Netica network. There are two subclasses: FileCaseStreamand MemoryCaseStream.
The function ReadFindings reads the findings from the stream and the function WriteFindings
writes them out.

Details

A CaseStream object is an R wrapper around a Netica stream object. There are two subclasses:
FileCaseStream objects are streams focused on a case file, and MemoryCaseStream objects are
streams focused on a hunk of memory corresponding to an R data frame object.

Although the function WriteFindings always appends a new case to the end of a file (and hence
does not need to keep the stream object open between calls), the function ReadFindings will read
(by default) sequentially from the cases in the stream, and hence the stream needs to be kept open
between calls.

The functions CaseFileStream and CaseMemoryStream create new streams and open them. The
function OpenCaseStream will reopen a previously closed stream, and will issue a warning if the
stream is already open. The function CloseCaseStream closes an open case stream (and is harm-
less if the stream is already closed). Although RNetica tries to close open case streams when they
are garbage collected, users should not count on this behavior and should close them manually.
Also be aware that all case streams are automatically closed when R is closes or RNetica is un-
loaded. The function isCaseStreamOpen tests to see if the stream is open or closed. The function
WithOpenCaseStream executes an arbitrary R expression in a context where the stream is open, and
then closed afterwards.

Netica internally keeps track of the current position of the stream when it is read or written.
The functions getCaseStreamPos, getCaseStreamLastId and getCaseStreamLastFreq get in-
formation about the position in the file, the user generated id number and the frequency/weight
assigned to the case at the time the stream was last read or written. In particular, the function

CaseStream-class 29

ReadFindings returns a CaseStream object, which should be queried to find the ID and Fre-
quencies read from the stream. When ReadFindings reaches the end of the stream, the value
of getCaseStreamPos (stream) will be NA.

Extends

All reference classes extend and inherit methods from "envRefClass”. Note that because this is
a reference class unlike traditional S3 and S4 classes it can be destructively modified. Also fields
(slots) are accessed using the ‘$’ operator.

Fields
Note these should be regarded as read-only from user code.

Name: Object of class character an identifier for the case stream, derived from the filename for
FileCaseStream objects, and from the name of the R object for MemoryCaseStream

Session: Object of class NeticaSession:: a back pointer to the NeticaSession object in which
the stream was created.

Netica_Case_Stream: Object of class externalptr a link to the stream in internal Netica mem-
ory.

Case_Stream_Position: Object of class integer the number of the last read/writen record. This
is NA if the end of the file has been reached.

Case_Stream_Lastid: Object of class integer the ID number of the last read/written record.

Case_Stream_Lastfreq: Object of class numeric giving the frequence of the last read/written
record. This is used as a weight in learning applications.

Methods

show(): Provides a printed record.

close(): Closes the stream. Equivalent to CloseCaseStream(stream).

isOpen(): Checks to see if the stream is currently open. Equivalent to isCaseStreamOpen (stream).
isActive(): Equivalent to isOpen(), name is symmetric with other Netica reference objects.
clearErrors(severity): Calls clearErrors on the Session object.
reportErrors(maxreport, clear): Calls reportErrors on the Session object.
initialize(Name, Session, ...): Internal initializer. User code should not call.

Note

The functions ReadNetworks and WriteNetworks also use Netica streams internally. However, as
it is almost certainly a mistake to keep the stream open after the network has been read or written,
no NeticaCaseStream object is created.

Internally, a weak reference system is used to keep a list of Netica stream objects which need to
be closed when RNetica is unloaded. Stream objects should also be forced closed when garbage
collected. The weak reference system is somewhat experimental, so well designed code should
manually close the streams when the program is through with them.

Stream objects are fragile, and will not survive saving and restoring an R session. However, the
object retains information about itself, so that calling OpenCaseStream on the saved object, should
reopen the stream. Note that any position information will be lost.

30 CaseStream-class

Author(s)
Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: NewFileStream_ns(),NewMemoryStream_ns(),
DeleteStream_ns() http://homepage.stat.uiowa.edu/~luke/R/references/weakfinex.html

See Also

See FileCaseStreamand MemoryCaseStream for specific details about the two subtypes. CaseMemoryStream
and CaseFileStream are the two constructors.

OpenCaseStream, CaseFileDelimiter, CaseFileMissingCode, WriteFindings, ReadFindings,
WithOpenCaseStream

Examples

sess <- NeticaSession()
startSession(sess)

abc <- CreateNetwork("ABC",sess)

A <- NewDiscreteNode(abc,"A"”,c("A1","A2" ,"A3","Ad4"))
B <- NewDiscreteNode(abc,"B",c("B1","B2","B3"))

C <- NewDiscreteNode(abc,”"C",c("C1","C2"))

AddLink(A,B)
AddLink (A, C)
AddLink(B,C)

Outputfilename
casefile <- tempfile("testcase”,fileext=".cas")

filestream <- CaseFileStream(casefile,sess)
stopifnot(is.NeticaCaseStream(filestream),
isCaseStreamOpen(filestream))

Case 1

NodeFinding(A) <- "A1"

NodeFinding(B) <- "B1"

NodeFinding(C) <- "C1"

filestream <- WriteFindings(list(A,B,C),filestream,1001,1.0)

stopifnot(getCaseStreamLastId(filestream)==1001,
abs(getCaseStreamLastFreq(filestream)-1.0) <.0001)

pos1 <- getCaseStreamPos(filestream)

RetractNetFindings(abc)

Case 2

NodeFinding(A) <- "A2"
NodeFinding(B) <- "B2"
NodeFinding(C) <- "C2"

Double weight this case

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/NewFileStream_ns.html
http://norsys.com/onLineAPIManual/functions/NewMemoryStream_ns.html
http://norsys.com/onLineAPIManual/functions/DeleteStream_ns.html
http://homepage.stat.uiowa.edu/~luke/R/references/weakfinex.html

CliqueNode-class

filestream <- WriteFindings(list(A,B,C),filestream,1002,2.0)
pos2 <- getCaseStreamPos(filestream)
stopifnot(pos2>pos1,getCaseStreamLastId(filestream)==1002,

abs(getCaseStreamLastFreq(filestream)-2.0) <.0001)
RetractNetFindings(abc)

Case 3

NodeFinding(A) <- "A3"

NodeFinding(B) <- "B3"

C will be missing

filestream <- WriteFindings(list(A,B,C),filestream,1003,1.0)

stopifnot(getCaseStreamLastId(filestream)==1003,
abs(getCaseStreamLastFreq(filestream)-1.0) <.0001)

RetractNetFindings(abc)

Close it

filestream <- CloseCaseStream(filestream)

stopifnot (is.NeticaCaseStream(filestream),
lisCaseStreamOpen(filestream))

Reopen it

filestream <- OpenCaseStream(filestream)

stopifnot (is.NeticaCaseStream(filestream),
isCaseStreamOpen(filestream))

##Case 1

RetractNetFindings(abc)

filestream <- ReadFindings(list(A,B,C),filestream,"FIRST")

posla <- getCaseStreamPos(filestream)

stopifnot(posla==pos1,
getCaseStreamLastId(filestream)==1001,
abs(getCaseStreamLastFreq(filestream)-1.0) <.0001)

##Case 2

RetractNetFindings(abc)

filestream <- ReadFindings(list(A,B,C),filestream, "NEXT")

stopifnot(getCaseStreamPos(filestream)==pos2,
getCaseStreamLastId(filestream)==1002,
abs(getCaseStreamLastFreq(filestream)-2.0) <.0001)

##Clean Up

CloseCaseStream(filestream)

CloseCaseStream(filestream) ## This should issue a warning but be
harmless.

DeleteNetwork(abc)

stopSession(sess)

CliqueNode-class Class "CliqueNode”

32 CliqueNode-class

Description

A dummy node used to force it parents into the same clique in the junction tree. In particular, the
node has a single state but its parents are listed in its clique field.

Extends

Class "NeticaNode", directly.

All reference classes extend and inherit methods from "envRefClass”. Note that because this is
a reference class unlike traditional S3 and S4 classes it can be destructively modified. Also fields
(slots) are accessed using the ‘$’ operator.

Methods

toString signature(x = "CliqueNode"): Provides a pretited representation.

Fields
Note these should be regarded as read-only from user code.
Name: Object of class character giving the Netica name of the node. Must follow the IDname

rules.

Netica_Node: Object of class externalptr giving the address of the node in Netica’s memory
space.

Net: Object of class NeticaBN, a back reference to the network in which this node resides.
discrete: Always TRUE for clique nodes.

clique: A list of NeticaNode objects which are the parents of the clique node.

Class-Based Methods

show(): Prints a description of the node.

initialize(..., clique): Internal initializer, should not be called directly by user code. Use
MakeCliqueNode instead.

The following methods are inherited (from the NeticaNode): deactivate ("NeticaNode"), isActive

("NeticaNode"), show ("NeticaNode"), clearErrors ("NeticaNode"), reportErrors ("NeticaNode"),

initialize ("NeticaNode")

Note

Clique nodes only last for the R session that was used to create them. After that, they will appear
like ordinary nodes. They will still be present in the network, but the special "clique” attribute
will be lost.

Currently Netica only allows virtual evidence at the node level (NodeLikelihood()). I'm lobby-
ing to get Netica to support it at the clique level as well. At which point, this function becomes
extremely useful.

Author(s)
Russell Almond

CompileNetwork 33

References

Almond, R. G. & Mislevy, R. J. (1999) Graphical models and computerized adaptive testing. Ap-
plied Psychological Measurement, 23, 223-238.

Almond, R., Herskovits, E., Mislevy, R. J., & Steinberg, L. S. (1999). Transfer of information
between system and evidence models. In Artificial Intelligence and Statistics 99, Proceedings (pp.
181-186). Morgan-Kaufmann

http://norsys.com/onLineAPIManual/index.html: See the NeticaEx function FormCliqueWith
is the documentation for JointProbability_bn()

See Also

MakeCliqueNode (), NeticaNode, JointProbability(), AddLink(), JunctionTreeReport()

Examples

sess <- NeticaSession()
startSession(sess)

EMSMSystem <- ReadNetworks(file.path(library(help="RNetica")$path,
"sampleNets"”,"System.dne"”), session=sess)

CompileNetwork (EMSMSystem)
Note that Skilll and Skill2 are in different cliques
JunctionTreeReport (EMSMSystem)

Skills12 <- NetworkFindNode (EMSMSystem,c(”Skill1","Skill2"))
cn <- MakeCliqueNode(Skills12)
cnclique <- GetClique(cn)

stopifnot(

is.CliqueNode(cn),

setequal (sapply(cnclique,NodeName), sapply(Skills12,NodeName))
)

CompileNetwork (EMSMSystem)
Note that Skilll and Skill2 are in different cliques
JunctionTreeReport (EMSMSystem)

DeleteNodes(cn) ## This clears the clique.

DeleteNetwork (EMSMSystem)
stopSession(sess)

CompileNetwork Builds the junction tree for a Netica Network

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/JointProbability_bn.html

34 CompileNetwork

Description

Before Netica performs inference in a network, it needs to compile the network. This process con-
sists of building a junction tree and conditional probability tables for the nodes of that tree. The
function CompileNetwork() compiles the network and UncompileNetwork() undoes the compi-
lation and frees the associated memory.

Usage

CompileNetwork(net)
UncompileNetwork(net)
is.NetworkCompiled(net)

Arguments

net An active NeticaBN which will be compiled.

Details

Usually Bayesian network projects operate in two phases. In the construction phase, new nodes are
added to the network, new connections made and conditional probability tables are set.

In the inference phase, findings are added to nodes and other nodes are queried about their current
conditional probability tables.

The functions CompileNetowrk() and UncompileNetwork() move the networks between the two
phases. The documentation for ELiminationOrder() and JunctionTreeReport() provide more
details about the compilation process. The function NetworkCompiledSize () provides information
about the amount of storage used by the compiled network, but only after the network is compiled.

The function is.NetworkCompiled() tests to see if a network is compiled or not.

Value

The NeticaBN object net is returned invisibly.

Warning

I’'m currently observing a bug that occurs under Windows if not all of the nodes have their CPTs
set. Under Linux the function exhibits the expected behavior: It generates a warning about the unset
CPTs and enters a uniform distribution for each one. Under Windows it reports the warning, but
then generates an error "GetError_ns: deleted or damage report_ns passed". It is unclear if this a
problem in Netica or RNetica.

To work around, simply set all tables before compiling.

Note

Calling NetworkCompiledSize () on an uncompiled network produces, an error, but also the sensi-

ble value of -1. The function is.NetworkCompiled() calls the same internal function as NetworkCompiledSize,
but clears the error. This means it also clears any other errors that might be lurking in the system

(see ReportErrors()).

CopyNetworks 35

I think calling CompileNetwork() twice on the same network is harmless. Adding a node to a
network will automatically uncompile it.

Author(s)
Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: CompileNet_bn(), UncompileNet_bn(), Size-
CompiledNet_bn(),

See Also

NeticaBN, HasNodeTable(), NodeFinding(), NodeBeliefs(),EliminationOrder(), JunctionTreeReport(),
JointProbability(), MostProbableConfig(), FindingsProbability()

Examples

sess <- NeticaSession()
startSession(sess)

irt5 <- ReadNetworks(file.path(library(help="RNetica")$path,
"sampleNets"”,"IRT5.dne"), session=sess)
stopifnot (!is.NetworkCompiled(irt5))

CompileNetwork(irt5) ## Ready to enter findings
stopifnot (is.NetworkCompiled(irt5))

UncompileNetwork(irt5) ## Ready to add more nodes
stopifnot (!is.NetworkCompiled(irt5))

DeleteNetwork(irt5)
stopSession(sess)

CopyNetworks Makes copies of Netica networks.

Description

Makes a copy of the networks in the list nets giving them the names in newnamelist. The options
argument controls how much information is copied.

Usage

CopyNetworks(nets, newnamelist, options = character(0))

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/CompileNet_bn.html
http://norsys.com/onLineAPIManual/functions/UncompileNet_bn.html
http://norsys.com/onLineAPIManual/functions/SizeCompiledNet_bn.html
http://norsys.com/onLineAPIManual/functions/SizeCompiledNet_bn.html

36 CopyNetworks

Arguments
nets A list of NeticaBN objects.
newnamelist A character vector of the same length as nets which gives the names for the
newly created copies.
options A character vector containing information about what to copy. The elements
should be one of the values "no_nodes”, "no_links", "no_tables”, "no_visual”.
Details

Copies each of the networks in the nets lists, giving it a new name from the newnamelist. It
returns a list of the new networks. If the specified net does not exist, then a warning is issued and a
NULL is returned instead of the corresponding NeticaBN object.

The options argument is passed to the options argument of the Netica API function CopyNet_bn().
Meanings for the various arguments can be found in the documentation for that function. Note that

Netica expects a list of comma separated values. RNetica will collapse the options argument

into a comma separated list, so the argument can be given either as a character vector of length 1

containing a comma separated list, or the elements of that list in separate elements of a character

vector.

Value

A list of NeticaBN objects corresponding to the new networks, or if the length of nets is one, a
single NeticaBN object is returned instead. A NULL is returned instead of the NeticaBN object if the
corresponding element of nets does not exit.

Author(s)
Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: CopyNet_bn()

See Also

DeleteNetwork()

Examples

sess <- NeticaSession()
startSession(sess)

netl <- CreateNetwork("Original”, session=sess)
nets <- CreateNetwork(paste("Original”,2:3,sep=""), session=sess)

copyl <-CopyNetworks(net1,"Copy1")
stopifnot(is(copy1, "NeticaBN"))
stopifnot(copyl1$Name == "Copy1")
stopifnot(copyl != netl)

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/CopyNet_bn.html

CopyNodes 37

netc <- CopyNetworks(nets,paste("Copy",2:3,sep=""))
stopifnot(all(sapply(netc,is,”NeticaBN")))
stopifnot(netc$Name == c("Copy2","Copy3"))

DeleteNetwork(c(netc,nets,list(copyl,net1)))
stopSession(sess)

CopyNodes Copies or duplicates nodes in a Netica network.

Description

This function either copies nodes from one net to another or duplicates nodes within the same
network.

Usage

CopyNodes(nodes, newnamelist = NULL, newnet = NULL, options = character(9))

Arguments
nodes A list of active NeticaNode objects all from the same network.
newnamelist If supplied, this should be character vector with the same length as nodes giving
the new names for the nodes.
newnet If supplied, it should be an active NeticaBN which is the destination for the new
nodes. If this argument is NULL the nodes will be duplicated within the original
network.
options A character vector of options, with each element being one of the options. Cur-
rently, the only supported options are "no_tables” (do not copy the conditional
probability tables for the nodes) and "no_links"” (do not duplicate the links,
which implies do not copy tables).
Details

The nodes in the first argument will be copied into a new network as specified by newnet. If
newnet is not specified or if it the same as the network from which nodes come, then the nodes will
be duplicated instead of copied.

If the nodes are duplicated, then will be given new names. The default Netica behavior for new
names is to append a number to the end of the node name, or to increment an existing number.
If newnamelist is supplied, these names will be used instead of the add a number convention.
Supplying newnamelist will change the names of the nodes when copying from one network to
another.

When nodes are copied links going into the node are copied as well. Thus if there is a link A ->B in
the network and B is copied into the same network, then there will a link A ->B1 to the new node.

38 CopyNodes

If B is copied into a new network, the link will be there but not attached, as if NodeParents(B1) [A]
<-NULL had been called.

The argument options allows control over what is copied. The currently supported options are:

* "no_tables” — The conditional probability tables of the nodes (see NodeProbs()) will not
be copied, and new tables will need to be set in the new network.

* "no_links" — The links going into the nodes will not be copied. Note that the "no_links"
option implies the "no_tables" option, so both do not need to be specified.
Value

A list containing the new nodes (or just the new node, if there is only one).

Note
There may be some information that is not copied. For example, the NodeSets () information is not
copied.

Author(s)
Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: CopyNodes_bn()

See Also

CopyNetworks (), NeticaNode, NeticaBN(), NodeProbs(), NodeParents(), AbsorbNodes(), DeleteNodes()

Examples

sess <- NeticaSession()

startSession(sess)

System <- ReadNetworks(file.path(library(help="RNetica")$path,
"sampleNets"”,"System.dne"”), session=sess)

EMTaskla <- ReadNetworks(file.path(library(help="RNetica")$path,
"sampleNets"”,"EMTaskla.dne"), session=sess)

student1 <- CopyNetworks(System, "Studentl”)
student1.sysnodes <- NetworkAllNodes(studentl)

student1.tlanodes <- CopyNodes(NetworkAllNodes(EMTaskla),newnet=studentl)

Copied, new nodes have the same names as the old nodes.
stopifnot(
setequal (names (NetworkAllNodes(EMTask1a)),
names(student1.tlanodes))

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/CopyNodes_bn.html

CreateNetwork 39

The nodes in the evidence model have stub connections to the nodes in
the system model. Need to link them up.

stopifnot(
any (sapply(NodeParents(student1.tlanodes[[1]]),NodeKind) == "Stub"),
any (sapply(NodeParents(student1.tlanodes[[2]]),NodeKind) == "Stub")
)

student1.allnodes <- NetworkAllNodes(studentl)
for (node in student1.tlanodes) {
stubs <- sapply(NodeParents(node),NodeKind) == "Stub”
NodeParents(node)[stubs] <- studentl.allnodes[NodeInputNames(node)[stubs]]
}

stopifnot(
sapply(NodeParents(student1.tlanodes[[1]]),NodeKind) != "Stub"”,
sapply(NodeParents(student1.tlanodes[[2]]),NodeKind) !="Stub"

)

Duplicate these nodes.
student1.t1xnodes <- CopyNodes(student1.tlanodes)

Autonaming increments the numbers.
stopifnot(

setequal (names(student1.t1xnodes),c(”"Obs1a3"”,"0Obs1a4"))
)

Duplicate and rename.
student1.tlcnodes <- CopyNodes(studentl.tlanodes,c("Obslc1”,"0Obs1c2"))

stopifnot(
setequal (names(studenti.ticnodes),c("Obsic1”,"0bs1c2"))

)

Duplicated nodes have real not stub connections.

stopifnot(
sapply(NodeParents(student1.tlcnodes[[1]]),NodeKind) != "Stub"”,
sapply(NodeParents(student1.tlcnodes[[2]]),NodeKind) !="Stub"

)

DeleteNetwork(list(System,studentl,EMTaskla))
stopSession(sess)

CreateNetwork Creates (destroys) a new Netica network.

Description

CreateNetwork() makes a new empty network in Netica, returning new NeticaBN objects. DeleteNetwork()
frees the memory associated with the named network inside of Netica.

40 CreateNetwork
Usage
CreateNetwork(names, session=getDefaultSession())
DeleteNetwork(nets)
Arguments
names A character vector giving the name or names of the network to be created.
session An object of type NeticaSession which defines the reference to the Netica
workspace.
nets A list of NeticaBN objects to be destroyed.
Details

The CreateNetwork method creates a new network for each of the names. Names must follow the
IDname rules. It returns a NeticaBN object, or a list of such objects if the argument names has length
greater than 1.

The DeleteNetwork method frees the Netica memory associated with each net in its argument.
Note that the network will not be available for use after it is deleted. It returns the NeticaBN
objects, but modified so that they are no longer active.

The function is.active(), checks to see if the network associated with a NeticaBN object still
corresponds to a network loaded into Netica’s memory.

These functions wrap the Netica API functions NewNet_bn() and DeleteNet_bn().

Value

A single NeticaBN object if the length of the argument is 1, and a list of such objects if the argument
has length greater than 1. For DeleteNets() if a specified network does not exist, the corresponding
element in the return list will be NULL.

Implementation Note

In RNetica version 0.5 and later, the NeticaBN is used to store the refernce to the network. The
enclosing NeticaSession object contains a table of network names to NeticaBN objects giving the
pointer. It will signal an error if a network with the given name already exists and is active (not
deleted).

In RNetica version 0.4 and prior, the NeticaBN object used the name of the networks to store the
pointer into the network.

Note

The function DeleteNetwork() implicitly deletes any nodes associated with the network. There-
fore, any nodes associated with this network will become inactive (see is.active()).

Author(s)

Russell Almond

DeleteNodeTable 41

References

http://norsys.com/onLineAPIManual/index.html: NewNet_bn(), DeleteNet_bn()

See Also

NeticaBN CopyNetworks(), is.active()

Examples

sess <- NeticaSession()
startSession(sess)

netl <- CreateNetwork("EmptyNet", session=sess)
stopifnot(is(netl,”"NeticaBN"))
stopifnot(net1$Name=="EmptyNet")
stopifnot(is.active(net1))

netd <- DeleteNetwork(net1)
stopifnot(!is.active(netd))
stopifnot(!is.active(net1))
stopifnot(netd$Name=="EmptyNet")

stopSession(sess)

DeleteNodeTable Deletes the conditional probability table of a Netica node.

Description

This function completely removes the conditional probability table (CPT) associated with a node.

Usage

DeleteNodeTable(node)

Arguments

node An active NeticaNode whose conditional probability table is to be tested.

Value

Returns the modified node invisibly.

Author(s)

Russell Almond

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/NewNet_bn().html
http://norsys.com/onLineAPIManual/functions/DeleteNet_bn().html

42 dgetFromString

References

http://norsys.com/onLineAPIManual/index.html: DeleteNodeTables_bn()

See Also

NeticaNode, NodeParents(), NodeInputNames(), HasNodeTable ()

Examples

sess <- NeticaSession()
startSession(sess)

al <- CreateNetwork("AB1", session=sess)
A <- NewDiscreteNode(al,"A",c("A1","A2"))

NodeProbs(A) <- c(0,1)
stopifnot(

all(HasNodeTable(A))==TRUE
)

DeleteNodeTable(A)

stopifnot(
all(HasNodeTable(A))==FALSE

)

DeleteNetwork(al)
stopSession(sess)

dgetFromString Serializes an R object to a string

Description

The function dputToString converts an R object to a string which can then be turned back into an
R object using dgetFromString.

Usage
dgetFromString(str)
dputToString(obj)

Arguments

str A string containing a serialized object

obj An object to be serialized

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/DeleteNodeTables_bn.html

EliminationOrder 43

Details

These functions call the base R functions dget and dput using a string buffer as the connection.
Thus, they serialize the R object and return a string value which can be stored in a NeticaNode (see
NodeUser0Obj) or or NeticaBN (see NetworkUserObj).

Note that the object must be self-contained.

Value

The function dputToString returns a character scalar containing the serialized object. Note: Some-
times R “helpfully” adds line breaks, returning a vector of strings. This can be fixed by using
paste(dputToString(obj),collapse="").

The function dgetFromString returns an arbitrary R object depending on what was stored in str.

Author(s)
Russell Almond

See Also

NodeUser0Obj), NetworkUserQObj

Examples

x <- sample(1L:10L)
x1 <- dgetFromString(dputToString(x))

stopifnot(all(x==x1))

EliminationOrder Retrieves or sets the elimination order used in compiling a Netica net-
work.

Description

The compilation process involves eliminating the nodes in the network one-by-one, different orders
will produce junction trees of different sizes. The function EliminationOrder(net) returns the
current elimination order associated with a network. The expression EliminationOrder(net)
<-value sets the elimination order.

Usage

EliminationOrder(net)
EliminationOrder(net) <- value

44 EliminationOrder

Arguments
net An active NeticaBN
value Either NULL (to clear the elimination order) or a list of every node in net with
no duplicates.
Details

Large cycles create problems for propagating probabilities in Bayesian networks. A solution to this
problem is to fill-in chords (short cuts) in the cycles and then transform the network to a tree shape
with the nodes of the tree representing cliques of the graph. This is commonly called a junction tree
(although a junction tree additionally has nodes separating the cliques, called sepsets in Netica).

Finding the optimal pattern of fill-ins is an NP hard problem. A common way of approaching it is to
eliminate the nodes from the network one-by-one and connect the neighbours of the eliminated node
(if they were not already connected). In this case, the sequence of eliminated nodes will determine
which edges are filled in, and hence the size of the final junction tree. Finding an optimal eliminator
order is also NP hard, but simple heuristics (like the greedy algorithm) tend to do reasonably well in
practice. (See Almond, 1995, for a complete description of the algorithm and heuristics solutions).

When Netica compiles a network (CompileNetwork(net)), it picks an elimination order, unless
one has already been set. Unless the network has a particular difficult structure, then the Netica
defaults should work pretty well. The function JunctionTreeReport(net) gives a report about
the existing tree.

If the analyst has some clue about the structure of the network and wants to manually select the
elimination order, this can be set through the form EliminationOrder(net)<-nodelist. Here
nodelist should be a complete list of all of the nodes in net with no duplication. Alternatively, it
can be set to NULL.

Setting the elimination order does not affect an already compiled network, it is only is applied when
the network is next compiled.
Value

A list of all of the nodes in the network in elimination order if the elimination order is currently set,
otherwise NULL.

The setter form returns net invisibly.

Note

The Netica documentation does not specify the heuristics for selecting the elimination order if no
order is specified. I suspect it is some variation on the greedy algorithm, which works well in many
cases.

Author(s)

Russell Almond

References

Almond, R.G. (1995) Graphical Belief Modeling. Chapman and Hall.
http://norsys.com/onLineAPIManual/index.html: GetNetElimOrder_bn(), SetNetElimOrder_bn(),

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNetElimOrder_bn.html
http://norsys.com/onLineAPIManual/functions/SetNetElimOrder_bn.html

EnterFindings 45

See Also

NeticaBN, NetworkAl1lNodes (), CompileNetwork(), JunctionTreeReport()

Examples

sess <- NeticaSession()
startSession(sess)

EMSMMotif <- ReadNetworks(file.path(library(help="RNetica")$path,
"sampleNets”,"EMSMMotif.dne"), session=sess)

Should be null before we do anything.
stopifnot(

is.null(EliminationOrder (EMSMMotif))

)

CompileNetwork (EMSMMotif’)

Now should have an elimination order.
stopifnot(
length(EliminationOrder (EMSMMotif)) ==
length(NetworkAl1lNodes (EMSMMotif)),
NetworkCompiledSize (EMSMMotif) == 84

)
JunctionTreeReport (EMSMMotif)

EMSMMotif is partitioned into observable and proficiency variables.
Tell Netica to eliminate observable variables first.
EliminationOrder (EMSMMotif) <- c(NetworkNodesInSet(EMSMMotif,"Observable"),
NetworkNodesInSet (EMSMMotif, "Proficiency”))
UncompileNetwork (EMSMMotif)
CompileNetwork (EMSMMotif)
stopifnot(
length(EliminationOrder (EMSMMotif)) ==
length(NetworkAllNodes(EMSMMotif)),
NetworkCompiledSize (EMSMMotif) == 84
)
JunctionTreeReport (EMSMMotif)

Clear elimination order.
EliminationOrder (EMSMMotif) <- NULL
stopifnot(

is.null(EliminationOrder (EMSMMotif))
)

DeleteNetwork (EMSMMotif)
stopSession(sess)

EnterFindings Enters findings for multiple nodes in a Netica network.

46 EnterFindings

Description
This function takes two arguments, a network and a list of nodes and the corresponding findings. It
sets all of the findings at once.

Usage

EnterFindings(net, findings)

Arguments
net An active and compiled NeticaBN.
findings An integer or character vector giving the findings. The names (findings) should
be names of nodes in net. The values of findings should be corresponding
states either expressed as a character string or as an integer index into the list of
states for that node. (See NodeFinding(node).
Details

This function enters findings for multiple nodes at the same time. It offers two improvements over
repeated calls to NodeFinding(). First, it finds the nodes by name in the network, making it easier
to work with data in the form of key—value pairs that might come from other systems. Second, it
wraps the calls to NodeFinding() in a call to WithoutAutoUpdate () which should only propagate
the new findings after all values have been entered.

Value

The value of net is returned invisibly.

Author(s)
Russell Almond

See Also

NeticaBN, NodeBeliefs(), EnterNegativeFinding(), NodeFinding(), RetractNodeFinding(),
NodeLikelihood (), EnterGaussianFinding(),EnterIntervalFinding(), JointProbability(),
NodeValue(), MostProbableConfig(), FindingsProbability()

Examples

sess <- NeticaSession()
startSession(sess)

Motif <- ReadNetworks(file.path(library(help="RNetica")$path,
"sampleNets”,"EMSMMotif.dne"), session=sess)

CompileNetwork(Motif)

obs <- c(Obslal="Right",Obs1a2="Wrong",
Obs1b1="Right",0bs1b2="Wrong",
Obs2a="Half", Obs2b="Half")

EnterGaussianFinding 47

EnterFindings(Motif,obs)
JointProbability(NetworkNodesInSet(Motif, "Proficiency”))

DeleteNetwork(Motif)
stopSession(sess)

EnterGaussianFinding Enter a numeric finding with uncertainty

Description
This function a likelihood for a node that follows a Gaussian distribution with a given mean and
standard deviation. This is entered as virtual evidence.

Usage

EnterGaussianFinding(node, mean, sem, retractFirst = TRUE)

Arguments
node An active NeticaNode object that references the node. Node should be contin-
uous, or have numeric value ranges assigned to it using NodeLevels(node).
mean A numeric scalar giving the observed value (mean of the normal).
sem A nonnegative numeric scalar giving the standard error of measurement for the

observed finding (standard deviation of the normal).

retractFirst A logical value. If true, any previous findings will be retracted first.

Details

The node must a continuous node that has been discretized using NodeLevels(node). The proba-
bilities for each state are calculated based on a Gaussian distribution with the given mean and sem
(SD).

Value

Return the node argument invisibly.

Warning

The Netica function EnterGaussianFinding_bn is not behaving at all like what I expected. In par-
ticular, I expect that it would behave like a normal likelihood, but instead it seems to be behaving
as if I typed the expression NodeValue (node)<-mean. I’ve queried Norsys about this.

Meanwhile, I've worked around by calling NodeLikelihood instead of the internal Netica function.

Author(s)
Russell Almond

48 EnterIntervalFinding

References

http://norsys.com/onLineAPIManual/index.html: EnterGaussianFinding_bn(),

See Also
EnterNegativeFinding(), EnterFindings(), RetractNodeFinding(), NodeLikelihood(), NodeFinding(),
EnterIntervalFinding(), NodeValue()

Examples

sess <- NeticaSession()
startSession(sess)

cirt5 <- CreateNetwork("ContinuousIRT5", session=sess)

theta <- NewContinuousNode(cirt5,"Theta")

NodeLevels(theta) <- c(-5,-2.5,-1.5,-0.5,0.5,1.5,2.5,5)
NodeProbs(theta) <- rep(1/NodeNumStates(theta),NodeNumStates(theta))

CompileNetwork(cirt5) ## Ready to enter findings

EnterGaussianFinding(theta,0,1)
NodeBeliefs(theta)

stopifnot(all(abs(NodeBeliefs(theta) -
diff(pnorm(NodeLevels(theta),0,1))) < .0001))

DeleteNetwork(cirt5)
stopSession(sess)

EnterIntervalFinding Enter finding of value within an interval

Description

Sets the finding associate with node to an interval.

Usage

EnterIntervalFinding(node, low, high, retractFirst = TRUE)

Arguments
node An active NeticaNode object that references the node.
low Lower bound of interval.
high Upper bound of interval.

retractFirst A logical value. If true, any previous findings will be retracted first.

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/EnterGaussianFinding_bn.html

EnterIntervalFinding 49

Details

The node must a continuous node that has been discretized using NodeLevels(node). The prob-
abilities for each state are calculated based on a uniform distribution with the given low and high
endpoints.

Value

Return the node argument invisibly.

Note

The internal Netica function EnterIntervalFinding_bn is not behaving at all like what I expected.
In particular, I expect that it would behave like a uniform likelihood, but instead it seems to be
behaving as if I typed the expression NodeValue (node)<-low. I've queried Norsys about this.

Meanwhile, I've worked around by calling NodeLikelihood instead of the internal Netica function.

Author(s)
Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: EnterIntervalFinding_bn()

See Also

EnterNegativeFinding(),EnterFindings(), RetractNodeFinding(), NodeLikelihood(), NodeFinding(),
EnterGaussianFinding(), NodeValue()

Examples

sess <- NeticaSession()
startSession(sess)

cirt5 <- CreateNetwork(”ContinuousIRT5", session=sess)

theta <- NewContinuousNode(cirt5,"Theta")

NodelLevels(theta) <- c¢(-5,-2.5,-1.5,-0.5,0.5,1.5,2.5,5)
NodeProbs(theta) <- rep(1/NodeNumStates(theta),NodeNumStates(theta))

CompileNetwork(cirt5) ## Ready to enter findings

EnterIntervalFinding(theta,-1,1)
NodeBeliefs(theta)

stopifnot(all(abs(NodeBeliefs(theta)*4-c(0,0,1,2,1,0,0))<.0001))

DeleteNetwork(cirt5)
stopSession(sess)

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/EnterIntervalFinding_bn.html

50

EnterNegativeFinding

EnterNegativeFinding Sets findings for a Netica node to a list of ruled out values.

Description

This is conceptually equivalent to setting NodeFinding(node)<-not (eliminatedVals) (although
this will not work as NodeFinding does not accept set values). It essentially eliminates any of the
eliminatedVals as possible values (assigns them zero probability).

Usage

EnterNegativeFinding(node, eliminatedVals)

Arguments

node An active NeticaNode whose value was observed or hypothesized.

eliminatedVals A character or integer vector indicating the values to be ruled out. Character
values should be one of the values in NodeStates(node). Integer values should
be between 1 and NodeNumStates (node) inclusive.

Details

This function essentially asserts that Pr(node € eliminatedVals) = 0. Thus, it rules out the
values in the eliminatedVals set. Note that the length of this set should be less than the number
of states, or all possibilities will have been eliminated.

Note calling EngerNegativeFining(node,...) clears any previous findings (including virtual
findings set through NodeLikelihood() or simple finding set through NodeFinding(node)<-value).
The function RetractNodeFinding(node) will clear the current finding without setting it to a new
value.

Value

This function returns node invisibly.

Note

If SetNetworkAutoUpdate () has been set to TRUE, then this function could take some time as each
finding is individually propagated. Consider wrapping multiple calls setting NodeFinding() in
WithoutAutoUpdate(net,...).

Unlike the Netica function EnterFindingNot_bn() the function EnterNegativeFinding() inter-
nally calls RetractFindings. So there is no need to do this manually. Also, the internal Netica
function multiplies multiple calls to EnterFindingNod_bn() add to the list of negative findings,
while in the R version takes the entire list.

Author(s)

Russell Almond

Extract.NeticaNode 51

References

http://norsys.com/onLineAPIManual/index.html: EnterFindingNot_bn()

See Also

NeticaBN, NodeBeliefs(), NodeFinding(), RetractNodeFinding(), NodeLikelihood()

Examples

sess <- NeticaSession()

startSession(sess)

irt5 <- ReadNetworks(file.path(library(help="RNetica")$path,
"sampleNets"”,"IRT5.dne"), session=sess)

irt5.theta <- NetworkFindNode(irt5,"Theta")
irt5.x <- NetworkFindNode(irt5,paste("Item”,1:5,sep="_"))

CompileNetwork(irt5) ## Ready to enter findings

Calculated new expected beliefs
renormed <- NodeProbs(irt5.theta)
renormed[c("negl"”,"neg2")] <- 0

renormed <- renormed/sum(renormed)

Negative finding

EnterNegativeFinding(irt5.theta,c("negl"”,"neg2"”)) ## Rule out negatives.

stopifnot(
NodeFinding(irt5.theta) == "@NEGATIVE FINDINGS",
sum(abs(NodeLikelihood(irt5.theta) - c¢(1,1,1,0,0))) < le-6,
sum(abs(NodeBeliefs(irt5.theta) - renormed)) < 1.e-6

)

DeleteNetwork(irt5)
stopSession(sess)

Extract.NeticaNode Extracts portions of the conditional probability table of a Netica node.

Description

Provides an efficient mechanism for extracting or setting portions of large conditional probability
tables. In particular, allows setting many rows a CPT to the same value. The node[] form is
for chance (probabilistic) nodes, the node[[]] form is for deterministic (functional) nodes. See
IsNodeDeterministic.

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/EnterFindingNot_bn.html

52

Usage

Extract.NeticaNode

S4 method for signature 'NeticaNode'

x[i, j,...

, drop=FALSE]

S4 method for signature 'NeticaNode'

xtli, 3,

xti, 3,

., drop=FALSE]]
S4 replacement method for signature 'NeticaNode
...] <= value

S4 replacement method for signature 'NeticaNode'

xtli, 3,
EVERY_STATE

Arguments

X

i3,...

drop

value

Details

...1]1 <= value

An active, discrete NeticaNode whose conditional probability table is to be ac-
cessed.

Indices specifying rows of the table to extract or replace. If a single index,
i, is given, it should be a data frame selecting the parent states, or an integer
pointing at a configuration. If multiple indexes are given, the number of indexes
should correspond to the number of parent states of the variable. The values
should either be character strings (corresponding to parent variable states), or
numeric (indexes to parent states). In character strings, the special value "*" is
allowed to select all values of that variable. In numeric indexes, the special value
EVERY_STATE indicates that all states are selected. Leaving the index position
blank is the same as specifying "*" or EVERY_STATE.

If true and a single row is selected, that row will be returned as a numeric vector
instead of a conditional probability frame (CPF).

Either a numeric vector with length NodeNumStates(x) giving the conditional
probabilities for the specified rows in the table or a character scalar (discrete
node) or numeric scalar (continuous node) giving the value that should be given
probability 1.

The function NodeProbs(node) allows one to access the entire conditional probability at once as
a conditional probability array (CPA). Although the built-in R array replacement mechanisms allow
one to make various kinds of edits, it is relatively inefficient. In particular, to set a single row of an
array, the entire table is read into R and then written back to Netica.

This function allows the syntax node[. . .] to be used to access only a portion of the table. There
are many different ways . . . can be interpreted, which are described below.

In this access model the value EVERY_STATE or the character value "*" has a special meaning of
match every level of that state variable. Netica supports this as a shortcut method for specifying
conditional probability tables with many similar values. However, when reading the conditional
probability tables from Netica they are expanded and no attempt is made to collapse over identical

TrOws.

Extract.NeticaNode 53

A second difference is that node[. . .] returns the conditional probability table in data frame (CPF)
format. This is particularly convenient because that format does not need to cover every parent
configuration, thus it is ideal for holding subset of the complete table.

A third difference is that if the last column of the conditional probabilities is not supplied, it will be
computed. This is particularly handy for binary nodes.

Normally, the expression nodel. ..] produces a data frame either in CPF format, or with the prob-
abilities replaced by a single column of values. If drop==TRUE, only the matrix of probabilities or
the vector of values will be returned. See also numericPart.

Deterministic nodes (see IsNodeDeterministic) should be accessed using the node[[. . .]] form.
In this form, the node has a value table which maps a configuration of the parent values to a value
of the node. That will be a numeric value for continuous nodes, and a factor for discrete variables.
Note that Netica figures out whether or not a node is deterministic on the fly. For that reason, it is
strongly recommended to use node[[. . .]] to access the value table, and node[. . .] to access the
CPT.

In using the form node[[...]] <-value the value depends on whether the node is continuous or
discrete. For continuous nodes, the node’s value for a parent configuration (assuming all discrete
or discretized parents) can be set directly if value is numeric. (If value is a factor or a string, it
behaves like a discrete node.). For a discrete node, value can be a factor, string or integer, incidating
the state. This creates a deterministic conditional probability table full of 1’s and 0’s.

The sections below describe the various indexing options.

Value

For the form node[. . .] the return value is a data frame in the CPF format giving the conditional
probability table.

For the form node[[...]], if the node is deterministic (IsNodeDetermistic(node)==TRUE) then
the probabilities will be replaced with a single column giving the value of the node. If the node
is discrete, then the value will be a factor. If the node is continuous, then the value will be a real
vector.

If drop==TRUE then the return value will be a matrix of probabilities (the last several columns of
the data frame). If the node is deterministic, then the result will instead be either a factor (discrete
node) or real vector (continuous node) giving the value of the node for each parent configuration.

The forms node[. . .J<-value and node[[. ..]]<-value return node invisibly.

Selecting Rows Using Data Frames

This selection uses the syntax node[df] or node[df]<-value, where df is a data frame or a ma-
trix. It is assumed that the columns represent the variables, and the rows represent the selected
configurations of the parent variables.

In this configuration, the number of rows of df and value should match (or the length of value
should equal the number of rows if one of the special values is used). When the value is being
queried rather than set, the number of rows in the result may be greater than the number of rows in
df because of EVERY_STATE expansion.

There are three different ways that df could be represented:

1. It can be a data frame filled with factor variables whose levels correspond to the states of the
corresponding parent node.

54

Extract.NeticaNode

2. It can be a matrix or data frame of type character whose values correspond to the state names
of the corresponding parent variables, or possibly the special value "*" meaning that all values
of that parent should be matched.

3. It can be a matrix of data frame of integers whose values correspond to the state indexes of the
parent variables. In this case the special value EVERY_STATE can be supplied indicating that
all values should be matched. Otherwise, it should be a number between 1 and the number of
states of that variable, inclusive.

The number of columns in df should be the same as the number of parent variables for node. If
df has column names, then all columns should be named. In this case the parent variables will be
match by the NodeInputNames(node) if they exist, or the names of the parent variables if they do
not (see ParentStates(node) for more details). Otherwise, positional selection is used.

Selecting Rows Using Array-type Selection

The second way that rows from the conditional probability table can be selected is using an analogue
of the selection mechanisms supported by R for selecting cells from an array. Essentially, the rows
of the conditional probability table are treated as if they are the elements of an array whose dim-
names correspond to ParentStates{node}. In particular the number of dimensions corresponds
to the number of parent variables, and the extent of each dimension corresponds to the number of
states of the corresponding parent variable.

In this selection mode, the length of . .. should correspond to the number of parent variables (that
is, there should be one fewer comma, than parent variables). Each element can be one of three
things:

1. A character or factor vector selecting the appropriate states of the parent variable.

2. An integer vector selecting the appropriate states of the parent variable by position.

3. One of the special values EVERY_STATE, "x" or blank indicating that all values of the appro-

priate variable should be selected.

The order of the entries should be the same as the order of the parent variables in NodeParents{node}.
The selection looks very similar to selection using a data frame, where the data frame consists of
applying expand.grid(...).

Once again EVERY_STATE or "x" entries are treated specially inside of Netica, which allows every
matching row of the table to be simultaneously set to the same probabilities.

Note that negative selections and logical selections are not currently supported.

Selecting Rows Using Named Parents

As with R array index selection, the dimensions of the selection in the . . . argument can be specified
using named arguments. If one of the elements of ... is named, they all should be named. The
names should correspond to ParentNames(node), that is the NodeInputNames(node) are used if
available, and the names of the parent nodes are used as a fallback.

As before the value for a parent variable can be set to a value or a vector of possible values as
either an integer, factor or character value. The special values EVERY_STATE and "*" are interpreted
as before. If the value of a parent variable is unspecified, this is equivalent to using the value
EVERY_STATE.

Extract.NeticaNode 55

Selecting Rows Using a Single Integer

If ... is a single integer, it is treated as an index into the possible configurations. These are defined
by expand.grid(ParentStates(node). Each index refers to a row in that table. This is particu-
larly meant for running through loops on all values, although working with value as a data frame or
using NodeProbs may be faster in those cases.

There is some ambiguity when there is a single parent variable about whether the array-type selec-
tion or the index was intended, but both are identical, so there should be no conflict.

Special Meaning for NULL selection

If ... is NULL, that is if the calling expression looks like node[] then the intention is that all
rows of the conditional probability table are to be selected. This is the only meaningful selection
type if there are no parent variables. It also provides a fast and convenient way to set all rows of
the conditional probability table to the same value (if value) has a single row, or to retrieve the
complete conditional probability table in CPF format.

If value is a data frame with both factor and numeric variables, then it takes on a different meaning.
In this case, the factor variables are used as if they were the selection argument (the .. .) and the
remaining numeric values the probabilities.

Setting Value to a Probability Matrix

In general the replacement value should be a matrix. The number of columns should match the
number of states of node (see below for the behavior if the number of columns is one less than the
number of states). It should have the same number of rows as the number of rows in the selection
after any expansion has been applied for vector valued arguments, but not counting the special
values EVERY_STATE or "*" (or blank entries in the list).

Netica has a special shortcut for EVERY_STATE and all matching rows are set to the same probability
value. This means that the number of rows in the value must match the selection counting the
special values as if they selected a single row. In particular, if node has one or more parent variables
and value is a matrix with more than one row, node[] <-value will generate a error, because the
selection has only one row (with every value set to EVERY_STATE).

When value is an undimensioned vector, the function will do its best to figure out if it should be
treated as a row or a column vector. In the case of unusual behavior, expressing value as a matrix
should make the programmer’s intention clear.

Setting Deterministic Values

When a node is deterministic, that is all probabilities are 0 or 1, then it is meaningful to talk
about the conditional value of a node instead of the conditional probability table. The expression
node[[...]] displays the conditional probability table in a special way when the node is determin-
istic. In this case it displays the value as a single variable giving the state of the child variable given
the configuration of the parents. In the case of discrete nodes, this is a factor variable giving the
state. In the case of continuous nodes, this is a numeric vector giving the value.

The same conventions can be used in setting the conditional probability of a node. In the expression
node[[...]] <-value if value is a factor or character vector then the selected configurations are
set to deterministic probabilities with the indicated value given probability of 1 and all others with
probability 0. It is possible to set some rows of a conditional probability table to be deterministic

56 Extract.NeticaNode

and others to have unrestricted probabilities, however, the deterministic rows will then print out as
unconstrained probabilities with 0 and 1 values.

Continuous nodes (nodes for which is. continuous(node) == TRUE) use a variation of this system.
Here the value is an arbitrary numeric value. For this to be meaningful, it is assumed that all of the
parents of node are either discrete or have been discretized. The use of the node[[. . .]1] <-value
is particularly important for continuous nodes becuase it indicates that value is a potential value of
the node rather than a probability.

Warning: Setting an unconditional discrete node to a constant value, that is executing an expression
like node[[]] <-value is almost certainly a mistake. Probably what is intended by that expres-
sion is NodeFinding(node) <-value. In particular, if the former expression is used and the later
someone attempts to set NodeFinding(node) <-valuel, where valuel != value, this will produce
a contradiction (probability zero event) and all kinds of error will follow.

Automatic normalization

If the number of columns in value is one less than the number of states in node, then is assumed that
the probability values should be calculated for the last state via normalization, that is it is assigned
all of the remaining probability not assigned in the first couple of columns. In particular, the value
is internally translated via the expression: value <-cbind(value, 1-apply(value,1,sum)).

This is particularly useful when the node is binary (has exactly 2 states). Then the replacement only
needs to specify the probability for the first one. For example node[] <-.5 would set the probability
distribution of node to the uniform distribution if node is binary.

There is some potential for confusion if value is not specified as a matrix. In particular, if the
number of states of the child value is one more than the number of configurations of the parents,
it is unclear whether this is an attempt to set the node value of a discrete node or an unnormalized
probability. It should be possible by specifying value as a matrix or one row or one column to
clarify the intent.

Backward Incompatable changes and Deprecated Uses

RNetica version 0.7 changed the ways that the node[...] and node[[. . .]] were handled, estab-
lishing that the former is for manipulating conditional probability tables, and the latter for manipu-
lating value tables for deterministic nodes.

The return value of node[] for a deterministic node node has changed This now returns the condi-
tional probability table. Use node[[1] to get the value table.

The use of node[[...]] as a synnonym for node[. . .,drop=TRUE] is deprecated. (I’'m not sure it
was working correctly).

The use of nodel. . . J<-value to set rows in a function table for a discrete node is deprecated. Use
node[[...]]<-value instead.

An error where node[. . . J<-value always treated continuous nodes as deterministic is fixed. (Note
that continuous nodes cannot be treated as random unless they have been discretized.)

Note

I have tried to anticipate most of the ways that somebody might want to index the conditional
probability table, not to mention all of the peculiar ways that R overloads the extraction operator.
Negative selections are not allowed. I have almost certainly missed some combinations, and some

Extract.NeticaNode 57

untested combinations might preform rather strangely. Undoubtedly somebody will come to rely
on that strangeness and it will never get fixed.

Factor variables do not easily handle the use of "*" as a wildcard. To make this work, a construction
like factor(varstates,c(1:3,EVERY_STATE), labels=c("al1","a2","a3","x")).

Internally R uses 1-based indexing and Netica uses 0-based indexing. RNetica makes the translation
inside of the C layer, so these function should be called with R-style 1-based indexing.

I’m having weird race conditions when trying to set the value of EVERY_STATE (I can’t figure out
how to call the C function to set its value after the C code is loaded but before the namespace is
exported. So for now the exported EVERY_STATE is different from the internal Netica value (which
is RNetica:: :EVERY_STATE, at least in the current implementation). This should not be a visible
change to the user.

This documentation file is longer than War and Peace.

Author(s)
Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNodeProbs_bn(), SetNodeProbs_bn(),
GetNodeFuncState_bn(), SetNodeFuncState_bn(), GetNodeFuncReal_bn(), SetNodeFuncReal_bn(),

See Also

NeticaNode, NodeParents(), NodeInputNames(), NodeStates(), ParentStates(), CPF, CPA,
IsNodeDeterministic

Examples

Setup

sess <- NeticaSession()
startSession(sess)

xnet <- CreateNetwork("X", session=sess)

A <- NewDiscret