
Package ‘RNetica’
August 24, 2017

Version 0.5-1

Date 2017/08/24

Title R interface to Netica(R) Bayesian Network Engine

Author Russell Almond

Maintainer Russell Almond <ralmond@fsu.edu>

Depends R (>= 3.0), methods, utils

Imports grDevices, R.utils

Description
This provides an R interface to the Netica (http://norsys.com/) Bayesian network library API.

License Artistic-2.0 + file LICENSE

URL http://pluto.coe.fsu.edu/RNetica

Collate Session.R Networks.R Node.R Edges.R Inference.R Cases.R
Experience.R Continuous.R Random.R LoadFuns.R

R topics documented:
RNetica-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
AbsorbNodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
AddLink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
AdjoinNetwork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
CalcNodeState . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
CaseFileDelimiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
CaseFileStream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
CaseMemorytream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
CaseStream-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
cc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
CliqueNode-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
CompileNetwork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
CopyNetworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
CopyNodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
CPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
CPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

1

http://pluto.coe.fsu.edu/RNetica


2 R topics documented:

CreateNetwork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
DeleteNodeTable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
dgetFromString . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
EliminationOrder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
EnterFindings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
EnterGaussianFinding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
EnterIntervalFinding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
EnterNegativeFinding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Extract.NeticaNode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
FadeCPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
FileCaseStream-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
FindingsProbability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
GenerateRandomCase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
GetNamedNetworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
GetNetworkAutoUpdate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
GetNthNetwork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
HasNodeTable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
IDname . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
is.active . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
is.discrete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
is.NodeRelated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
IsNodeDeterministic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
JointProbability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
JunctionTreeReport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
LearnCases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
LearnCPTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
LearnFindings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
MakeCliqueNode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
MemoryCaseStream-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
MemoryStreamContents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
MostProbableConfig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
MutualInfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
NeticaBN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
NeticaBN-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
NeticaCaseStream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
NeticaNode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
NeticaNode-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
NeticaRNG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
NeticaRNG-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
NeticaSession . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
NeticaSession-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
NeticaVersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
NetworkFindNode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
NetworkFootprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
NetworkName . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
NetworkNodeSetColor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
NetworkNodeSets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
NetworkNodesInSet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158



R topics documented: 3

NetworkSetPriority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
NetworkSetRNG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
NetworkTitle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
NetworkUndo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
NetworkUserField . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
NewDiscreteNode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
NodeBeliefs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
NodeChildren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
NodeEquation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
NodeExpectedUtils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
NodeExpectedValue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
NodeExperience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
NodeFinding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
NodeInputNames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
NodeKind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
NodeLevels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
NodeLikelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
NodeName . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
NodeNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
NodeParents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
NodeProbs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
NodeSets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
NodeStates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
NodeStateTitles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
NodeTitle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
NodeUserField . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
NodeValue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
NodeVisPos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
NodeVisStyle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
normalize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
ParentStates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
ReadFindings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
RetractNodeFinding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
ReverseLink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
StartNetica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
WithOpenCaseStream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
woe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
write.CaseFile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
WriteFindings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
WriteNetworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

Index 243



4 RNetica-package

RNetica-package R interface to Netica(R) Bayesian Network Engine

Description

This provides an R interface to the Netica (http://norsys.com/) Bayesian network library API.

Details

The DESCRIPTION file: This package was not yet installed at build time.

This package provides an R interface to the Netica, in particular, it binds many of the functions in
the Netica C API into the R language. RNetica can create and modify networks, enter evidence and
extract the conditional probabilities from a Netica network.

License

While RNetica (the combination of R and C code that connects R and Netica) is free software, as
is R, Netica is a commercial product. Users of RNetica will need to purchase a Netica API license
key (which is different from the GUI license key) from Norsys(R) (http://www.norsys.com/).

Once you have a license key, you can use it in one of three ways. The currently (RNetica 0.5 and
later) recommended way of using it is to create a Netica Session object that contains it: DefaultNeticaSession <- NeticaSession(LicenseKey="License Key from Norsys").
This will store the key in a NeticaSession object. The special variable DefaultNeticaSession
is used as a default for every function requiring a session argument, so can be used to skip the need
for explicitly stating the session argument.

Two other mechanisms continue to be supported for backwards compatibility. First, the license key
can be used as an argument to the function StartNetica(). This will create a session and store it
in NeticaDefaultSession. If the variable NeticaLicenseKey in the R top-level environment is
set before the call to library(RNetica), StartNetica() will pick up the license key from that
location.

Without the license key, the Netica shared library will be restricted to a student/demonstration mode
with limited functionality. Note that all of the example code (and hence R CMD check RNetica)
can be run using the limited version.

Note that the NeticaSession object stores the complete Netica license key. Do not share dumps of
the session object (including the .RData file containing DefaultNeticaSession) with any third-
party.

Index

Index: This package was not yet installed at build time.

http://www.norsys.com/


RNetica-package 5

RNetica Environment and Netica Objects

Netica exists in both as a stand alone graphical tool for building and manipulating Bayesian net-
works (the Netica GUI) and as a shared library for manipulating Bayesian networks (the Netica
API). The RNetica package binds the API version of Netica to a series of R functions which do
much of the work of manipulating the network. The file format for the GUI and API version of
Netica is identical, so analysts can easily move back and forth between the two. Note that the RNet-
ica environment is separate from other Netica environments that may be created using the Netica
GUI (or API invoked from a different program); RNetica can only manipulate the networks that are
currently loaded into its environment.

There are five objects which provide a handle for objects in the Netica session. These are:

NeticaSession This is a container for the overall Netica session. It is referenced when creating
other Netica objects (NeticaBNs, CaseStreams and NeticaRNG) and contains the license key
needed to activate Netica. Its field $nets is an environment which contains references to all
of the networks which have been associate with this session.

NeticaBN This is a handle for a network object. NeticaNode objects are created within a network,
and the $nodes field is an environment which contains node references, at least for those nodes
which have been referenced in R code. Networks must have unique names within a session.

NeticaNode This is a handle for a particular Netica node. Nodes must have unique names within
a network. Many inference functions are done based on nodes.

CaseStream This is a stream of Netica case data, values for particular nodes. There are two sub-
classes: FileCaseStream and MemoryCaseStream. As of version 5.04 of the Netica API,
there are some issues with MemoryCaseStreams, so the FileCaseStreams should be used
instead.

NeticaRNG This a random number generator used by Netica for generating random cases.

All of these follow the envRefClass protocol. In particular, their fields are referenced using ‘$’.
Also, all of them have a method $isActive (which is called from the generic function is.active)
which determines whether or not the pointer to the Netica object currently exists or not. Calling
stopSession will render all Netica objects inactive.

In particular, when quitting and restarting R, the pointers will all be initialised to null, and all of
the session, node and network objects will become inactive. Some examples of how to restart an
RNetica session are provided below.

To connect R to Netica, it is necessary to create and start a NeticaSession. This is done by first
calling the constructor NeticaSession() and then calling the function startSession(session). If
you have purchased a Netica license key from Norsys, this can be passed to the constructor with the
argument LicenseKey given the value of the license key as a string. Note that the session object can
be saved in the workspace, so that it can be used in future R session (it does not need to be recreated,
but it must be restarted with a call to startSession). If it is saved to DefaultNeticaSession, this
value will be used as a default by all of the functions that use the session as an argument.

Note that this is a change from how RNetica operated prior to version 0.5. In older versions of
RNetica, the session pointer was held inside of the C code, and the function StartNetica() was
invoked automatically when the RNetica package was attached. Nowt this needs to be done manu-
ally through a call to startSession.

The function getDefaultSession() emulates the behaviour of the previous version of RNetica.
It is the default value for all of the functions which require a session argument. When invoked,



6 RNetica-package

it looks for an object call DefaultNeticaSession in the global environment. If that exists, it is
used, if not, a new NeticaSession is created. If the new session is created, it looks for a variable
NeticaLicenseKey in the global environment. If that is present, it will use this as a license key.
Finally, if the DefaultNeticaSession is not active, it will start it.

Note that it is almost certainly a mistake to have two sessions open at the same time. Users should
either set the DefaultNeticaSession, and use the default, or always explicitly pass the session
argument to functions that need it.

The following functions take a session argument: CaseFileDelimiter, CaseFileMissingCode,
CaseFileStream, CaseMemoryStream, ClearAllErrors, CreateNetwork, GetNthNetwork, GetNamedNetworks,
NeticaVersion, ReadNetworks, ReportErrors, StartNetica, StopNetica, startSession, and
stopSession.

Netica Networks

NeticaBN objects are created through one of three functions: CreateNetwork(), ReadNetworks()
and CopyNetworks. The first two both require a session argument, while the third uses the ses-
sion from its net argument. When a network is created it is added as a symbol (using its name)
to the $nets field of the session. It can then be referenced using session$nets$netname or ses-
sion$nets[["netname"]]. The field $Session of the NeticaBN points to the NeticaSession
object in which the network was created.

Note that session$nets cache may contain inactive network objects for one of two reasons: (1) it is
a deleted network object, or (2) this is a session which has been restored from a file, and the Netica
pointers have not been reconnected. In particular, quitting R will always deactivate the network.

For networks, the simplest solution is to save each network to a file using WriteNetworks(). If
a NeticaBN object net is used in either a net <- ReadNetworks() or WriteNetworks(net) call,
then the R object will be badged with the name of the last used filename. Thus, after saving and
restoring a R session, the expression net <- ReadNetworks(net) will recreate net as an object
pointing to a new network that is identical to the last saved version.

Netica Nodes

NeticaNode objects are created through NewDiscreteNode() or NewContinuousNode(), or re-
trieved from the network using NetworkFindNode(), NetworkAllNodes(), NetworkNodesInSet(),
or one of a variety of other functions that return nodes. When a node is created it is added as
a symbol (using its name) to the $node field of the network. It can then be referenced using
net$nodesnodename or net$nodes[["nodename"]].

Note that if more than one network is loaded they may have identically named nodes that are not
identical. For example, net1 and net2 may both have a node named “Proficiency”. If the R variable
Proficiency is bound to the NeticaNode object corresponding to the variable “Proficiency” in net1 ,
it can only be used to access the instance of that variable in net1 , not the one in net2 .

Note that the NeticaNode object is created when then node is first references in R. In particular, this
means when a network is loaded through a call to ReadNetworks, the R objects for the correspond-
ing Netica nodes are not immediately created. The function NetworkAllNodes() returns a list of
all nodes in the network, and as a side effect, creates NeticaNode object for all of the nodes found
in the network. If the network has many nodes, it may be more efficient to just create R objects for
the ones which are used. In this case the functions NetworkFindNode(), and NetworkNodesInSet
are useful for finding (and creating R objects for) a subset of nodes.



RNetica-package 7

The following procedure can be used to save and restore a Netica network across sessions. In the
first session:

DefaultNeticaSession <- NeticaSession()
startSession(DefaultNeticaSession)
net <- CreateNetwork("myNet",DefaultNeticaSession)
# Work on the network.
WriteNetworks(net,"myNet.dne")
q("yes")

The variables DefaultNeticaSession and net will be saved in .Rdata. Then in the next R session

startSession(DefaultNeticaSession)
net <- ReadNetworks(net,DefaultNeticaSession)
net.nodes <- NetworkAllNodes(net)

This will read net from the place it was last saved. It will also create R objects for all of the nodes
in net . This can now be access through net$nodes or the variable net.nodes.

Creating and Editing Networks

Operations with Bayesian networks generally proceed in two phases: Building network, and con-
ducting inference. This section describes the most commonly used options for building networks.
The following section describes the most commonly used options for inference.

First, the function CreateNetwork() is used to create an empty network. Multiple networks can be
open within the RNetica environment, but each must have a unique name. Names must conform to
Netica’s IDname rules.

Nodes can be added to a network with the functions NewDiscreteNode() and NewContinuousNode().
Note that Netica makes an internal distinction between these two types of nodes and a node cannot
be changed from one type to another. Nodes must all have a unique (within the network) name
which must conform to the IDname rules.

Edges between nodes are created using the AddLink(parent,child) function. This forms a directed
graph which must be acyclic (that is it must not be possible to follow a path along the direction of the
arrows and return to the starting place). The function NodeParents(child) returns the current set of
parents for the node child (nodes which have edges pointing towards child ). NodeParents(child)
may be set, which serves several purposes. First, it allows connections to be added and removed.
Second, setting one of the parent locations to NULL produces a special Stub node, which serves as a
placeholder for a later connection. Third, it allows one to reorder the nodes, which determines the
order of the dimensions of the conditional probability table.

A completed Bayesian network has a conditional probability table (CPT) associated with each node.
The CPT provides the conditional probability distributions of the node given the states of its par-
ents in the graph. RNetica provides two functions for accessing and setting this CPT. The function
NodeProbs() returns (or sets) the conditional probability table as a multi-dimensional array. How-
ever, using the array extractor “[” (Extract.NeticaNode) allows the conditional probability table
to be manipulated as a data frame, where the first several columns provide the states of the parent



8 RNetica-package

variables, and the remaining columns the probabilities of the the node being in each of those states
given the parent configurations. This latter approach has a number of features for working with
large tables and tables with complex structure.

Finally, when the network is complete, the function WriteNetworks() can be used to save it to
a file, which can either be later read into RNetica, or can be used with the Netica GUI or other
applications that use the Netica API.

Inference

The basic purpose for building a Bayesian network is to rapidly calculate conditional probabilities.
In Netica language, one enters findings (conditions) on the known or hypothesised variables and
then calculates beliefs (conditional probabilities) on certain variables of interest.

Netica, like most Bayesian network software, uses two different graphical representations, one for
model construction and one for inference. The acyclic directed graph is use for model construction
(previous section). The function CompileNetwork() builds the second graphical representation:
the junction tree. The function JunctionTreeReport() provides information about the compiled
representation.

While compiling can take a long time (depending on the size and connectivity of the network),
repeated compilations appear to be harmless. There is an UncompileNetwork() function, but per-
forming any editing operation (adding or removing nodes or edges) will automatically return the
network to an uncompiled state. Netica tries to preserve finding information. In particular the func-
tion AbsorbNodes() provides a mechanism for removing nodes from a network without changing
the joint probability (including influence of findings) of the remaining nodes. (The network must
be recompiled after a call to AbsorbNodes() though.)

The principle way to enter observed evidence is setting NodeFinding(node) <- value . The func-
tion NodeLikelihood() can be used to enter virtual evidence, however, some care must be taken
as it alters the meanings of several of the other functions.

The conditional (given the entered findings and likelihoods) probability distribution can be queried
at any time using the function NodeBeliefs(node). If the states of a node have been given numeric
values using NodeLevels(node), then NodeExpectedValue(node) will calculate the expected nu-
meric value (and the standard deviation). The function JointProbability(nodelist) calculates the
joint distribution over a collection of nodes, and the function FindingsProbability(net) calcu-
lates the prior probability of all the findings entered into the network. The function MostProbableConfig(nodelist)
finds the mode of the joint probability distribution (given the current findings and likelihood).

Note that in the default state, when findings are entered, the beliefs about all other nodes in the net-
work are then updated. This can be time consuming in large networks. The function SetNetworkAutoUpdate()
can be used to change this to a lazy updating mode, when the evidence from the findings are
only propagated when required for a call to NodeBeliefs() or a similar function. The function
WithoutAutoUpdate(net,expr) is useful for setting findings in a large number of nodes in net
without the overhead of belief updating.

Node Sets

The function NodeSets() allows the modeller to attach labels to the nodes in the network. For the
most part, Netica ignores these labels, except that it will colour nodes from various sets different
colours (NetworkNodeSetColor()). Aside from a few internal labels used by Netica, these node
sets are reserved for user programming.



RNetica-package 9

RNetica provides some functions that make node sets incredibly convenient ways to describe the
intended usage of the nodes. In particular, the function NetworkNodesInSet() returns a list of all
nodes which are tagged as being in a particular node set. For example, suppose that the modeller
has marked a number of nodes as being in the node set "ReportingVar". Then the following code
would generate a report about the network:

net.ReportingVars <- NetworkNodesInSet(net, "ReportingVar")
lapply(net.ReportingVars, NodeBeliefs)

Warning

The current status of RNetica is that of a beta release. The code base is stable enough to do useful
work, but more testing is still required. Users are advised to work in such a way that they can easily
recover from problems.

In particular, because RNetica calls C code, there is a possibility that it will crash R. There is also a
possibility that pointers embedded in NeticaBN and NeticaNode objects will become corrupted. If
such problems occur, it is best to restart R and reload the networks.

Please send information about both serious and not-so-serious problems to the maintainer.

Legal Stuff

Netica and Norsys are registered trademarks of Norsys, LLC, used by permission.

Although Norsys is generally supportive of the RNetica project, it does not officially support RNet-
ica, and all questions should be sent to the package maintainers.

Author(s)

Russell Almond
Maintainer: Russell Almond <almond@acm.org>

References

The general Netica manual can be found at: http://www.norsys.com/WebHelp/NETICA.htm

The Netica API documentation can be found at http://norsys.com/onLineAPIManual/index.
html.

Almond, R. G. & Mislevy, R. J. (1999) Graphical models and computerized adaptive testing. Ap-
plied Psychological Measurement, 23, 223–238.

Almond, R. G., Mislevy, R. J., Steinberg, L. S., Yan, D. & Williamson, D. M. (2015) Bayesian
Networks in Educational Assessment. Springer.

Examples

###########################################################
## Network Construction:
sess <- NeticaSession()
startSession(sess)

http://www.norsys.com/WebHelp/NETICA.htm
http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/index.html


10 RNetica-package

abc <- CreateNetwork("ABC", session=sess)
A <- NewDiscreteNode(abc,"A",c("A1","A2","A3","A4"))
B <- NewDiscreteNode(abc,"B",c("B1","B2","B3"))
C <- NewDiscreteNode(abc,"C",c("C1","C2"))

AddLink(A,B)
NodeParents(C) <- list(A,B)

NodeProbs(A)<-c(.1,.2,.3,.4)
NodeProbs(B) <- normalize(matrix(1:12,4,3))
NodeProbs(C) <- normalize(array(1:24,c(4,3,2)))
abcFile <- tempfile("peanut",fileext=".dne")
WriteNetworks(abc,abcFile)

DeleteNetwork(abc)

###################################################################
## Inference using the EM-SM algorithm (Almond & Mislevy, 1999).
## System/Student model
EMSMSystem <- ReadNetworks(file.path(library(help="RNetica")$path,

"sampleNets","System.dne"), session=sess)

## Evidence model for Task 1a
EMTask1a <- ReadNetworks(file.path(library(help="RNetica")$path,

"sampleNets","EMTask1a.dne"), session=sess)

## Evidence model for Task 2a
EMTask2a <- ReadNetworks(file.path(library(help="RNetica")$path,

"sampleNets","EMTask2a.dne"), session=sess)

## Task 1a has a footprint of Skill1 and Skill2 (those are the
## referenced student model nodes. So we want joint the footprint into
## a single clique.
MakeCliqueNode(NetworkFindNode(EMSMSystem, NetworkFootprint(EMTask1a)))
## The footprint for Task2 a is already a clique, so no need to do
## anything.

## Make a copy for student 1
student1 <- CopyNetworks(EMSMSystem,"student1")
## Monitor nodes for proficiency
student1.prof <- NetworkNodesInSet(student1,"Proficiency")

student1.t1a <- AdjoinNetwork(student1,EMTask1a)
## We are done with the original EMTask1a now
DeleteNetwork(EMTask1a)

## Now add findings
CompileNetwork(student1)
NodeFinding(student1.t1a$Obs1a1) <- "Right"
NodeFinding(student1.t1a$Obs1a2) <- "Right"

student1.probt1a <- JointProbability(student1.prof)



AbsorbNodes 11

## Done with the observables, absorb them
AbsorbNodes(student1.t1a)
CompileNetwork(student1)
student1.probt1ax <- JointProbability(student1.prof)

## Now Task 2
student1.t2a <- AdjoinNetwork(student1,EMTask2a,"t2a")
DeleteNetwork(EMTask2a)

## Add findings
CompileNetwork(student1)
NodeFinding(student1.t2a$Obs2a) <- "Half"

AbsorbNodes(student1.t2a)
CompileNetwork(student1)
student1.probt1a2ax <- JointProbability(student1.prof)

DeleteNetwork(list(student1, EMSMSystem))
stopSession(sess)

AbsorbNodes Delete a Netica nodes in a way that maintains the connectivity.

Description

This function deletes NeticaNode connecting the parents of the deleted node to its children. If
multiple nodes are passed as the argument, then all of the nodes are absorbed. The joint probability
distribution over the remaining nodes should be the same as the marginal probability distribution
over the remaining nodes before the nodes were deleted.

Usage

AbsorbNodes(nodes)

Arguments

nodes A NeticaNode or list of NeticaNodes to be deleted.

Details

This function provides a way of removing a node without affecting the connectivity, or the joint
probability of the remaining nodes. In particular, all of the relationship tested by is.NodeRelated()
among the remaining nodes should remain true (or false) when we are done.

Value

Returns NULL.



12 AbsorbNodes

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: AbsorbNodes_bn()

See Also

NeticaNode, AddLink(), NodeChildren(), NodeParents(), ReverseLink(), is.NodeRelated()

Examples

sess <- NeticaSession()
startSession(sess)
anet <- CreateNetwork("Absorbent",sess)

xnodes <- NewDiscreteNode(anet,paste("X",1:5,sep="_"))
AddLink(xnodes[[1]],xnodes[[2]])
AddLink(xnodes[[2]],xnodes[[3]])
AddLink(xnodes[[3]],xnodes[[4]])
AddLink(xnodes[[3]],xnodes[[5]])

stopifnot(
all(match(xnodes[4:5],NodeChildren(xnodes[[3]]),nomatch=0)>0),
is.NodeRelated(xnodes[[2]],xnodes[[3]],"parent"),
is.NodeRelated(xnodes[[2]],xnodes[[1]],"child")

)

## These are leaf nodes, shouldn't change topology, except locally.
AbsorbNodes(xnodes[4:5])
stopifnot(

## Nodes 4 and 5 are now deleted
all(!is.active(xnodes[4:5])),
all(anet$listNodes() == c("X_1","X_2","X_3")),
length(NodeChildren(xnodes[[3]]))==0,
is.NodeRelated(xnodes[[2]],xnodes[[3]],"parent"),
is.NodeRelated(xnodes[[2]],xnodes[[1]],"child")

)

## This should connect X1->X3
AbsorbNodes(xnodes[[2]])
stopifnot(

## Node 2 is now deleted
!is.active(xnodes[[2]]),
length(NodeChildren(xnodes[[3]]))==0,
is.NodeRelated(xnodes[[1]],xnodes[[3]],"parent"),
is.NodeRelated(xnodes[[3]],xnodes[[1]],"child")

)

DeleteNetwork(anet)
stopSession(sess)

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/AbsorbNodes_bn.html


AddLink 13

AddLink Adds or removes a link between two nodes in a Netica network.

Description

Add link adds an edge from Parent to Child. Delete Link removes that edge. This states that the
distribution of child will be specified conditional on the value of parent. Consequently, adding or
removing edges with affect the conditional probability tables associated with the Child node (see
NodeProbs().)

Usage

AddLink(parent, child)
DeleteLink(parent, child)

Arguments

parent A NeticaNode representing an independent variable to be added to the condi-
tioning side of the relationship. The nodes parent and child must both be in
the same network.

child A NeticaNode representing dependent variable to be added to the conditioning
side of the relationship.

Details

After adding a link parent --> child, it may be the case that parent is in NodeParents(child)
and child is a member of NodeChildren(parent). If child already has other parents, then the
new parent will be added to the end of the list. The order of the parents can be set by setting
NodeParents(child).

In general, the Bayesian network must always be an acyclic directed graph. Therefore, if parent
is a descendant of child (that is if is.NodeRelated(child), "descendant", child is TRUE), then
Netica will generate an error.

The function DeleteLink() removes the relationship, and the parent and child nodes should no
longer be in each other parent and child lists. The parent list of the child node is shortened (a stub
node for later reconnection is not created as when NodeParents(child)[i] <- list(NULL)).

Value

The function AddLinK invisibly returns the index of the new parent in the parent list.

The function DeleteLink invisibly returns the child node.

Note

The Netica API specifies the first argument to DeleteLink_bn() as an index into the parent list.
RNetica maps from the node to the index.



14 AdjoinNetwork

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: AddLink_bn(), DeleteLink_bn()

See Also

NeticaNode, NodeParents(), NodeChildren(), is.NodeRelated()

Examples

sess <- NeticaSession()
startSession(sess)

abnet <- CreateNetwork("AABB", session=sess)
A <- NewDiscreteNode(abnet, "A")
B <- NewDiscreteNode(abnet, "B")

AddLink(A,B)

stopifnot(
is.element(list(A),NodeParents(B)),
is.element(list(B),NodeChildren(A))

)

DeleteLink(A,B)

stopifnot(
!is.element(list(A),NodeParents(B)),
!is.element(list(B),NodeChildren(A))

)

DeleteNetwork(abnet)
stopSession(sess)

AdjoinNetwork Links an evidence model network to a system model network.

Description

This function assumes that the two arguments are networks that were designed to be connected to
one another. It copies the nodes from em into sm and then tries to resolve any stub links in the copied
nodes by connecting them to nodes in sm.

Usage

AdjoinNetwork(sm, em, setname = character())

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/AddLink_bn.html
http://norsys.com/onLineAPIManual/functions/DeleteLink_bn.html


AdjoinNetwork 15

Arguments

sm An active NeticaBN which contains the system state variables.

em An active NeticaBN which contains variables that provide evidence about the
system state.

setname An optional character vector containing names of node sets (see NodeSets()).
If supplied, all of the newly created nodes are added to the node sets. Note that
all node set names must conform to the IDname rules.

Details

This follows the System Model–Evidence Model (or Hub-and-spoke) protocol laid out in Almond
et al (1999) and Almond and Mislevy (1999). The idea is that the network sm is a complete network
that encodes beliefs about the current status of a system. In particular, it often encodes the state of
knowledge about a student and is then called a student model.

The second network em is an incomplete network: a fragment of a network, some of whose nodes
could be stub nodes referring to nodes in the sm (see NodeInputNames() and NodeKind()). The
idea is that the evidence model provides a set of observable values associated with some diagnostic
procedure, in particular, a task on an assessment.

The function AdjoinNetwork(sm,em) copies all of the nodes from em to sm, modifying sm in the
process (copy it first using CopyNetworks(sm) if this is not the intention). It then the parents of
each node, emnode, in em looking for stub nodes (cases where NodeParents(emnode)[j] has been
set to NULL for some parent. AdjoinNetworks(sm,em) then tries to find a matching parent by
searching for a system model node, smnode named NodeInputNames(emnode)[j]. If it finds one,
it sets NodeParents(emnode)[j] <- smnode; if not, it issues a warning.

The function AdjoinNetwork(sm,em) also copies node set information from the nodes in em to
their copies in sm. The value of setname is concatenated with the current node sets of the nodes in
em. This provides a handy way of identifying the evidence model from which the nodes came.

After findings are entered on the nodes in the evidence model, the can be eliminated using AbsorbNodes().

Value

A list containing the newly copied nodes (the instances of the em nodes now in sm).

Author(s)

Russell Almond

References

Almond, R. G. & Mislevy, R. J. (1999) Graphical models and computerized adaptive testing. Ap-
plied Psychological Measurement, 23, 223–238.

Almond, R., Herskovits, E., Mislevy, R. J., & Steinberg, L. S. (1999). Transfer of information
between system and evidence models. In Artificial Intelligence and Statistics 99, Proceedings (pp.
181–186). Morgan-Kaufman



16 AdjoinNetwork

See Also

NeticaNode, AbsorbNodes(), JointProbability(), NodeSets(), CopyNodes(),NetworkFootprint()

Examples

sess <- NeticaSession()
startSession(sess)

## System/Student model
EMSMSystem <- ReadNetworks(file.path(library(help="RNetica")$path,

"sampleNets","System.dne"), session=sess)

## Evidence model for Task 1a
EMTask1a <- ReadNetworks(file.path(library(help="RNetica")$path,

"sampleNets","EMTask1a.dne"), session=sess)

## Evidence model for Task 2a
EMTask2a <- ReadNetworks(file.path(library(help="RNetica")$path,

"sampleNets","EMTask2a.dne"), session=sess)

## Evidence model for Task 2b
EMTask2b <- ReadNetworks(file.path(library(help="RNetica")$path,

"sampleNets","EMTask2b.dne"), session=sess)

## Task 1a has a footprint of Skill1 and Skill2 (those are the
## referenced student model nodes. So we want joint the footprint into
## a single clique.
MakeCliqueNode(NetworkFindNode(EMSMSystem, NetworkFootprint(EMTask1a)))
## The footprint for Task2 a is already a clique, so no need to do
## anything.

## Make a copy for student 1
student1 <- CopyNetworks(EMSMSystem,"student1")
## Monitor nodes for proficiency
student1.prof <- NetworkNodesInSet(student1,"Proficiency")

student1.t1a <- AdjoinNetwork(student1,EMTask1a)
stopifnot(setequal(student1$listNodes(),
c("CliqueNode1", "Obs1a1", "Obs1a2", "Skill1", "Skill2", "Skill3")))

## We are done with the original EMTask1a now
DeleteNetwork(EMTask1a)

## Now add findings
CompileNetwork(student1)
NodeFinding(student1.t1a$Obs1a1) <- "Right"
NodeFinding(student1.t1a$Obs1a2) <- "Right"

student1.probt1a <- JointProbability(student1.prof)
## Done with the observables, absorb them
AbsorbNodes(student1.t1a)



CalcNodeState 17

stopifnot(setequal(student1$listNodes(),
c("CliqueNode1", "Skill1", "Skill2", "Skill3")))

CompileNetwork(student1)
student1.probt1ax <- JointProbability(student1.prof)

## This should be the same
stopifnot(

sum(abs(student1.probt1a-student1.probt1ax)) <.0001
)

## Now Task 2
student1.t2a <- AdjoinNetwork(student1,EMTask2a,as.IDname("t2a"))
stopifnot(

setequal(names(student1.t2a),names(NetworkNodesInSet(student1,"t2a")))
)
stopifnot(setequal(student1$listNodes(),
c("CliqueNode1", "Obs2a", "Skill1", "Skill2", "Skill3")))

DeleteNetwork(EMTask2a)

## Add findings
CompileNetwork(student1)
NodeFinding(student1.t2a$Obs2a) <- "Half"

student1.probt1a2a <- JointProbability(student1.prof)

AbsorbNodes(student1.t2a)
stopifnot(setequal(student1$listNodes(),
c("CliqueNode1", "Skill1", "Skill2", "Skill3")))

CompileNetwork(student1)
student1.probt1a2ax <- JointProbability(student1.prof)

## This should be the same
stopifnot(

sum(abs(student1.probt1a2a-student1.probt1a2ax)) <.0001
)

## Adjoining networks twice should result in copies with incremented
## numbers.
AdjoinNetwork(student1,EMTask2b)
AdjoinNetwork(student1,EMTask2b)
stopifnot(setequal(student1$listNodes(),
c("CliqueNode1", "Obs2b", "Obs2b1", "Skill1", "Skill2", "Skill3")))

DeleteNetwork(student1)
DeleteNetwork(EMTask2b)
DeleteNetwork(EMSMSystem)
stopSession(sess)

CalcNodeState Calculates the state of a node based on logical functions or formulae



18 CalcNodeState

Description

The expression CalcNodeState(node) will return the state of node if it is known deterministically,
and NA if the exact value is not known. The expression CalcNodeValue(node) will return the
numeric value of the node (e.g., the value set with NodeLevels(node).

Usage

CalcNodeState(node)
CalcNodeValue(node)

Arguments

node An active NeticaNode object that references the node.

Details

According to the Netica manual, the way that the value of node could be known absolutely is
if it was set directly a call to NodeFinding(node) or NodeValue(node), or if the value can be
calculated exactly through logical conditional probability tables (i.e., ones with just 0’s and 1’s) or
formula (see NodeEquation().

The expression CalcNodeState(node) is appropriate when node is discrete, or has been discretized
through a call to NodeLevels(node). Otherwise it will generate an error.

The expression CalcNodeValue(node) is appropriate when node is continuous, or the states have
been assigned numeric values through a call to NodeLevels(node). Otherwise it will generate an
error.

Value

The expression CalcNodeState(node) will return a character scalar giving the name of the current
state of node if it can be determined, otherwise it will return NA.

The expression CalcNodeValue(node) will return a numeric scalar giving the name of the current
value of node if it can be determined, otherwise it will return NA.

Warning

This function is not behaving at all like what I expected. In particular, it is returning NA in many
cases where I expect it to produce a value. I’ve queried Norsys about this, but use with caution until
I get a clarification.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: CalcNodeState_bn(), CalcNodeValue_bn()

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/CalcNodeState_bn.html
http://norsys.com/onLineAPIManual/functions/CalcNodeValue_bn.html


CalcNodeState 19

See Also

NodeFinding(), NodeLevels(), NodeValue(), IsNodeDeterministic(), NodeEquation(),is.continuous(),
NodeExpectedValue()

Examples

sess <- NeticaSession()
startSession(sess)

lights <- CreateNetwork("lights", session=sess)
switchs <- NewDiscreteNode(lights,paste("Switch",1:2,sep=""),c("Up","Down"))
bulb <- NewDiscreteNode(lights,"Bulb",c("On","Off"))

## Set up a two-way switch (Xor) network
AddLink(switchs[[1]],bulb)
AddLink(switchs[[2]],bulb)
## This sets up a logical table, so that the light is on iff
## both switches are in the same orientation.
bulb[] <-"Off"
bulb[Switch1="Up",Switch2="Up"]<-"On"
bulb[Switch1="Down",Switch2="Down"]<-"On"
switchs[[1]][] <- .5
switchs[[2]][] <- .5

CompileNetwork(lights)

## Bulb is a deterministic node.
stopifnot(IsNodeDeterministic(bulb))

## value of node is unknown, returns NA
stopifnot(is.na(CalcNodeState(bulb)))

NodeFinding(switchs[[1]]) <- "Up"
NodeFinding(switchs[[2]]) <- "Up"

stopifnot(CalcNodeState(switchs[[1]])=="Up")

stopifnot(CalcNodeState(bulb)=="On")

NodeLevels(bulb) <-c(1,0)
NodeLevels(switchs[[1]]) <-c(1,0)
NodeLevels(switchs[[2]]) <-c(1,0)

## I expect both of these to return 1, but they return NA
CalcNodeValue(bulb)
CalcNodeValue(switchs[[1]])

DeleteNetwork(lights)

stopSession(sess)



20 CaseFileDelimiter

CaseFileDelimiter Gets or sets special characters for case files.

Description

The function CaseFileDelimiter sets the field delimiter used when writing case files. The function
CaseFileMissingCode sets the character code used for missing values in case files. If called with
a null argument, then the current value is returned.

Usage

CaseFileDelimiter(newdelimiter = NULL, session=getDefaultSession())
CaseFileMissingCode(newcode = NULL, session=getDefaultSession())

Arguments

newdelimiter A character scalar containing the new delimiter. It must be either a comma, a
space, or a tab.

session An object of type NeticaSession which defines the reference to the Netica
workspace.

newcode The character to be used as a delimiter. It must be either an asterisk ("*"), a
question mark ("?"), a space, (" ") or the empty string ("").

Details

Case files are essentially a comma separated value files, although tab and space are allowed as
alternative delimiters. The space and empty string are only allowed as missing value codes when
the delimiter is a comma.

The value of the delimiter is global, and applies to all case files written from this point on.

When the argument is null (the default) the current value is returned without changing it.

Value

The value of the delimiter or missing code before the function call as a string.

Note

The default R missing code "NA" does not work with Netica.

Author(s)

Russell G. Almond



CaseFileDelimiter 21

References

http://norsys.com/onLineAPIManual/index.html: SetCaseFileDelimChar_ns(), SetMissing-
DataChar_ns()

See Also

WriteFindings, WriteFindings, read.CaseFile, CaseStream

Examples

sess <- NeticaSession()
startSession(sess)

defaultDelim <- CaseFileDelimiter(session=sess) # Get default
d1 <- CaseFileDelimiter("\t", session=sess)
d2 <- CaseFileDelimiter(" ", session=sess)
d3 <- CaseFileDelimiter(",", session=sess)

defaultMiss <- CaseFileMissingCode(session=sess) # Get default
m1 <- CaseFileMissingCode("*", session=sess)
m2 <- CaseFileMissingCode("?", session=sess)
m3 <- CaseFileMissingCode(" ", session=sess)
m4 <- CaseFileMissingCode("", session=sess)
## Not run:
## This should throw an error.
CaseFileDelimiter(" ", session=sess)

## End(Not run)

m5 <- CaseFileMissingCode("?", session=sess)

d4<- CaseFileDelimiter(" ", session=sess)
## Not run:

## This should throw an error
CaseFileMissingCode(" ", session=sess)

## End(Not run)
## But this is okay
CaseFileMissingCode("*", session=sess)

stopifnot(d1==defaultDelim, d2=="\t", d3==" ", d4==",")
stopifnot(m1==defaultMiss, m2=="*", m3=="?", m4==" ", m5=="")

## restore defaults
CaseFileDelimiter(defaultDelim, session=sess)
CaseFileMissingCode(defaultMiss, session=sess)

stopSession(sess)

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/SetCaseFileDelimChar_ns.html
http://norsys.com/onLineAPIManual/functions/SetMissingDataChar_ns.html
http://norsys.com/onLineAPIManual/functions/SetMissingDataChar_ns.html


22 CaseFileStream

CaseFileStream A stream of cases for reading/writing Netica findings to a file

Description

This is the constructor for FileCaseStream objects which provide a wrapper around a Netica
stream which is used to read/write cases. In this subclass, the case stream is associated with a
Netica case file (‘.cas’ extension). The function ReadFindings reads the findings from the stream
and the function WriteFindings writes them out.

Usage

CaseFileStream(pathname, session=getDefaultSession())
is.CaseFileStream(x)
getCaseStreamPath(stream)

Arguments

pathname A character scalar giving a path to the case file. Netica expects case files to end
with the extension ".cas"

session An object of type NeticaSession which defines the reference to the Netica
workspace.

stream A CaseFileStream object.

x A object to be printed or whose type is to be determined.

Details

A FileCaseStream object is a subclass of the CaseStream object, which is an R wrapper around
a Netica stream object, in this case one that reads or writes to a case file. Case files are tab (or
comma, see CaseFileDelimiter) separated value files where columns represent variables and rows
represent cases. Although the function WriteFindings always appends a new case to the end
of a file (and hence does not need to keep the stream object open between calls), the function
ReadFindings will read (by default) sequentially from the cases in the stream, and hence the stream
needs to be kept open between calls.

The function CaseFileStream will open a stream in Netica and create a new FileCaseStream if
necessary. The argument pathname should be the pathname of the case file in the file system. This
file should be a file previously written by WriteFindings or be in the same format. The delimiter
used should be the one given by CaseFileDelimiter, and the code used for missing values should
be the value of CaseFileMissingCode.

The function CloseCaseStream closes an open case stream (and is harmless if the stream is al-
ready closed). Although RNetica tries to close open case streams when they are garbage collected,
users should not count on this behavior and should close them manually. Also be aware that all
case streams are automatically closed when R is closed or RNetica is unloaded. The function
isCaseStreamOpen tests to see if the stream is open or closed, and the function OpenCaseStream
reopens a previously closed case stream.

The functions getCaseStreamPath returns the path on which the FileCaseStream is focused.



CaseFileStream 23

Value

The function CaseFileStream returns a new, open FileCaseStream object.

The functions is.CaseFileStream returns a logical value indicating whether or not the argument
is a CaseFileStream.

The function getCaseStreamPath returns a string giving the path of the file associated with stream,
or NULL if the argument is not a CaseFileStream.

Note

Internally, a weak reference system is used to keep a list of Netica stream objects which need to
be closed when RNetica is unloaded. Stream objects should also be forced closed when garbage
collected. The weak reference system is somewhat experimental, so well designed code should
manually close the streams when the program is through with it.

Stream objects are fragile, and will not survive saving and restoring an R session. However, the
object retains information about itself, so that calling OpenCaseStream on the saved object, should
reopen the stream. Note that any position information will be lost.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: NewFileStream_ns(), http://homepage.
stat.uiowa.edu/~luke/R/references/weakfinex.html

See Also

See FileCaseStream for properties of file case stream objects and CaseStream for general proper-
ties of Netica streams.

CaseFileDelimiter, CaseFileMissingCode, CaseMemoryStream, WriteFindings, ReadFindings,

Examples

sess <- NeticaSession()
startSession(sess)

abc <- CreateNetwork("ABC", sess)
A <- NewDiscreteNode(abc,"A",c("A1","A2","A3","A4"))
B <- NewDiscreteNode(abc,"B",c("B1","B2","B3"))
C <- NewDiscreteNode(abc,"C",c("C1","C2"))

AddLink(A,B)
AddLink(A,C)
AddLink(B,C)

## Outputfilename
casefile <- tempfile("testcase",fileext=".cas")

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/NewFileStream_ns.html
http://homepage.stat.uiowa.edu/~luke/R/references/weakfinex.html
http://homepage.stat.uiowa.edu/~luke/R/references/weakfinex.html


24 CaseMemorytream

filestream <- CaseFileStream(casefile, session=sess)
stopifnot(is.CaseFileStream(filestream),

isCaseStreamOpen(filestream))

## Case 1
NodeFinding(A) <- "A1"
NodeFinding(B) <- "B1"
NodeFinding(C) <- "C1"
filestream <- WriteFindings(list(A,B,C),filestream,1001,1.0)
stopifnot(getCaseStreamLastId(filestream)==1001,

abs(getCaseStreamLastFreq(filestream)-1.0) <.0001)

## Close it
filestream <- CloseCaseStream(filestream)
stopifnot (is.CaseFileStream(filestream),

!isCaseStreamOpen(filestream))

## Reopen it
filestream <- OpenCaseStream(filestream)
stopifnot (is.CaseFileStream(filestream),

isCaseStreamOpen(filestream))

##Case 1
RetractNetFindings(abc)
filestream <- ReadFindings(list(A,B,C),filestream,"FIRST")
stopifnot(getCaseStreamLastId(filestream)==1001,

abs(getCaseStreamLastFreq(filestream)-1.0) <.0001)

##Clean Up
CloseCaseStream(filestream)
DeleteNetwork(abc)
stopSession(sess)

CaseMemorytream A stream of cases for reading/writing Netica from memory

Description

This object is subclass of CaseStream so it is a wrapper around a Netica stream which is used to
read/write cases. In this subclass, the case stream is associated with a memory buffer that corre-
sponds to an R data.frame object. The function MemoryStreamContents accesses the contents as
a data frame.

Usage

CaseMemoryStream(data.frame, label=deparse(substitute(data.frame)), session=getDefaultSession())
is.MemoryCaseStream(x)
getCaseStreamDataFrameName(stream)



CaseMemorytream 25

Arguments

data.frame A data frame in which columns correspond to Netica nodes, and rows corre-
spond to cases. See details.

label A name for the stream object.

session An object of type NeticaSession which defines the reference to the Netica
workspace.

stream A CaseStream object.

x A object whose type is to be determined.

Details

A Netica case file has a format that very much resembles the output of write.table. The first row
is a header row, which contains the names of the variables, the second and subsequent rows contain
a set of findings: an assignment of values to the nodes indicated in the columns. There are no row
numbers, and the separator and missing value codes are the values of CaseFileDelimiter(), and
CaseFileMissingCode() respectively.

In addition to columns representing variables, two special columns are allowed. The column named
“IDnum”, if present should contain integers which correspond to ID numbers for the cases (this
correspond to the id argument of WriteFindings). The column named “NumCases” should con-
tain number values and this allows rows to be differentially weighted (this correspond to the freq
argument of WriteFindings).

A simple way to convert a data frame into a set of cases for use with various Netica functions
that use cases would be to write the data frame to a file of the proper format, and then create a
CaseFileStream on the just written file. The MemoryCaseStream shortcuts that process by writing
the data frame to a memory buffer and then creating a stream around the memory buffer. Like
the CaseFileStream, the MemoryCaseStream is a subclass of CaseStream and follows the same
conventions.

The function MemoryCaseStream opens a new memory stream using data.frame as the source. If
data.frame is NULL a new memory stream for writing is created. The function CloseCaseStream
closes an open case stream (and is harmless if the stream is already closed. Although RNetica tries
to close open case streams when they are garbage collected, users should not count on this behavior
and should close them manually. Also be aware that all case streams are automatically closed when
R is closes or RNetica is unloaded. The function isCaseStreamOpen tests to see if the stream is
open or closed. The function OpenCaseStream if called on a closed MemoryCaseStream will reopen
the stream in Netica using the current value of MemoryStreamContents as the source. (If called on
an open stream it will do nothing but issue a warning).

The function getCaseStreamDataFrameName provides the value of label when the stream was
created.

Value

The function OpenMemoryCaseStream returns a new, open CaseFileStream object.

The functions is.MemoryCaseStream returns a logical value indicating whether or not the argument
is a CaseFileStream.

The function getCaseStreamDataFrameName returns the value of label used when the stream was
created, usually this is the name of the data.frame argument.



26 CaseMemorytream

Netica Bugs

In version 5.04 of the Netica API, there is a problem with using Memory Streams that seems to
affect the functions LearnCases and LearnCPTs. Until this problem is fixed, most uses of Memory
Streams will require file streams instead. Write the case file using write.CaseFile, and then create
a file stream using CaseFileStream.

Note

In version 0.5 of RNetica, this class was renamed. It is now called MemoryCaseStream and the
constructor is called CaseMemoryStream (while previously the class and the filename had the same
name). This matches the usage of FileCaseStream and its constructor CaseFileStream.

MemoryCaseStreams are most useful for small to medium size data frames. Larger data frames are
probably better handled through case files.

Internally, a weak reference system is used to keep a list of Netica stream objects which need to
be closed when RNetica is unloaded. Stream objects should also be forced closed when garbage
collected. The weak reference system is somewhat experimental, so well designed code should
manually close the streams when the program is through with it.

Stream objects are fragile, and will not survive saving and restoring an R session. However, the
object retains information about itself, so that calling OpenCaseStream on the saved object, should
reopen the stream. Note that any position information will be lost.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: NewMemoryStream_ns(), http://homepage.
stat.uiowa.edu/~luke/R/references/weakfinex.html

See Also

CaseFileDelimiter, CaseFileMissingCode, WriteFindings, ReadFindings, MemoryStreamContents,CaseStream

Examples

sess <- NeticaSession()
startSession(sess)

abc <- CreateNetwork("ABC", session=sess)
A <- NewDiscreteNode(abc,"A",c("A1","A2","A3","A4"))
B <- NewDiscreteNode(abc,"B",c("B1","B2","B3"))
C <- NewDiscreteNode(abc,"C",c("C1","C2"))

AddLink(A,B)
AddLink(A,C)
AddLink(B,C)

## This is the file written in CaseFileStream help.

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/NewMemoryStream_ns.html
http://homepage.stat.uiowa.edu/~luke/R/references/weakfinex.html
http://homepage.stat.uiowa.edu/~luke/R/references/weakfinex.html


CaseStream-class 27

casefile <- file.path(library(help="RNetica")$path,
"testData","abctestcases.cas")

CaseFileDelimiter("\t", session=sess)
CaseFileMissingCode("*", session=sess)
cases <- read.CaseFile(casefile, session=sess)

memstream <- CaseMemoryStream(cases, session=sess)

##Case 1
memstream <- ReadFindings(list(A,B,C),memstream,"FIRST")
stopifnot(NodeFinding(A) == "A1",

NodeFinding(B) == "B1",
NodeFinding(C) == "C1",
getCaseStreamLastId(memstream)==1001,
abs(getCaseStreamLastFreq(memstream)-1.0) <.0001)

##Case 2
memstream <- ReadFindings(list(A,B,C),memstream,"NEXT")
stopifnot(NodeFinding(A) == "A2",

NodeFinding(B) == "B2",
NodeFinding(C) == "C2",
getCaseStreamLastId(memstream)==1002,
abs(getCaseStreamLastFreq(memstream)-2.0) <.0001)

##Case 3
memstream <- ReadFindings(list(A,B,C),memstream,"NEXT")
stopifnot(NodeFinding(A) == "A3",

NodeFinding(B) == "B3",
NodeFinding(C) == "@NO FINDING",
getCaseStreamLastId(memstream)==1003,
abs(getCaseStreamLastFreq(memstream)-1.0) <.0001)

## EOF
memstream <- ReadFindings(list(A,B,C),memstream,"NEXT")
stopifnot (is.na(getCaseStreamPos(memstream)))

##Clean Up
CloseCaseStream(memstream)
DeleteNetwork(abc)
stopSession(sess)

CaseStream-class Class "CaseStream"

Description

This object is a wrapper around a Netica stream which is used to read/write cases—sets of findings
entered into a Netica network. There are two subclasses: FileCaseStream and MemoryCaseStream.



28 CaseStream-class

The function ReadFindings reads the findings from the stream and the function WriteFindings
writes them out.

Details

A CaseStream object is an R wrapper around a Netica stream object. There are two subclasses:
FileCaseStream objects are streams focused on a case file, and MemoryCaseStream objects are
streams focused on a hunk of memory corresponding to an R data frame object.

Although the function WriteFindings always appends a new case to the end of a file (and hence
does not need to keep the stream object open between calls), the function ReadFindings will read
(by default) sequentially from the cases in the stream, and hence the stream needs to be kept open
between calls.

The functions CaseFileStream and CaseMemoryStream create new streams and open them. The
function OpenCaseStream will reopen a previously closed stream, and will issue a warning if the
stream is already open. The function CloseCaseStream closes an open case stream (and is harm-
less if the stream is already closed). Although RNetica tries to close open case streams when they
are garbage collected, users should not count on this behavior and should close them manually.
Also be aware that all case streams are automatically closed when R is closes or RNetica is un-
loaded. The function isCaseStreamOpen tests to see if the stream is open or closed. The function
WithOpenCaseStream executes an arbitrary R expression in a context where the stream is open, and
then closed afterwards.

Netica internally keeps track of the current position of the stream when it is read or written.
The functions getCaseStreamPos, getCaseStreamLastId and getCaseStreamLastFreq get in-
formation about the position in the file, the user generated id number and the frequency/weight
assigned to the case at the time the stream was last read or written. In particular, the function
ReadFindings returns a CaseStream object, which should be queried to find the ID and Fre-
quencies read from the stream. When ReadFindings reaches the end of the stream, the value
of getCaseStreamPos(stream) will be NA.

Extends

All reference classes extend and inherit methods from "envRefClass". Note that because this is
a reference class unlike traditional S3 and S4 classes it can be destructively modified. Also fields
(slots) are accessed using the ‘$’ operator.

Fields

Note these should be regarded as read-only from user code.

Name: Object of class character an identifier for the case stream, derived from the filename for
FileCaseStream objects, and from the name of the R object for MemoryCaseStream

Session: Object of class NeticaSession:: a back pointer to the NeticaSession object in which
the stream was created.

Netica_Case_Stream: Object of class externalptr a link to the stream in internal Netica mem-
ory.

Case_Stream_Position: Object of class integer the number of the last read/writen record. This
is NA if the end of the file has been reached.



CaseStream-class 29

Case_Stream_Lastid: Object of class integer the ID number of the last read/written record.

Case_Stream_Lastfreq: Object of class numeric giving the frequence of the last read/written
record. This is used as a weight in learning applications.

Methods

show(): Provides a printed record.

close(): Closes the stream. Equivalent to CloseCaseStream(stream).

isOpen(): Checks to see if the stream is currently open. Equivalent to isCaseStreamOpen(stream).

isActive(): Equivalent to isOpen(), name is symmetric with other Netica reference objects.

clearErrors(severity): Calls clearErrors on the Session object.

reportErrors(maxreport, clear): Calls reportErrors on the Session object.

initialize(Name, Session, ...): Internal initializer. User code should not call.

Note

The functions ReadNetworks and WriteNetworks also use Netica streams internally. However, as
it is almost certainly a mistake to keep the stream open after the network has been read or written,
no NeticaCaseStream object is created.

Internally, a weak reference system is used to keep a list of Netica stream objects which need to
be closed when RNetica is unloaded. Stream objects should also be forced closed when garbage
collected. The weak reference system is somewhat experimental, so well designed code should
manually close the streams when the program is through with them.

Stream objects are fragile, and will not survive saving and restoring an R session. However, the
object retains information about itself, so that calling OpenCaseStream on the saved object, should
reopen the stream. Note that any position information will be lost.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: NewFileStream_ns(),NewMemoryStream_ns(),
DeleteStream_ns() http://homepage.stat.uiowa.edu/~luke/R/references/weakfinex.html

See Also

See FileCaseStream and MemoryCaseStream for specific details about the two subtypes. CaseMemoryStream
and CaseFileStream are the two constructors.

OpenCaseStream, CaseFileDelimiter, CaseFileMissingCode, WriteFindings, ReadFindings,
WithOpenCaseStream

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/NewFileStream_ns.html
http://norsys.com/onLineAPIManual/functions/NewMemoryStream_ns.html
http://norsys.com/onLineAPIManual/functions/DeleteStream_ns.html
http://homepage.stat.uiowa.edu/~luke/R/references/weakfinex.html


30 CaseStream-class

Examples

sess <- NeticaSession()
startSession(sess)

abc <- CreateNetwork("ABC",sess)
A <- NewDiscreteNode(abc,"A",c("A1","A2","A3","A4"))
B <- NewDiscreteNode(abc,"B",c("B1","B2","B3"))
C <- NewDiscreteNode(abc,"C",c("C1","C2"))

AddLink(A,B)
AddLink(A,C)
AddLink(B,C)

## Outputfilename
casefile <- tempfile("testcase",fileext=".cas")

filestream <- CaseFileStream(casefile,sess)
stopifnot(is.NeticaCaseStream(filestream),

isCaseStreamOpen(filestream))

## Case 1
NodeFinding(A) <- "A1"
NodeFinding(B) <- "B1"
NodeFinding(C) <- "C1"
filestream <- WriteFindings(list(A,B,C),filestream,1001,1.0)
stopifnot(getCaseStreamLastId(filestream)==1001,

abs(getCaseStreamLastFreq(filestream)-1.0) <.0001)
pos1 <- getCaseStreamPos(filestream)
RetractNetFindings(abc)

## Case 2
NodeFinding(A) <- "A2"
NodeFinding(B) <- "B2"
NodeFinding(C) <- "C2"
## Double weight this case
filestream <- WriteFindings(list(A,B,C),filestream,1002,2.0)
pos2 <- getCaseStreamPos(filestream)
stopifnot(pos2>pos1,getCaseStreamLastId(filestream)==1002,

abs(getCaseStreamLastFreq(filestream)-2.0) <.0001)
RetractNetFindings(abc)

## Case 3
NodeFinding(A) <- "A3"
NodeFinding(B) <- "B3"
## C will be missing
filestream <- WriteFindings(list(A,B,C),filestream,1003,1.0)
stopifnot(getCaseStreamLastId(filestream)==1003,

abs(getCaseStreamLastFreq(filestream)-1.0) <.0001)
RetractNetFindings(abc)

## Close it



cc 31

filestream <- CloseCaseStream(filestream)
stopifnot (is.NeticaCaseStream(filestream),

!isCaseStreamOpen(filestream))

## Reopen it
filestream <- OpenCaseStream(filestream)
stopifnot (is.NeticaCaseStream(filestream),

isCaseStreamOpen(filestream))

##Case 1
RetractNetFindings(abc)
filestream <- ReadFindings(list(A,B,C),filestream,"FIRST")
pos1a <- getCaseStreamPos(filestream)
stopifnot(pos1a==pos1,

getCaseStreamLastId(filestream)==1001,
abs(getCaseStreamLastFreq(filestream)-1.0) <.0001)

##Case 2
RetractNetFindings(abc)
filestream <- ReadFindings(list(A,B,C),filestream,"NEXT")
stopifnot(getCaseStreamPos(filestream)==pos2,

getCaseStreamLastId(filestream)==1002,
abs(getCaseStreamLastFreq(filestream)-2.0) <.0001)

##Clean Up
CloseCaseStream(filestream)
CloseCaseStream(filestream) ## This should issue a warning but be
## harmless.
DeleteNetwork(abc)
stopSession(sess)

cc Concatenates lists without stripping attributes

Description

OBSOLETE: This function was removed starting with RNetica 0.5 (it existed briefly as a workaround
for a solution that change the object representation was the correct solution for.)

The base R function c() strips the attributes off of objects (particularly NeticaNode and NeticaBN
objects). The function cc is a replacement which does not do that stripping.

Usage

cc(...)
## S3 method for class 'NeticaNode'
c(...)
## S3 method for class 'NeticaBN'
c(...)



32 cc

Arguments

... A list of objects. Generally it should be either NeticaNode or NeticaBN objects
or lists of such objects.

Details

The base R c() function strips attributes from objects. For NeticaNode and NeticaBN objects, this
removes the attributes that link the name to the Netica object and leaves just a string. This “feature”
of S has been around since the days of the Blue Book and there is probably code that relies on this
unexpected behavior.

The cc() function works around this by copying the arguments one at a time into a new list (slower
but safer). Arguments which satisfy is(arg,"list") are treated as lists and add length(arg)
elements to the lsit. All other arguments are treated as essentially lists of length 1, and the value is
inserted in the appropriate place in the list.

The methods for NeticaNode and NeticaBN fix the c() function (which is generic) if the first
argument is a singleton. Thus c(newNode,nodeList) and cc(newNode,nodeList) are identical.
Note that these only fix half of the problem; c(nodeList,newNode) still calls the default method
(or the method for lists) which strips the attributes of newNode. Instead use cc(nodeList,newNode)
or c(nodeList,list(newNode))

Value

A list containing all of the values in the arguments. If there is a single, non-list argument, it will
return a list with one element.

Author(s)

Russell Almond

See Also

NeticaNode,NeticaBN

Examples

## Not run:
anet <- CreateNetwork("anet")

nodeList <- NewDiscreteNode(anet,paste("oldNode",1:3,sep=""))
newNode <- NewDiscreteNode(anet,"newNode")

l1 <- c(newNode,nodeList) #A list of nodes
stopifnot(is.list(l1),length(l1)==4L,sapply(l1,is.NeticaNode))

l2 <- c(nodeList,newNode) #Doesn't work!!!
stopifnot(!all(sapply(l2,is.NeticaNode)))

l2a <- cc(nodeList,newNode) #Does work!!!
stopifnot(all(sapply(l2a,is.NeticaNode)))



CliqueNode-class 33

l2b <- c(nodeList,list(newNode)) #As does this
stopifnot(all(sapply(l2b,is.NeticaNode)))

l3 <- c(newNode) #List with one element
stopifnot(is.list(l3),length(l3)==1L,sapply(l3,is.NeticaNode))

l4 <- c(newNode,nodeList[[1]],nodeList[[3]])
stopifnot(is.list(l4),length(l4)==3L,sapply(l4,is.NeticaNode))

l5 <- c(newNode,nodeList[2:3],nodeList[[1]])
stopifnot(is.list(l5),length(l5)==4L,sapply(l5,is.NeticaNode))

## End(Not run)

CliqueNode-class Class "CliqueNode"

Description

A dummy node used to force it parents into the same clique in the junction tree. In particular, the
node has a single state but its parents are listed in its clique field.

Extends

Class "NeticaNode", directly.

All reference classes extend and inherit methods from "envRefClass". Note that because this is
a reference class unlike traditional S3 and S4 classes it can be destructively modified. Also fields
(slots) are accessed using the ‘$’ operator.

Methods

toString signature(x = "CliqueNode"): Provides a pretited representation.

Fields

Note these should be regarded as read-only from user code.

Name: Object of class character giving the Netica name of the node. Must follow the IDname
rules.

Netica_Node: Object of class externalptr giving the address of the node in Netica’s memory
space.

Net: Object of class NeticaBN, a back reference to the network in which this node resides.

discrete: Always TRUE for clique nodes.

clique: A list of NeticaNode objects which are the parents of the clique node.



34 CliqueNode-class

Class-Based Methods

show(): Prints a description of the node.

initialize(..., clique): Internal initializer, should not be called directly by user code. Use
MakeCliqueNode instead.

The following methods are inherited (from the NeticaNode): deactivate ("NeticaNode"), isActive
("NeticaNode"), show ("NeticaNode"), clearErrors ("NeticaNode"), reportErrors ("NeticaNode"),
initialize ("NeticaNode")

Note

Clique nodes only last for the R session that was used to create them. After that, they will appear
like ordinary nodes. They will still be present in the network, but the special "clique" attribute
will be lost.

Currently Netica only allows virtual evidence at the node level (NodeLikelihood()). I’m lobby-
ing to get Netica to support it at the clique level as well. At which point, this function becomes
extremely useful.

Author(s)

Russell Almond

References

Almond, R. G. & Mislevy, R. J. (1999) Graphical models and computerized adaptive testing. Ap-
plied Psychological Measurement, 23, 223-238.

Almond, R., Herskovits, E., Mislevy, R. J., & Steinberg, L. S. (1999). Transfer of information
between system and evidence models. In Artificial Intelligence and Statistics 99, Proceedings (pp.
181–186). Morgan-Kaufmann

http://norsys.com/onLineAPIManual/index.html: See the NeticaEx function FormCliqueWith
is the documentation for JointProbability_bn()

See Also

MakeCliqueNode(), NeticaNode, JointProbability(), AddLink(), JunctionTreeReport()

Examples

sess <- NeticaSession()
startSession(sess)

EMSMSystem <- ReadNetworks(file.path(library(help="RNetica")$path,
"sampleNets","System.dne"), session=sess)

CompileNetwork(EMSMSystem)
## Note that Skill1 and Skill2 are in different cliques
JunctionTreeReport(EMSMSystem)

Skills12 <- NetworkFindNode(EMSMSystem,c("Skill1","Skill2"))

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/JointProbability_bn.html


CompileNetwork 35

cn <- MakeCliqueNode(Skills12)
cnclique <- GetClique(cn)

stopifnot(
is.CliqueNode(cn),
setequal(sapply(cnclique,NodeName),sapply(Skills12,NodeName))

)

CompileNetwork(EMSMSystem)
## Note that Skill1 and Skill2 are in different cliques
JunctionTreeReport(EMSMSystem)

DeleteNodes(cn) ## This clears the clique.

DeleteNetwork(EMSMSystem)
stopSession(sess)

CompileNetwork Builds the junction tree for a Netica Network

Description

Before Netica performs inference in a network, it needs to compile the network. This process con-
sists of building a junction tree and conditional probability tables for the nodes of that tree. The
function CompileNetwork() compiles the network and UncompileNetwork() undoes the compi-
lation and frees the associated memory.

Usage

CompileNetwork(net)
UncompileNetwork(net)
is.NetworkCompiled(net)

Arguments

net An active NeticaBN which will be compiled.

Details

Usually Bayesian network projects operate in two phases. In the construction phase, new nodes are
added to the network, new connections made and conditional probability tables are set.

In the inference phase, findings are added to nodes and other nodes are queried about their current
conditional probability tables.

The functions CompileNetowrk() and UncompileNetwork() move the networks between the two
phases. The documentation for EliminationOrder() and JunctionTreeReport() provide more
details about the compilation process. The function NetworkCompiledSize() provides information
about the amount of storage used by the compiled network, but only after the network is compiled.

The function is.NetworkCompiled() tests to see if a network is compiled or not.



36 CompileNetwork

Value

The NeticaBN object net is returned invisibly.

Warning

I’m currently observing a bug that occurs under Windows if not all of the nodes have their CPTs
set. Under Linux the function exhibits the expected behavior: It generates a warning about the unset
CPTs and enters a uniform distribution for each one. Under Windows it reports the warning, but
then generates an error "GetError_ns: deleted or damage report_ns passed". It is unclear if this a
problem in Netica or RNetica.

To work around, simply set all tables before compiling.

Note

Calling NetworkCompiledSize() on an uncompiled network produces, an error, but also the sensi-
ble value of -1. The function is.NetworkCompiled() calls the same internal function as NetworkCompiledSize,
but clears the error. This means it also clears any other errors that might be lurking in the system
(see ReportErrors()).

I think calling CompileNetwork() twice on the same network is harmless. Adding a node to a
network will automatically uncompile it.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: CompileNet_bn(), UncompileNet_bn(), Size-
CompiledNet_bn(),

See Also

NeticaBN, HasNodeTable(), NodeFinding(), NodeBeliefs(), EliminationOrder(), JunctionTreeReport(),
JointProbability(), MostProbableConfig(), FindingsProbability()

Examples

sess <- NeticaSession()
startSession(sess)

irt5 <- ReadNetworks(file.path(library(help="RNetica")$path,
"sampleNets","IRT5.dne"), session=sess)

stopifnot (!is.NetworkCompiled(irt5))

CompileNetwork(irt5) ## Ready to enter findings
stopifnot (is.NetworkCompiled(irt5))

UncompileNetwork(irt5) ## Ready to add more nodes
stopifnot (!is.NetworkCompiled(irt5))

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/CompileNet_bn.html
http://norsys.com/onLineAPIManual/functions/UncompileNet_bn.html
http://norsys.com/onLineAPIManual/functions/SizeCompiledNet_bn.html
http://norsys.com/onLineAPIManual/functions/SizeCompiledNet_bn.html


CopyNetworks 37

DeleteNetwork(irt5)
stopSession(sess)

CopyNetworks Makes copies of Netica networks.

Description

Makes a copy of the networks in the list nets giving them the names in newnamelist. The options
argument controls how much information is copied.

Usage

CopyNetworks(nets, newnamelist, options = character(0))

Arguments

nets A list of NeticaBN objects.

newnamelist A character vector of the same length as nets which gives the names for the
newly created copies.

options A character vector containing information about what to copy. The elements
should be one of the values "no_nodes", "no_links", "no_tables", "no_visual".

Details

Copies each of the networks in the nets lists, giving it a new name from the newnamelist. It
returns a list of the new networks. If the specified net does not exist, then a warning is issued and a
NULL is returned instead of the corresponding NeticaBN object.

The options argument is passed to the options argument of the Netica API function CopyNet_bn().
Meanings for the various arguments can be found in the documentation for that function. Note that
Netica expects a list of comma separated values. RNetica will collapse the options argument
into a comma separated list, so the argument can be given either as a character vector of length 1
containing a comma separated list, or the elements of that list in separate elements of a character
vector.

Value

A list of NeticaBN objects corresponding to the new networks, or if the length of nets is one, a
single NeticaBN object is returned instead. A NULL is returned instead of the NeticaBN object if the
corresponding element of nets does not exit.

Author(s)

Russell Almond



38 CopyNodes

References

http://norsys.com/onLineAPIManual/index.html: CopyNet_bn()

See Also

DeleteNetwork()

Examples

sess <- NeticaSession()
startSession(sess)

net1 <- CreateNetwork("Original", session=sess)
nets <- CreateNetwork(paste("Original",2:3,sep=""), session=sess)

copy1 <-CopyNetworks(net1,"Copy1")
stopifnot(is(copy1,"NeticaBN"))
stopifnot(copy1$Name == "Copy1")
stopifnot(copy1 != net1)

netc <- CopyNetworks(nets,paste("Copy",2:3,sep=""))
stopifnot(all(sapply(netc,is,"NeticaBN")))
stopifnot(netc$Name == c("Copy2","Copy3"))

DeleteNetwork(c(netc,nets,list(copy1,net1)))
stopSession(sess)

CopyNodes Copies or duplicates nodes in a Netica network.

Description

This function either copies nodes from one net to another or duplicates nodes within the same
network.

Usage

CopyNodes(nodes, newnamelist = NULL, newnet = NULL, options = character(0))

Arguments

nodes A list of active NeticaNode objects all from the same network.

newnamelist If supplied, this should be character vector with the same length as nodes giving
the new names for the nodes.

newnet If supplied, it should be an active NeticaBN which is the destination for the new
nodes. If this argument is NULL the nodes will be duplicated within the original
network.

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/CopyNet_bn.html


CopyNodes 39

options A character vector of options, with each element being one of the options. Cur-
rently, the only supported options are "no_tables" (do not copy the conditional
probability tables for the nodes) and "no_links" (do not duplicate the links,
which implies do not copy tables).

Details

The nodes in the first argument will be copied into a new network as specified by newnet. If
newnet is not specified or if it the same as the network from which nodes come, then the nodes will
be duplicated instead of copied.

If the nodes are duplicated, then will be given new names. The default Netica behavior for new
names is to append a number to the end of the node name, or to increment an existing number.
If newnamelist is supplied, these names will be used instead of the add a number convention.
Supplying newnamelist will change the names of the nodes when copying from one network to
another.

When nodes are copied links going into the node are copied as well. Thus if there is a link A -> B in
the network and B is copied into the same network, then there will a link A -> B1 to the new node.
If B is copied into a new network, the link will be there but not attached, as if NodeParents(B1)[A]
<- NULL had been called.

The argument options allows control over what is copied. The currently supported options are:

• "no_tables" — The conditional probability tables of the nodes (see NodeProbs()) will not
be copied, and new tables will need to be set in the new network.

• "no_links" — The links going into the nodes will not be copied. Note that the "no_links"
option implies the "no_tables" option, so both do not need to be specified.

Value

A list containing the new nodes (or just the new node, if there is only one).

Note

There may be some information that is not copied. For example, the NodeSets() information is not
copied.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: CopyNodes_bn()

See Also

CopyNetworks(), NeticaNode, NeticaBN(), NodeProbs(), NodeParents(), AbsorbNodes(), DeleteNodes()

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/CopyNodes_bn.html


40 CopyNodes

Examples

sess <- NeticaSession()
startSession(sess)
System <- ReadNetworks(file.path(library(help="RNetica")$path,

"sampleNets","System.dne"), session=sess)

EMTask1a <- ReadNetworks(file.path(library(help="RNetica")$path,
"sampleNets","EMTask1a.dne"), session=sess)

student1 <- CopyNetworks(System, "Student1")
student1.sysnodes <- NetworkAllNodes(student1)

student1.t1anodes <- CopyNodes(NetworkAllNodes(EMTask1a),newnet=student1)

## Copied, new nodes have the same names as the old nodes.
stopifnot(

setequal(names(NetworkAllNodes(EMTask1a)),
names(student1.t1anodes))

)

## The nodes in the evidence model have stub connections to the nodes in
## the system model. Need to link them up.
stopifnot(

any(sapply(NodeParents(student1.t1anodes[[1]]),NodeKind) == "Stub"),
any(sapply(NodeParents(student1.t1anodes[[2]]),NodeKind) == "Stub")

)

student1.allnodes <- NetworkAllNodes(student1)
for (node in student1.t1anodes) {

stubs <- sapply(NodeParents(node),NodeKind) == "Stub"
NodeParents(node)[stubs] <- student1.allnodes[NodeInputNames(node)[stubs]]

}
stopifnot(

sapply(NodeParents(student1.t1anodes[[1]]),NodeKind) != "Stub",
sapply(NodeParents(student1.t1anodes[[2]]),NodeKind) !="Stub"

)

## Duplicate these nodes.
student1.t1xnodes <- CopyNodes(student1.t1anodes)

## Autonaming increments the numbers.
stopifnot(

setequal(names(student1.t1xnodes),c("Obs1a3","Obs1a4"))
)

## Duplicate and rename.
student1.t1cnodes <- CopyNodes(student1.t1anodes,c("Obs1c1","Obs1c2"))

stopifnot(
setequal(names(student1.t1cnodes),c("Obs1c1","Obs1c2"))

)



CPA 41

## Duplicated nodes have real not stub connections.
stopifnot(

sapply(NodeParents(student1.t1cnodes[[1]]),NodeKind) != "Stub",
sapply(NodeParents(student1.t1cnodes[[2]]),NodeKind) !="Stub"

)

DeleteNetwork(list(System,student1,EMTask1a))
stopSession(sess)

CPA Representation of a conditional probability table as an array.

Description

A conditional probability table for a node can be represented as a array with the first p dimensions
representing the parent variables and the last dimension representing the states of the node. Given a
set of values for the parent variables, the values in the last dimension contain the conditional prob-
abilities corresponding conditional probabilities. A CPA is a special array object which represents
a conditional probability table.

Usage

is.CPA(x)
as.CPA(x)

Arguments

x Object to be tested or coerced into a CPA.

Details

One way to store a conditional probability table is as an array in which the first p dimensions
represent the parent variables, and the p + 1 dimension represents the child variable. Here is an
example with two parents variables, A and B, and a single child variable, C:

, , C=c1

b1 b2 b3
a1 0.07 0.23 0.30
a2 0.12 0.25 0.31
a3 0.17 0.27 0.32
a4 0.20 0.29 0.33

, , C=c2

b1 b2 b3



42 CPA

a1 0.93 0.77 0.70
a2 0.88 0.75 0.69
a3 0.83 0.73 0.68
a4 0.80 0.71 0.67

[Because R stores (and prints) arrays in column-major order, the last value (in this case tables) is
the one that sums to 1.]

The CPA class is a subclass of the array class (formally, it is class c("CPA","array")). The CPA
class interprets the dimnames of the array in terms of the conditional probability table. The first p
values of names(dimnames(x)) are the input names of the edges (see NodeInputNames() or the
variable names (or the parent variable, see NodeParents(), if the input names were not specified),
and the last value is the name of the child variable. Each of the elements of dimnames(x) should
give the state names (see NodeStates()) for the respective value. In particular, the conversion
function as.CPF() relies on the existence of this meta-data, and as.CPA() will raise a warning if
an array without the appropriate dimnames is supplied.

Although the intended interpretation is that of a conditional probability table, the normalization
constraint is not enforced. Thus a CPA object could be used to store likelihoods, probability poten-
tials, contingency table counts, or other similarly shaped objects. The function normalize scales
the values of a CPA so that the normalization constraint is enforced.

The method NodeProbs() returns a CPA object.

The function as.CPA() is designed to convert between CPFs (that is, conditional probability tables
stored as data frames) and CPAs. It assumes that the factors variables in the data frame represent
the parent variables, and the numeric values represent the states of the child variable. It also as-
sumes that the names of the numeric columns are of the form varname.state , and attempts to derive
variable and state names from that.

If the argument to as.CPA(x) is an array, then it assumes that the dimnames(x) and names(dimnames(x))
are set to the states of the variables and the names of the variables respectively. A warning is issued
if the names are missing.

Value

The function is.CPA() returns a logical value indicating whether or not the is(x,"CPA") is true.

The function as.CPA returns an object of class c("CPA","array"), which is essentially an array
with the dimnames set to reflect the variable names and states.

Note

The obvious way to print a CPA would be to always show the child variable as the rows in the
individual tables, with the parents corresponding to rows and tables. R, however, internally stores
arrays in column-major order, and hence the rows in the printed tables always correspond to the
second dimension. A new print method for CPA would be nice.

This is an S3 object, as it just an array with a special interpretation.

Author(s)

Russell Almond



CPF 43

See Also

NodeProbs(), Extract.NeticaNode, CPF, normalize()

Examples

arf <- data.frame(A=rep(c("a1","a2"),each=3),
B=rep(c("b1","b2","b3"),2),
C.c1=1:6, C.c2=7:12, C.c3=13:18, C.c4=19:24)

arfa <- as.CPA(arf)
stopifnot(

is.CPA(arfa),
all(dim(arfa)==c(2,3,4))

)

arr1 <- array(1:24,c(4,3,2),
dimnames=list(A=c("a1","a2","a3","a4"),B=c("b1","b2","b3"),

C=c("c1","c2")))
arr1a <- as.CPF(arr1)
stopifnot(

is.CPA(as.CPA(arr1a))
)

## Not run:
as.CPF(node[])

## End(Not run)

CPF Representation of a conditional probability table as a data frame.

Description

A conditional probability table for a node can be represented as a data frame with a number of
factor variables representing the parent variables and the remaining numeric values representing
the conditional probabilities of the states of the nodes given the parent configuration. Each row
represents one configuration and the corresponding conditional probabilities. A CPF is a special
data.frame object which represents a conditional probability table.

Usage

is.CPF(x)
as.CPF(x)

Arguments

x Object to be tested or coerced into a CPF.



44 CPF

Details

One way to store a conditional probability table is a table in which the first several columns indicate
the states of the parent variables, and the last several columns indicate probabilities for several child
variables. Consider the following example:

A B C.c1 C.c2 C.c3 C.c4
[1,] a1 b1 0.03 0.17 0.33 0.47
[2,] a2 b1 0.05 0.18 0.32 0.45
[3,] a1 b2 0.06 0.19 0.31 0.44
[4,] a2 b2 0.08 0.19 0.31 0.42
[5,] a1 b3 0.09 0.20 0.30 0.41
[6,] a2 b3 0.10 0.20 0.30 0.40

In this case the first two columns correspond to parent variables A and B. The variable A has two
possible states and the variable B has three. The child variable is C and it has for possible states.
The numbers in each row give the conditional probabilities for those states give the state of the child
variables.

The class CPF is a subclass of data.frame (formally, it is class c("CPF","data.frame")). Al-
though the intended interpretation is that of a conditional probability table, the normalization con-
straint is not enforced. Thus a CPF object could be used to store likelihoods, probability potentials,
contingency table counts, or other similarly shaped objects. The function normalize scales the
numeric values of CPF so that each row is normalized.

The [ method for a NeticaNode returns a CPF (if the node is not deterministic).

The function as.CPF() is designed to convert between CPAs (that is, conditional probability ta-
bles stored as arrays) and CPFs. In particular, as.CPF is designed to work with the output of
NodeProbs() or a similarly formatted array. It assumes that names(dimnames(x)) are the names
of the variables, and dimnames(x) is a list of character vectors giving the names of the states of the
variables. (See CPA for details.) This general method should work with any numeric array for which
both dimnames(x) and names(dimnames(x)) are specified.

The argument x of as.CPF() could also be a data frame, in which case it is permuted so that the
factor variable are first and the class tag "CDF" is added to its class.

Value

The function is.CPF() returns a logical value indicating whether or not the is(x,"CDF") is true.

The function as.CPF returns an object of class c("CPF","data.frame"), which is essentially a
data frame with the first couple of columns representing the parent variables, and the remaining
columns representing the states of the child variable.

Note

The parent variable list is created with a call expand.grid(dimnames(x)[1:(p-1)]). This pro-
duces conditional probability tables where the first parent variable varies fastest. The Netica GUI
displays tables in which the last parent variable varies fastest.

Note, this is an S3 class, as it is basically a data.frame with special structure.



CreateNetwork 45

Author(s)

Russell Almond

See Also

NodeProbs(), Extract.NeticaNode, CPA, normalize()

Examples

arf <- data.frame(A=rep(c("a1","a2"),each=3),
B=rep(c("b1","b2","b3"),2),
C.c1=1:6, C.c2=7:12, C.c3=13:18, C.c4=19:24)

arf <- as.CPF(arf)
stopifnot(is.CPF(arf))

arr <- array(1:24,c(2,3,4),
dimnames=list(A=c("a1","a2"),B=c("b1","b2","b3"),

C=c("c1","c2","c3","c4")))
arrf <- as.CPF(arr)
stopifnot(

is.CPF(arrf),
all(levels(arrf$A)==c("a1","a2")),
all(levels(arrf$B)==c("b1","b2","b3")),
nrow(arrf)==6, ncol(arrf)==6

)

##Warning, this is not the same as arf, rows are permuted.
as.CPF(as.CPA(arf))

## Not run:
as.CPF(NodeProbs(node))

## End(Not run)

CreateNetwork Creates (destroys) a new Netica network.

Description

CreateNetwork() makes a new empty network in Netica, returning new NeticaBN objects. DeleteNetwork()
frees the memory associated with the named network inside of Netica.

Usage

CreateNetwork(names, session=getDefaultSession())
DeleteNetwork(nets)



46 CreateNetwork

Arguments

names A character vector giving the name or names of the network to be created.

session An object of type NeticaSession which defines the reference to the Netica
workspace.

nets A list of NeticaBN objects to be destroyed.

Details

The CreateNetwork method creates a new network for each of the names. Names must follow the
IDname rules. It returns a NeticaBN object, or a list of such objects if the argument names has length
greater than 1.

The DeleteNetwork method frees the Netica memory associated with each net in its argument.
Note that the network will not be available for use after it is deleted. It returns the NeticaBN
objects, but modified so that they are no longer active.

The function is.active(), checks to see if the network associated with a NeticaBN object still
corresponds to a network loaded into Netica’s memory.

These functions wrap the Netica API functions NewNet_bn() and DeleteNet_bn().

Value

A single NeticaBN object if the length of the argument is 1, and a list of such objects if the argument
has length greater than 1. For DeleteNets() if a specified network does not exist, the corresponding
element in the return list will be NULL.

Implementation Note

In RNetica version 0.5 and later, the NeticaBN is used to store the refernce to the network. The
enclosing NeticaSession object contains a table of network names to NeticaBN objects giving the
pointer. It will signal an error if a network with the given name already exists and is active (not
deleted).

In RNetica version 0.4 and prior, the NeticaBN object used the name of the networks to store the
pointer into the network.

Note

The function DeleteNetwork() implicitly deletes any nodes associated with the network. There-
fore, any nodes associated with this network will become inactive (see is.active()).

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: NewNet_bn(), DeleteNet_bn()

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/NewNet_bn().html
http://norsys.com/onLineAPIManual/functions/DeleteNet_bn().html


DeleteNodeTable 47

See Also

NeticaBN CopyNetworks(), is.active()

Examples

sess <- NeticaSession()
startSession(sess)

net1 <- CreateNetwork("EmptyNet", session=sess)
stopifnot(is(net1,"NeticaBN"))
stopifnot(net1$Name=="EmptyNet")
stopifnot(is.active(net1))

netd <- DeleteNetwork(net1)
stopifnot(!is.active(netd))
stopifnot(!is.active(net1))
stopifnot(netd$Name=="EmptyNet")

stopSession(sess)

DeleteNodeTable Deletes the conditional probability table of a Netica node.

Description

This function completely removes the conditional probability table (CPT) associated with a node.

Usage

DeleteNodeTable(node)

Arguments

node An active NeticaNode whose conditional probability table is to be tested.

Value

Returns the modified node invisibly.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: DeleteNodeTables_bn()

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/DeleteNodeTables_bn.html


48 dgetFromString

See Also

NeticaNode, NodeParents(), NodeInputNames(), HasNodeTable()

Examples

sess <- NeticaSession()
startSession(sess)

a1 <- CreateNetwork("AB1", session=sess)
A <- NewDiscreteNode(a1,"A",c("A1","A2"))

NodeProbs(A) <- c(0,1)
stopifnot(

all(HasNodeTable(A))==TRUE
)

DeleteNodeTable(A)
stopifnot(

all(HasNodeTable(A))==FALSE
)

DeleteNetwork(a1)
stopSession(sess)

dgetFromString Serializes an R object to a string

Description

The function dputToString converts an R object to a string which can then be turned back into an
R object using dgetFromString.

Usage

dgetFromString(str)
dputToString(obj)

Arguments

str A string containing a serialized object

obj An object to be serialized

Details

These functions call the base R functions dget and dput using a string buffer as the connection.
Thus, they serialize the R object and return a string value which can be stored in a NeticaNode (see
NodeUserObj) or or NeticaBN (see NetworkUserObj).

Note that the object must be self-contained.



EliminationOrder 49

Value

The function dputToString returns a character scalar containing the serialized object. Note: Some-
times R “helpfully” adds line breaks, returning a vector of strings. This can be fixed by using
paste(dputToString(obj),collapse=" ").

The function dgetFromString returns an arbitrary R object depending on what was stored in str.

Author(s)

Russell Almond

See Also

NodeUserObj), NetworkUserObj

Examples

x <- sample(1L:10L)

x1 <- dgetFromString(dputToString(x))

stopifnot(all(x==x1))

EliminationOrder Retrieves or sets the elimination order used in compiling a Netica net-
work.

Description

The compilation process involves eliminating the nodes in the network one-by-one, different orders
will produce junction trees of different sizes. The function EliminationOrder(net) returns the
current elimination order associated with a network. The expression EliminationOrder(net) <- value
sets the elimination order.

Usage

EliminationOrder(net)
EliminationOrder(net) <- value

Arguments

net An active NeticaBN

value Either NULL (to clear the elimination order) or a list of every node in net with
no duplicates.



50 EliminationOrder

Details

Large cycles create problems for propagating probabilities in Bayesian networks. A solution to this
problem is to fill-in chords (short cuts) in the cycles and then transform the network to a tree shape
with the nodes of the tree representing cliques of the graph. This is commonly called a junction tree
(although a junction tree additionally has nodes separating the cliques, called sepsets in Netica).

Finding the optimal pattern of fill-ins is an NP hard problem. A common way of approaching it is to
eliminate the nodes from the network one-by-one and connect the neighbours of the eliminated node
(if they were not already connected). In this case, the sequence of eliminated nodes will determine
which edges are filled in, and hence the size of the final junction tree. Finding an optimal eliminator
order is also NP hard, but simple heuristics (like the greedy algorithm) tend to do reasonably well in
practice. (See Almond, 1995, for a complete description of the algorithm and heuristics solutions).

When Netica compiles a network (CompileNetwork(net)), it picks an elimination order, unless
one has already been set. Unless the network has a particular difficult structure, then the Netica
defaults should work pretty well. The function JunctionTreeReport(net) gives a report about
the existing tree.

If the analyst has some clue about the structure of the network and wants to manually select the
elimination order, this can be set through the form EliminationOrder(net)<-nodelist. Here
nodelist should be a complete list of all of the nodes in net with no duplication. Alternatively, it
can be set to NULL.

Setting the elimination order does not affect an already compiled network, it is only is applied when
the network is next compiled.

Value

A list of all of the nodes in the network in elimination order if the elimination order is currently set,
otherwise NULL.

The setter form returns net invisibly.

Note

The Netica documentation does not specify the heuristics for selecting the elimination order if no
order is specified. I suspect it is some variation on the greedy algorithm, which works well in many
cases.

Author(s)

Russell Almond

References

Almond, R.G. (1995) Graphical Belief Modeling. Chapman and Hall.

http://norsys.com/onLineAPIManual/index.html: GetNetElimOrder_bn(), SetNetElimOrder_bn(),

See Also

NeticaBN, NetworkAllNodes(), CompileNetwork(), JunctionTreeReport()

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNetElimOrder_bn.html
http://norsys.com/onLineAPIManual/functions/SetNetElimOrder_bn.html


EnterFindings 51

Examples

sess <- NeticaSession()
startSession(sess)

EMSMMotif <- ReadNetworks(file.path(library(help="RNetica")$path,
"sampleNets","EMSMMotif.dne"), session=sess)

## Should be null before we do anything.
stopifnot(
is.null(EliminationOrder(EMSMMotif))

)

CompileNetwork(EMSMMotif)
## Now should have an elimination order.
stopifnot(
length(EliminationOrder(EMSMMotif)) ==
length(NetworkAllNodes(EMSMMotif)),
NetworkCompiledSize(EMSMMotif) == 84

)
JunctionTreeReport(EMSMMotif)

## EMSMMotif is partitioned into observable and proficiency variables.
## Tell Netica to eliminate observable variables first.
EliminationOrder(EMSMMotif) <- c(NetworkNodesInSet(EMSMMotif,"Observable"),

NetworkNodesInSet(EMSMMotif,"Proficiency"))
UncompileNetwork(EMSMMotif)
CompileNetwork(EMSMMotif)
stopifnot(
length(EliminationOrder(EMSMMotif)) ==
length(NetworkAllNodes(EMSMMotif)),
NetworkCompiledSize(EMSMMotif) == 84

)
JunctionTreeReport(EMSMMotif)

## Clear elimination order.
EliminationOrder(EMSMMotif) <- NULL
stopifnot(
is.null(EliminationOrder(EMSMMotif))

)

DeleteNetwork(EMSMMotif)
stopSession(sess)

EnterFindings Enters findings for multiple nodes in a Netica network.

Description

This function takes two arguments, a network and a list of nodes and the corresponding findings. It
sets all of the findings at once.



52 EnterFindings

Usage

EnterFindings(net, findings)

Arguments

net An active and compiled NeticaBN.
findings An integer or character vector giving the findings. The names(findings) should

be names of nodes in net. The values of findings should be corresponding
states either expressed as a character string or as an integer index into the list of
states for that node. (See NodeFinding(node).

Details

This function enters findings for multiple nodes at the same time. It offers two improvements over
repeated calls to NodeFinding(). First, it finds the nodes by name in the network, making it easier
to work with data in the form of key–value pairs that might come from other systems. Second, it
wraps the calls to NodeFinding() in a call to WithoutAutoUpdate() which should only propagate
the new findings after all values have been entered.

Value

The value of net is returned invisibly.

Author(s)

Russell Almond

See Also

NeticaBN, NodeBeliefs(), EnterNegativeFinding(), NodeFinding(), RetractNodeFinding(),
NodeLikelihood(), EnterGaussianFinding(), EnterIntervalFinding(), JointProbability(),
NodeValue(), MostProbableConfig(), FindingsProbability()

Examples

sess <- NeticaSession()
startSession(sess)

Motif <- ReadNetworks(file.path(library(help="RNetica")$path,
"sampleNets","EMSMMotif.dne"), session=sess)

CompileNetwork(Motif)
obs <- c(Obs1a1="Right",Obs1a2="Wrong",

Obs1b1="Right",Obs1b2="Wrong",
Obs2a="Half", Obs2b="Half")

EnterFindings(Motif,obs)
JointProbability(NetworkNodesInSet(Motif,"Proficiency"))

DeleteNetwork(Motif)
stopSession(sess)



EnterGaussianFinding 53

EnterGaussianFinding Enter a numeric finding with uncertainty

Description

This function a likelihood for a node that follows a Gaussian distribution with a given mean and
standard deviation. This is entered as virtual evidence.

Usage

EnterGaussianFinding(node, mean, sem, retractFirst = TRUE)

Arguments

node An active NeticaNode object that references the node. Node should be contin-
uous, or have numeric value ranges assigned to it using NodeLevels(node).

mean A numeric scalar giving the observed value (mean of the normal).

sem A nonnegative numeric scalar giving the standard error of measurement for the
observed finding (standard deviation of the normal).

retractFirst A logical value. If true, any previous findings will be retracted first.

Details

The node must a continuous node that has been discretized using NodeLevels(node). The proba-
bilities for each state are calculated based on a Gaussian distribution with the given mean and sem
(SD).

Value

Return the node argument invisibly.

Warning

This function is not behaving at all like what I expected. In particular, I expect that it would be-
have like a normal likelihood, but instead it seems to be behaving as if I typed the expression
NodeValue(node)<-mean. I’ve queried Norsys about this. Use with caution until I get a clarifica-
tion.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: EnterGaussianFinding_bn(),

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/EnterGaussianFinding_bn.html


54 EnterIntervalFinding

See Also

EnterNegativeFinding(), EnterFindings(), RetractNodeFinding(), NodeLikelihood(), NodeFinding(),
EnterIntervalFinding(), NodeValue()

Examples

sess <- NeticaSession()
startSession(sess)

cirt5 <- CreateNetwork("ContinuousIRT5", session=sess)

theta <- NewContinuousNode(cirt5,"Theta")
NodeLevels(theta) <- c(-5,-2.5,-1.5,-0.5,0.5,1.5,2.5,5)
theta[] <- rep(1/NodeNumStates(theta),NodeNumStates(theta))

CompileNetwork(cirt5) ## Ready to enter findings

EnterGaussianFinding(theta,0,1)
NodeBeliefs(theta)

## I expect this to look like:
diff(pnorm(c(-5,-2.5,-1.5,-0.5,0.5,1.5,2.5,5)))
## But it doesn't!

DeleteNetwork(cirt5)
stopSession(sess)

EnterIntervalFinding Enter finding of value within an interval

Description

Sets the finding associate with node to an interval.

Usage

EnterIntervalFinding(node, low, high, retractFirst = TRUE)

Arguments

node An active NeticaNode object that references the node.

low Lower bound of interval.

high Upper bound of interval.

retractFirst A logical value. If true, any previous findings will be retracted first.



EnterIntervalFinding 55

Details

The node must a continuous node that has been discretized using NodeLevels(node). The prob-
abilities for each state are calculated based on a uniform distribution with the given low and high
endpoints.

Value

Return the node argument invisibly.

Warning

This function is not behaving at all like what I expected. In particular, I expect that it would
behave like a normal likelihood, but instead it seems to be behaving as if I typed the expression
NodeValue(node)<-low. I’ve queried Norsys about this. Use with caution until I get a clarification.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: EnterIntervalFinding_bn()

See Also

EnterNegativeFinding(), EnterFindings(), RetractNodeFinding(), NodeLikelihood(), NodeFinding(),
EnterGaussianFinding(), NodeValue()

Examples

sess <- NeticaSession()
startSession(sess)

cirt5 <- CreateNetwork("ContinuousIRT5", session=sess)

theta <- NewContinuousNode(cirt5,"Theta")
NodeLevels(theta) <- c(-5,-2.5,-1.5,-0.5,0.5,1.5,2.5,5)
theta[] <- rep(1/NodeNumStates(theta),NodeNumStates(theta))

CompileNetwork(cirt5) ## Ready to enter findings

EnterIntervalFinding(theta,-1,1)
NodeBeliefs(theta)

## I expect the middle three values to be non-negative, but that is not
## what I get!

DeleteNetwork(cirt5)
stopSession(sess)

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/EnterIntervalFinding_bn.html


56 EnterNegativeFinding

EnterNegativeFinding Sets findings for a Netica node to a list of ruled out values.

Description

This is conceptually equivalent to setting NodeFinding(node)<-not(eliminatedVals) (although
this will not work as NodeFinding does not accept set values). It essentially eliminates any of the
eliminatedVals as possible values (assigns them zero probability).

Usage

EnterNegativeFinding(node, eliminatedVals)

Arguments

node An active NeticaNode whose value was observed or hypothesized.

eliminatedVals A character or integer vector indicating the values to be ruled out. Character
values should be one of the values in NodeStates(node). Integer values should
be between 1 and NodeNumStates(node) inclusive.

Details

This function essentially asserts that Pr(node ∈ eliminatedV als) = 0. Thus, it rules out the
values in the eliminatedVals set. Note that the length of this set should be less than the number
of states, or all possibilities will have been eliminated.

Note calling EngerNegativeFining(node, ...) clears any previous findings (including virtual
findings set through NodeLikelihood() or simple finding set through NodeFinding(node)<-value).
The function RetractNodeFinding(node) will clear the current finding without setting it to a new
value.

Value

This function returns node invisibly.

Note

If SetNetworkAutoUpdate() has been set to TRUE, then this function could take some time as each
finding is individually propagated. Consider wrapping multiple calls setting NodeFinding() in
WithoutAutoUpdate(net, ...).

Unlike the Netica function EnterFindingNot_bn() the function EnterNegativeFinding() inter-
nally calls RetractFindings. So there is no need to do this manually. Also, the internal Netica
function multiplies multiple calls to EnterFindingNod_bn() add to the list of negative findings,
while in the R version takes the entire list.

Author(s)

Russell Almond



Extract.NeticaNode 57

References

http://norsys.com/onLineAPIManual/index.html: EnterFindingNot_bn()

See Also

NeticaBN, NodeBeliefs(), NodeFinding(), RetractNodeFinding(), NodeLikelihood()

Examples

sess <- NeticaSession()
startSession(sess)
irt5 <- ReadNetworks(file.path(library(help="RNetica")$path,

"sampleNets","IRT5.dne"), session=sess)

irt5.theta <- NetworkFindNode(irt5,"Theta")
irt5.x <- NetworkFindNode(irt5,paste("Item",1:5,sep="_"))

CompileNetwork(irt5) ## Ready to enter findings

## Calculated new expected beliefs
renormed <- NodeProbs(irt5.theta)
renormed[c("neg1","neg2")] <- 0
renormed <- renormed/sum(renormed)

## Negative finding
EnterNegativeFinding(irt5.theta,c("neg1","neg2")) ## Rule out negatives.
stopifnot(

NodeFinding(irt5.theta) == "@NEGATIVE FINDINGS",
sum(abs(NodeLikelihood(irt5.theta) - c(1,1,1,0,0))) < 1e-6,
sum(abs(NodeBeliefs(irt5.theta) - renormed)) < 1.e-6

)

DeleteNetwork(irt5)
stopSession(sess)

Extract.NeticaNode Extracts portions of the conditional probability table of a Netica node.

Description

Provides an efficient mechanism for extracting or setting portions of large conditional probability
tables. In particular, allows setting many rows a CPT to the same value.

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/EnterFindingNot_bn.html


58 Extract.NeticaNode

Usage

## S4 method for signature 'NeticaNode'
x[i, j,..., drop=FALSE]
## S4 method for signature 'NeticaNode'
x[[i, j, ...]]
## S4 replacement method for signature 'NeticaNode'
x[i, j, ...] <- value
EVERY_STATE

Arguments

x An active, discrete NeticaNode whose conditional probability table is to be ac-
cessed.

i,j,... Indices specifying rows of the table to extract or replace. If a single index,
i, is given, it should be a data frame selecting the parent states, or an integer
pointing at a configuration. If multiple indexes are given, the number of indexes
should correspond to the number of parent states of the variable. The values
should either be character strings (corresponding to parent variable states), or
numeric (indexes to parent states). In character strings, the special value "*" is
allowed to select all values of that variable. In numeric indexes, the special value
EVERY_STATE indicates that all states are selected. Leaving the index position
blank is the same as specifying "*" or EVERY_STATE.

drop If true and a single row is selected, that row will be returned as a numeric vector
instead of a conditional probability frame (CPF).

value Either a numeric vector with length NodeNumStates(x) giving the conditional
probabilities for the specified rows in the table or a character scalar (discrete
node) or numeric scalar (continuous node) giving the value that should be given
probability 1.

Details

The function NodeProbs(node) allows one to access the entire conditional probability at once as
a conditional probability array (CPA). Although the built-in R array replacement mechanisms allow
one to make various kinds of edits, it is relatively inefficient. In particular, to set a single row of an
array, the entire table is read into R and then written back to Netica.

This function allows the syntax node[...] to be used to access only a portion of the table. There
are many different ways ... can be interpreted, which are described below.

In this access model the value EVERY_STATE or the character value "*" has a special meaning of
match every level of that state variable. Netica supports this as a shortcut method for specifying
conditional probability tables with many similar values. However, when reading the conditional
probability tables from Netica they are expanded and no attempt is made to collapse over identical
rows.

A second difference is that node[...] returns the conditional probability table in data frame (CPF)
format. This is particularly convenient because that format does not need to cover every parent
configuration, thus it is ideal for holding subset of the complete table.



Extract.NeticaNode 59

A third difference is that a number of special values are allowed for the probability table. First, if
the node is deterministic, the value of a parent configuration can be set to the state name instead
of a probability vector. This creates a deterministic conditional probability table full of 1’s and
0’s. For continuous nodes, the nodes value for a parent configuration (assuming all discrete or
discretized parents) can be set directly. Finally, if the last column of the conditional probabilities is
not supplied, it will be computed. This is particularly handy for binary nodes.

Normally, the expression node[...] produces a data frame either in CPF format, or with the prob-
abilities replaced by a single column of values. If drop==TRUE or equivalently if node[[...]]
was the expression, only the matrix of probabilities or the vector of values will be returned. The
expression node[[...]] <- value is not supported.

The sections below describe the various indexing options.

Value

For the form node[...] the return value is a data frame in the CPF format giving the conditional
probability table. If the node is deterministic (IsNodeDetermistic(node)==TRUE), then the prob-
abilities will be replaced with a single column giving the value of the node. If the node is discrete,
then the value will be a factor. If the node is continuous, then the value will be a real vector.

If drop==TRUE or an expression of the form node[[...]] was called, then the return value will be
a matrix of probabilities (the last several columns of the data frame). If the node is deterministic,
then the result will instead be either a factor (discrete node) or real vector (continuous node) giving
the value of the node for each parent configuration.

The form node[...]<-value returns node invisibly.

Selecting Rows Using Data Frames

This selection uses the syntax node[df] or node[df]<-value, where df is a data frame or a ma-
trix. It is assumed that the columns represent the variables, and the rows represent the selected
configurations of the parent variables.

In this configuration, the number of rows of df and value should match (or the length of value
should equal the number of rows if one of the special values is used). When the value is being
queried rather than set, the number of rows in the result may be greater than the number of rows in
df because of EVERY_STATE expansion.

There are three different ways that df could be represented:

1. It can be a data frame filled with factor variables whose levels correspond to the states of the
corresponding parent node.

2. It can be a matrix or data frame of type character whose values correspond to the state names
of the corresponding parent variables, or possibly the special value "*" meaning that all values
of that parent should be matched.

3. It can be a matrix of data frame of integers whose values correspond to the state indexes of the
parent variables. In this case the special value EVERY_STATE can be supplied indicating that
all values should be matched. Otherwise, it should be a number between 1 and the number of
states of that variable, inclusive.

The number of columns in df should be the same as the number of parent variables for node. If
df has column names, then all columns should be named. In this case the parent variables will be



60 Extract.NeticaNode

match by the NodeInputNames(node) if they exist, or the names of the parent variables if they do
not (see ParentStates(node) for more details). Otherwise, positional selection is used.

Selecting Rows Using Array-type Selection

The second way that rows from the conditional probability table can be selected is using an analogue
of the selection mechanisms supported by R for selecting cells from an array. Essentially, the rows
of the conditional probability table are treated as if they are the elements of an array whose dim-
names correspond to ParentStates{node}. In particular the number of dimensions corresponds
to the number of parent variables, and the extent of each dimension corresponds to the number of
states of the corresponding parent variable.

In this selection mode, the length of ... should correspond to the number of parent variables (that
is, there should be one fewer comma, than parent variables). Each element can be one of three
things:

1. A character or factor vector selecting the appropriate states of the parent variable.

2. An integer vector selecting the appropriate states of the parent variable by position.

3. One of the special values EVERY_STATE, "*" or blank indicating that all values of the appro-
priate variable should be selected.

The order of the entries should be the same as the order of the parent variables in NodeParents{node}.
The selection looks very similar to selection using a data frame, where the data frame consists of
applying expand.grid(...).

Once again EVERY_STATE or "*" entries are treated specially inside of Netica, which allows every
matching row of the table to be simultaneously set to the same probabilities.

Note that negative selections and logical selections are not currently supported.

Selecting Rows Using Named Parents

As with R array index selection, the dimensions of the selection in the ... argument can be specified
using named arguments. If one of the elements of ... is named, they all should be named. The
names should correspond to ParentNames(node), that is the NodeInputNames(node) are used if
available, and the names of the parent nodes are used as a fallback.

As before the value for a parent variable can be set to a value or a vector of possible values as
either an integer, factor or character value. The special values EVERY_STATE and "*" are interpreted
as before. If the value of a parent variable is unspecified, this is equivalent to using the value
EVERY_STATE.

Selecting Rows Using a Single Integer

If ... is a single integer, it is treated as an index into the possible configurations. These are
defined by expand.grid(ParentStates(node). Each index refers to a row in that table. This is
particularly meant for running through loops on all values, although working with value as a data
frame or using NodeProbs may be faster in those cases.

There is some ambiguity when there is a single parent variable about whether the array-type selec-
tion or the index was intended, but both are identical, so there should be no conflict.



Extract.NeticaNode 61

Special Meaning for NULL selection

If ... is NULL, that is if the calling expression looks like node[] then the intention is that all
rows of the conditional probability table are to be selected. This is the only meaningful selection
type if there are no parent variables. It also provides a fast and convenient way to set all rows of
the conditional probability table to the same value (if value) has a single row, or to retrieve the
complete conditional probability table in CPF format.

If value is a data frame with both factor and numeric variables, then it takes on a different meaning.
In this case, the factor variables are used as if they were the selection argument (the ...) and the
remaining numeric values the probabilities.

Setting Value to a Probability Matrix

In general the replacement value should be a matrix. The number of columns should match the
number of states of node (see below for the behavior if the number of columns is one less than the
number of states). It should have the same number of rows as the number of rows in the selection
after any expansion has been applied for vector valued arguments, but not counting the special
values EVERY_STATE or "*" (or blank entries in the list).

Netica has a special shortcut for EVERY_STATE and all matching rows are set to the same probability
value. This means that the number of rows in the value must match the selection counting the
special values as if they selected a single row. In particular, if node has one or more parent variables
and value is a matrix with more than one row, node[] <- value will generate a error, because the
selection has only one row (with every value set to EVERY_STATE).

When value is an undimensioned vector, the function will do its best to figure out if it should be
treated as a row or a column vector. In the case of unusual behavior, expressing value as a matrix
should make the programmer’s intention clear.

Setting Deterministic Values

When a node is deterministic, that is all probabilities are 0 or 1, then it is meaningful to talk about the
conditional value of a node instead of the conditional probability table. The expression node[...]
displays the conditional probability table in a special way when the node is deterministic. In this
case it displays the value as a single variable giving the state of the child variable given the config-
uration of the parents. In the case of discrete nodes, this is a factor variable giving the state. In the
case of continuous nodes, this is a numeric vector giving the value.

The same conventions can be used in setting the conditional probability of a node. In the expression
node[...] <- value if value is a factor or character vector then the selected configurations are
set to deterministic probabilities with the indicated value given probability of 1 and all others with
probability 0. It is possible to set some rows of a conditional probability table to be deterministic
and others to have unrestricted probabilities, however, the deterministic rows will then print out as
unconstrained probabilities with 0 and 1 values.

Continuous nodes (nodes for which is.continuous(node) == TRUE) use a variation of this
system. Here the value is an arbitrary numeric value. For this to be meaningful, it is assumed that
all of the parents of node are either discrete or have been discretized.

Warning: Setting an unconditional discrete node to a constant value, that is executing an expression
like node[] <- value is almost certainly a mistake. Probably what is intended by that expression
is NodeFinding(node) <- value . In particular, if the former expression is used and the later



62 Extract.NeticaNode

someone attempts to set NodeFinding(node) <- value1 , where value1 != value , this will
produce a contradiction (probability zero event) and all kinds of error will follow.

Automatic normalization

If the number of columns in value is one less than the number of states in node, then is assumed that
the probability values should be calculated for the last state via normalization, that is it is assigned
all of the remaining probability not assigned in the first couple of columns. In particular, the value
is internally translated via the expression: value <- cbind(value,1-apply(value,1,sum)).

This is particularly useful when the node is binary (has exactly 2 states). Then the replacement
only needs to specify the probability for the first one. For example node[] <- .5 would set the
probability distribution of node to the uniform distribution if node is binary.

There is some potential for confusion if value is not specified as a matrix. In particular, if the
number of states of the child value is one more than the number of configurations of the parents,
it is unclear whether this is an attempt to set the node value of a discrete node or an unnormalized
probability. It should be possible by specifying value as a matrix or one row or one column to
clarify the intent.

Note

I have tried to anticipate most of the ways that somebody might want to index the conditional
probability table, not to mention all of the peculiar ways that R overloads the extraction operator.
Negative selections are not allowed. I have almost certainly missed some combinations, and some
untested combinations might preform rather strangely. Undoubtedly somebody will come to rely
on that strangeness and it will never get fixed.

Factor variables do not easily handle the use of "*" as a wildcard. To make this work, a construction
like factor(varstates, c(1:3,EVERY_STATE), labels=c("a1","a2","a3","*")).

Internally R uses 1-based indexing and Netica uses 0-based indexing. RNetica makes the translation
inside of the C layer, so these function should be called with R-style 1-based indexing.

I’m having weird race conditions when trying to set the value of EVERY_STATE (I can’t figure out
how to call the C function to set its value after the C code is loaded but before the namespace is
exported. So for now the exported EVERY_STATE is different from the internal Netica value (which
is RNetica:::EVERY_STATE, at least in the current implementation). This should not be a visible
change to the user.

This documentation file is longer than War and Peace.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNodeProbs_bn(), SetNodeProbs_bn(),
GetNodeFuncState_bn(), SetNodeFuncState_bn(), GetNodeFuncReal_bn(), SetNodeFuncReal_bn(),

See Also

NeticaNode, NodeParents(), NodeInputNames(), NodeStates(), ParentStates(), CPF, CPA

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNodeProbs_bn.html
http://norsys.com/onLineAPIManual/functions/SetNodeProbs_bn.html
http://norsys.com/onLineAPIManual/functions/GetNodeFuncState_bn.html
http://norsys.com/onLineAPIManual/functions/SetNodeFuncState_bn.html
http://norsys.com/onLineAPIManual/functions/GetNodeFuncReal_bn.html
http://norsys.com/onLineAPIManual/functions/SetNodeFuncReal_bn.html


Extract.NeticaNode 63

Examples

## Setup
sess <- NeticaSession()
startSession(sess)
xnet <- CreateNetwork("X", session=sess)

A <- NewDiscreteNode(xnet,"A",c("A1","A2","A3","A4"))
Aalt <- NewDiscreteNode(xnet,"Aalt",c("A1","A2","A3","A4"))
B <- NewDiscreteNode(xnet,"B",c("B1","B2","B3"))
B2 <- NewDiscreteNode(xnet,"B2",c("B1","B2"))
Balt <- NewDiscreteNode(xnet,"Balt",c("B1","B2","B3"))
C2 <- NewDiscreteNode(xnet,"C2",c("C1","C2"))
C3 <- NewDiscreteNode(xnet,"C3",c("C1","C2","C3"))
C4 <- NewDiscreteNode(xnet,"C4",c("C1","C2","C3","C4"))
Cont <- NewContinuousNode(xnet,"Cont")
CC <- NewContinuousNode(xnet,"CC")
CCC <- NewContinuousNode(xnet,"CCC")

### Tests for various setting modes.

## Null before we set any probabilities anything
stopifnot(

all(is.na(C2[])), length(C2[]) == 2,
all(is.na(Cont[])), length(Cont[])==1

)

NodeProbs(C2) <- c(1,0)
stopifnot(

C2[]=="C1"
)
## This is just a demonstration of the syntax, in practice
## the expression NodeFinding(C2) <- "C2" is usually better.
C2[] <- "C2"
stopifnot(

NodeProbs(C2)==c(0,1)
)
C3[] <- 3
stopifnot(

C3[] == "C3"
)

## Setting value of continuous node
Cont[] <- 145.4
stopifnot( abs(Cont[] - 145.4) < .0001)

## Setting value with probabilities
C2[] <- c(.3,.7)
stopifnot( sum(abs(NodeProbs(C2)-c(.3,.7))) < .0001)
C3[] <- c(1,2,1)/4
stopifnot( sum(abs(NodeProbs(C3)-c(.25,.5,.25))) < .0001)



64 Extract.NeticaNode

## Automatic normalization
C2[] <- .25
stopifnot( abs(sum(NodeProbs(C2)-c(.25,.75))) < .0001)
C3[] <- c(1,1)/3
stopifnot( abs(sum(NodeProbs(C3)-1/3)) < .0001)

### Now some one parent cases
AddLink(A,B)
AddLink(A,B2)

stopifnot(
nrow(B[])==NodeNumStates(A),
ncol(B[])==1+NodeNumStates(B),
nrow(B[[]])==NodeNumStates(A),
ncol(B[[]])==NodeNumStates(B),
all(is.na(B[][,2:(1+NodeNumStates(B))])),
all(is.na(B[[]]))

)

NodeProbs(B) <- normalize(matrix(1:12,4))
Brow1 <- B[1]
stopifnot(

nrow(Brow1)==1,ncol(Brow1)==4,
sum(abs(Brow1[,2:4]-c(1,5,9)/15))<.00001

)
Brow12 <- B[1:2]
stopifnot(

nrow(Brow12)==2,ncol(Brow12)==4,
sum(abs(Brow12[2,2:4]-c(2,6,10)/18))<.00001

)

Brow4 <- B["A4"]
stopifnot(

nrow(Brow4)==1,ncol(Brow4)==4,
sum(abs(Brow4[,2:4]-c(1,2,3)/6))<.00001

)
Brow34 <- B[c("A3","A4")]
stopifnot(

nrow(Brow34)==2,ncol(Brow34)==4,
abs(sum(Brow4[1,2:4]-c(3,7,11)/21))<.00001

)
Ball <- B["*"]
stopifnot(

nrow(Ball)==4,ncol(Ball)==4
)
Ball <- B[EVERY_STATE]
stopifnot(

nrow(Ball)==4,ncol(Ball)==4
)

Brow24 <- B[data.frame(A=factor(c("A2","A4"),NodeStates(A)))]
stopifnot(



Extract.NeticaNode 65

nrow(Brow24)==2,ncol(Brow24)==4,
sum(abs(Brow24[2,2:4]-c(1,2,3)/6))<.00001

)

## Set all rows to the same value.
B[] <- matrix(c(1,1,1)/3,1)
stopifnot(

abs(NodeProbs(B)-1/3)<.0001
)
B[EVERY_STATE] <- matrix(c(1,2,1)/4,1)
stopifnot(

abs(NodeProbs(B)[3,]-c(.25,.5,.25))<.0001
)
B["*"] <- matrix(c(1,2,3)/6,1)
stopifnot(

abs(NodeProbs(B)[2,]-c(1/6,1/3,.5))<.0001
)

## Setting to exact values
B2[1:2] <- "B1"
B2[3] <- "B2"
B2[4] <- "B2"
B2tab <- B2[]
stopifnot(

IsNodeDeterministic(B2),
nrow(B2tab)==4,ncol(B2tab)==2,
length(B2[[]]) == 4,
B2[[]] == c("B1","B1","B2","B2"),
as.integer(B2tab[,2]) == c(1,1,2,2)

)
## Setting one value to non-deterministic changes the way the table is
## displayed.
B2[2] <- c(.5,.5)
B2tab <- B2[]
stopifnot(

!IsNodeDeterministic(B2),
nrow(B2tab)==4,ncol(B2tab)==3,
sum(abs(B2tab[2,2:3]- c(.5,.5))) < .001,
B2tab[1,2:3] == c(1,0),
B2[[3]] == c(0,1)

)

## Self-normalizing setting
## Not run:
## This will generate an error because it is trying to set all four
## configurations to the same value but it is given four values.
B2[] <- c(.1,.2,.3,.4)

## End(Not run)

B2[1:4] <- c(.1,.2,.3,.4)
stopifnot(



66 Extract.NeticaNode

sum(abs(NodeProbs(B2)[,2]-c(.9,.8,.7,.6))) < .001
)
B2[1:2] <- .5 ## Set both values to the same thing
B2[3:4] <- c(.6,.7) ## set to normalizing probs
stopifnot(

sum(abs(NodeProbs(B2)[,2]-c(.5,.5,.4,.3))) < .001
)
## Beware! This next form assumes you are setting the rows to the same
## thing.
B2[3:4] <- c(.2,.8) ## Ambiguous instructions
stopifnot(

sum(abs(NodeProbs(B2)[,2]-c(.5,.5,.8,.8))) < .001
)
## Using a matrix makes intent clear
B2[3:4] <- matrix(c(.2,.8),2) ## set to normalizing probs
stopifnot(

sum(abs(NodeProbs(B2)[,2]-c(.5,.5,.8,.2))) < .001
)

## Data frame as value
## First do a blank extraction to get general shape.
B2frame <- B2[]
## Now manipulate it however
B2frame[,2:3] <- 1:8
## And set it back
B2[] <- normalize(B2frame)
stopifnot(

sum(abs(NodeProbs(B2)[,1]-c(1/6,2/8,3/10,4/12))) <.001
)

B2frame1 <-B2frame[B2frame$A=="A3",]
B2frame1[,2:3] <- c(4,6)/10
B2[] <- B2frame1 ## Only row 3 affected
stopifnot(

sum(abs(NodeProbs(B2)[,1]-c(1/6,2/8,4/10,4/12))) <.001
)

## Continuous node with one discrete parent
AddLink(A,Cont) ##Notice how old value is replicated
stopifnot(

nrow(Cont[]) ==4, ncol(Cont[]) == 2,
length(Cont[[]]) == 4,
abs(Cont[][,2]-145.4) <.0001,
abs(Cont[[3]]-145.4) <.0001

)
AddLink(A,CC)
stopifnot(

nrow(CC[]) ==4, ncol(CC[]) == 2,
is.na(CC[][,2])

)

Cont[] <- 7
stopifnot(



Extract.NeticaNode 67

abs(Cont[[]]-7) <.0001
)
Cont[2] <- 3.2
stopifnot(

abs(Cont[[]]-c(7,3.2,7,7)) <.0001
)

Cont[1:2] <- 0
Cont[3:4] <- c(8,1)
stopifnot(

abs(Cont[[]]-c(0,0,8,1)) <.0001,
abs(Cont[3:4,drop=TRUE]-c(8,1)) < .0001

)

## Two parent case
AddLink(A,C2)
AddLink(B,C2)

C2[] <- c(.5,.5)
stopifnot(

nrow(C2[])==12, ncol(C2[])==4,
sum(abs(C2[[]]-.5)) < .0001

)

AddLink(A,C4)
AddLink(B,C4)
stopifnot(

nrow(C4[])==12, ncol(C4[])==6,
all(is.na(C4[[]]))

)

NodeProbs(C4) <- normalize(array(1:48,c(4,3,4)))

## Data Frame/matrix Selection

dfsel <- data.frame(A=factor(c("A2","A3"),levels=NodeStates(A)),
B=factor(c("B1","B3"),levels=NodeStates(B)))

C21.33 <- C4[dfsel]
stopifnot(

nrow(C21.33)==2, ncol(C21.33)==6,
C21.33[1,1] == "A2",
C21.33[2,2] == "B3",
abs(C21.33[1,3]-2/80) < .0001,
abs(C21.33[2,4]-23/116) < .0001

)

dfselbak <- data.frame(B=factor(c("B3","B2"),levels=NodeStates(B)),
A=factor(c("A1","A4"),levels=NodeStates(A)))

C13.42 <- C4[dfselbak]



68 Extract.NeticaNode

stopifnot(
nrow(C13.42)==2, ncol(C13.42)==6,
C13.42[1,1] == "A1",
C13.42[2,2] == "B2",
abs(C13.42[1,3]-9/108) < .0001,
abs(C13.42[2,4]-20/104) < .0001

)

C2[dfsel] <- matrix(c(.7,.6,.3,.4),2)
C2[dfselbak] <- c(.9,.1)
stopifnot(

sum(abs(C2[[]][,1] - c(.5,.7,.5,.5, .5,.5,.5,.9, .9,.5,.6,.5))) < .0001
)
## Test for error with using variables in selection inside of a
## function.
testSel <- function(node,sel1,sel2, val) {
localselvar <- data.frame(sel1,sel2)
names(localselvar) <- ParentNames(node)
node[localselvar]
node[localselvar]<-val
invisible(node)

}

testSel(C2,factor(c("A2","A3"),levels=NodeStates(A)),
factor(c("B1","B3"),levels=NodeStates(B)),
matrix(c(.7,.6,.3,.4),2))

## Array-like selection
stopifnot(

sum(abs(C4[[2,3]]-c(10,22,34,46)/112))<.0001,
sum(abs(C4[[B=2,A=4]]-c(8,20,32,44)/104))<.0001

)

C1.23 <- C4[1,2:3]
stopifnot(

nrow(C1.23)==2, ncol(C1.23)==6,
sum(abs(C1.23[,3] - c(5/92 ,9/108))) <.0001

)
C2[] <- .5
C2[1,2:3] <- .99
stopifnot(

sum(abs(C2[[]][,1] - c(.5,.5,.5,.5, .99,.5,.5,.5, .99,.5,.5,.5))) < .0001
)

C1.23 <- C4["A1",c("B2","B3")]
stopifnot(

nrow(C1.23)==2, ncol(C1.23)==6,
sum(abs(C1.23[,3] - c(5/92 ,9/108))) <.0001

)
C2[] <- .5
C2["A1",c("B2","B3")] <- .99
stopifnot(



Extract.NeticaNode 69

sum(abs(C2[[]][,1] - c(.5,.5,.5,.5, .99,.5,.5,.5, .99,.5,.5,.5))) < .0001
)

C34.12 <- C4[3:4,1:2]
stopifnot(

nrow(C34.12)==4, ncol(C34.12)==6,
sum(abs(C34.12[,3] - c(3/84,4/88, 7/100, 8/104))) <.0001

)
C2[] <- .5
C2[3:4,1:2] <- .99
stopifnot(

sum(abs(C2[[]][,1] - c(.5,.5,.99,.99, .5,.5,.99,.99, .5,.5,.5,.5))) < .0001
)

## Wildcards

C1. <- C4[1,EVERY_STATE]
stopifnot(

nrow(C1.) == 3, ncol(C1.)==6,
sum(abs(C1.[,3] -c(1/76, 5/92, 9/108))) < .0001

)
C2[] <-.5
C2[1,EVERY_STATE] <- "C1"
stopifnot(

sum(abs(C2[[]][,1] - c(1,.5,.5,.5, 1,.5,.5,.5, 1,.5,.5,.5))) < .0001
)

C.2 <- C4[EVERY_STATE,2]
stopifnot(

nrow(C.2) == 4, ncol(C.2)==6,
sum(abs(C.2[,3] -c(5/92, 6/96, 7/100, 8/104))) < .0001

)
C2[] <-.5
C2[EVERY_STATE,2] <- "C2"
stopifnot(

sum(abs(C2[[]][,1] - c(.5,.5,.5,.5, 0,0,0,0, .5,.5,.5,.5))) < .0001
)

C1. <- C4["A1","*"]
stopifnot(

nrow(C1.) == 3, ncol(C1.)==6,
sum(abs(C1.[,3] -c(1/76, 5/92, 9/108))) < .0001

)
C2[] <-.5
C2["A1","*"] <- "C1"
stopifnot(

sum(abs(C2[[]][,1] - c(1,.5,.5,.5, 1,.5,.5,.5, 1,.5,.5,.5))) < .0001
)

C.2 <- C4["*","B2"]
stopifnot(

nrow(C.2) == 4, ncol(C.2)==6,
sum(abs(C.2[,3] -c(5/92, 6/96, 7/100, 8/104))) < .0001



70 Extract.NeticaNode

)
C2[] <-.5
C2["*","B2"] <- "C2"
stopifnot(

sum(abs(C2[[]][,1] - c(.5,.5,.5,.5, 0,0,0,0, .5,.5,.5,.5))) < .0001
)

## Missing parent values

C1. <- C4[1,]
stopifnot(

nrow(C1.) == 3, ncol(C1.)==6,
sum(abs(C1.[,3] -c(1/76, 5/92, 9/108))) < .0001

)
C2[] <-.5
C2[1,] <- "C1"
stopifnot(

sum(abs(C2[[]][,1] - c(1,.5,.5,.5, 1,.5,.5,.5, 1,.5,.5,.5))) < .0001
)

C.2 <- C4[,2]
stopifnot(

nrow(C.2) == 4, ncol(C.2)==6,
sum(abs(C.2[,3] -c(5/92, 6/96, 7/100, 8/104))) < .0001

)
C2[] <-.5
C2[,2] <- "C2"
stopifnot(

sum(abs(C2[[]][,1] - c(.5,.5,.5,.5, 0,0,0,0, .5,.5,.5,.5))) < .0001
)

C1. <- C4[A=1]
stopifnot(

nrow(C1.) == 3, ncol(C1.)==6,
sum(abs(C1.[,3] -c(1/76, 5/92, 9/108))) < .0001

)
C2[] <-.5
C2[A=1] <- "C1"
stopifnot(

sum(abs(C2[[]][,1] - c(1,.5,.5,.5, 1,.5,.5,.5, 1,.5,.5,.5))) < .0001
)

C.2 <- C4[B="B2"]
stopifnot(

nrow(C.2) == 4, ncol(C.2)==6,
sum(abs(C.2[,3] -c(5/92, 6/96, 7/100, 8/104))) < .0001

)
C2[] <-.5
C2[B="B2"] <- "C2"
stopifnot(

sum(abs(C2[[]][,1] - c(.5,.5,.5,.5, 0,0,0,0, .5,.5,.5,.5))) < .0001
)



Extract.NeticaNode 71

## Data frame as value

dfset <- data.frame(A=factor(c("A2","A3"),levels=NodeStates(A)),
B=factor(c("B1","B3"),levels=NodeStates(B)),
C.C1=c(1,0), C.C2=c(0,1))

C2[] <- .5
C2[] <- dfset
stopifnot(

sum(abs(C2[[]][,1] - c(.5,1,.5,.5, .5,.5,.5,.5, .5,.5,0,.5))) < .0001
)

## Continuous Child node
AddLink(B2,Cont)
stopifnot(

nrow(Cont[])==8, ncol(Cont[])==3,
sum(abs(Cont[[]]-c(0,0,8,1))) < .0001

)

AddLink(A,CCC)
AddLink(B,CCC)
stopifnot(

nrow(CCC[])==12, ncol(CCC[])==3,
all(is.na(CCC[[]]))

)

Cont[] <- 0
Cont[1,1] <- 1.1
Cont[2:3,2] <- c(2.2,3.2)
Cont["A4","*"] <- 4
## Not run:
## Can't set to multiple values when using * selection.
Cont["A4","*"] <- c(4.1,4.2) ## Generates an error

## End(Not run)
stopifnot(

sum(abs(Cont[[]]-c(1.1,0,0,4,0,2.2,3.2,4))) < .0001,
abs(Cont[["A1","B1"]]-1.1) <.0001,
sum(abs(Cont[[B=2,A=2:3]]-c(2.2,3.2))) < .0001,
sum(abs(Cont[[A=4]] -4)) < .0001

)

## Set by integer count
## 12 rows in A*B combinations
for (i in 1:12) {

CCC[i] <- i
C2[i] <- i/100

}
stopifnot(

sum(abs(CCC[[]]-t(matrix(1:24,3,4)))) <.0001,
sum(abs(C2[[]][,1]-t(matrix(1:24/100,3,4)))) <.001

)
for (i in 1:12) {

stopifnot(



72 FadeCPT

abs(CCC[[i]] - i) <.0001,
abs(C2[[i]][1] - i/100) <.0001

)
}

### Try some things with three parents, just to make sure that works
### too.
C2tab <- C2[[]]
AddLink(C3,C2)
C2.1tab <- C2[[,,"C1"]]
stopifnot(all.equal(C2tab,C2.1tab),

all.equal(C2tab,C2[[,,"C1"]]),
all.equal(C2tab,C2[[C="C3"]]))

stopifnot(all(abs(C2[["A1","B1","C1"]]-NodeProbs(C2)[1,1,1,])<.0001),
all.equal(C2["A1",,],C2[A="A1"]),
all.equal(C2[,"B2",],C2[B="B2"]),
all.equal(C2["A1","B2",],C2[B="B2",A="A1"]))

DeleteNetwork(xnet)
stopSession(sess)

FadeCPT Fades a Netica Conditional Probability Table

Description

This function fades a Netica conditional probability table associated with a node (that is, it makes
it closer to uniform). This is used when learning conditional probabilities over time, so that newer
observations will have more weight than older ones.

Usage

FadeCPT(node, degree = 0.2)

Arguments

node A NeticaNode object.

degree A scalar value between 0 and 1 providing the amount of fading to be done. A
degree of 1 produces a uniform distribution and a degree of 0 leaves the CPT
unchanged.

Details

This is essentially an exponential filter, with 1-degree as the retained weight. Calling it once with
degree of 1− d and again with degree 1− f is equivalent to calling it once with degree 1− df .



FadeCPT 73

If prob are the current probabilities associated with a row of the CPT, and expr is the current experi-
ence, then the new probabilities will be newprob = normalize(prob* exper * (1-degree) + degree),
and the new experience will be the normalization constant.

This function is often used together with LearnFindings to down weight old cases when the con-
ditional probabilities are thought to be changing slowly over time.

Value

This function returns the node object.

Note

Frequently the degree is made time dependent. If dt is the time elapsed since the last observation,
the degree is frequently an expression like 1-expt(R,dt), where R is a constant less than 1 which
controls how quickly the CPT is faded.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: FadeCPTable_bn()

See Also

NodeExperience, NodeProbs, LearnFindings

Examples

sess <- NeticaSession()
startSession(sess)

aaa <- CreateNetwork("AAA", session=sess)
A <- NewDiscreteNode(aaa,paste("A",1:5,sep=""),c("true","false"))

for( i in 1:length(A)) {
NodeProbs(A[[i]]) <- c(.8,.2)
NodeExperience(A[[i]]) <- 10

}

deg <- .2
expected <- NodeProbs(A[[1]])*10*(1-deg)+deg

FadeCPT(A[[1]], deg)
stopifnot(

sum(abs(NodeProbs(A[[1]])-expected/sum(expected))) < .0001,
abs(NodeExperience(A[[1]])-sum(expected)) < .001

)

## Fading by deg then by deg2 is the same as fading by

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/FadeCPTable_bn.html


74 FileCaseStream-class

## 1-(1-deg)*(1-deg2)
deg2 <- .3
FadeCPT(A[[1]],deg2)
FadeCPT(A[[2]], 1-(1-deg)*(1-deg2))
stopifnot (

sum(abs(NodeProbs(A[[1]]) - NodeProbs(A[[2]]))) < .0001
)

## Fade by two time units.
lambda <- .8
FadeCPT(A[[3]],1-lambda^2)

## Special cases
FadeCPT(A[[4]],0)
FadeCPT(A[[5]],1)

stopifnot (
sum(abs(NodeProbs(A[[4]]) -c(.8,.2))) < .0001,
sum(abs(NodeProbs(A[[5]]) -c(.5,.5))) < .0001

)

DeleteNetwork(aaa)
stopSession(sess)

FileCaseStream-class Class "FileCaseStream"

Description

This object is subclass of CaseStream so it is a wrapper around a Netica stream which is used
to read/write cases. In this subclass, the case stream is associated with a Netica case file (‘.cas’
extension). The function CaseFileStream is the constructor. The function ReadFindings reads
the findings from the stream and the function WriteFindings writes them out.

Extends

Class "CaseStream", directly.

All reference classes extend and inherit methods from "envRefClass". Note that because this is
a reference class unlike traditional S3 and S4 classes it can be destructively modified. Also fields
(slots) are accessed using the ‘$’ operator.

Fields

Note these should be regarded as read-only from user code.

Name: Object of class character used in printed representation. Default is basename(Case_Stream_Path).

Session: Object of class NeticaSession a link to the session in which this case stream was cre-
ated.



FileCaseStream-class 75

Netica_Case_Stream: Object of class externalptr a pointer to the case stream in Netica mem-
ory.

Case_Stream_Position: Object of class integer the number of the last read/writen record. This
is NA if the end of the file has been reached.

Case_Stream_Lastid: Object of class integer the ID number of the last read/written record.

Case_Stream_Lastfreq: Object of class numeric giving the frequence of the last read/written
record. This is used as a weight in learning applications.

Methods

open(): Opens a connection too the file in Netica.

show(): Provides a description of the field

initialize(Name, Session, Case_Stream_Path, ...): internal constructor; user code should
use CaseFileStream.

The following methods are inherited (from CaseStream): close ("CaseStream"), isActive ("CaseS-
tream"), isOpen ("CaseStream"), show ("CaseStream"), clearErrors ("CaseStream"), reportErrors
("CaseStream"), initialize ("CaseStream")

Note

In version 0.5 of RNetica, this class was renamed. It is now called FileCaseStream but the con-
structor is still called CaseFileStream (while previously the class and the filename had the same
name). This matches the usage of FileCaseStream and its constructor CaseFileStream. It is also
now a reference class instead of an informal S3 class. This is only likely to be a problem for code
that was using the hard coded class name.

Stream objects are fragile, and will not survive saving and restoring an R session. However, the
object retains information about itself, so that calling OpenCaseStream on the saved object, should
reopen the stream. Note that any position information will be lost.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: NewFileStream_ns(), DeleteStream_ns() http:
//homepage.stat.uiowa.edu/~luke/R/references/weakfinex.html

See Also

See CaseStream for the superclass and MemoryCaseStream for a sibling class. The function CaseFileStream
is the constructor.

OpenCaseStream, CaseFileDelimiter, CaseFileMissingCode, WriteFindings, ReadFindings,
WithOpenCaseStream

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/NewFileStream_ns.html
http://norsys.com/onLineAPIManual/functions/DeleteStream_ns.html
http://homepage.stat.uiowa.edu/~luke/R/references/weakfinex.html
http://homepage.stat.uiowa.edu/~luke/R/references/weakfinex.html


76 FileCaseStream-class

Examples

sess <- NeticaSession()
startSession(sess)

abc <- CreateNetwork("ABC", session=sess)
A <- NewDiscreteNode(abc,"A",c("A1","A2","A3","A4"))
B <- NewDiscreteNode(abc,"B",c("B1","B2","B3"))
C <- NewDiscreteNode(abc,"C",c("C1","C2"))

AddLink(A,B)
AddLink(A,C)
AddLink(B,C)

## Outputfilename
casefile <- tempfile("testcase",fileext=".cas")

filestream <- CaseFileStream(casefile, session=sess)
stopifnot(is.CaseFileStream(filestream),

isCaseStreamOpen(filestream))

## Case 1
NodeFinding(A) <- "A1"
NodeFinding(B) <- "B1"
NodeFinding(C) <- "C1"
filestream <- WriteFindings(list(A,B,C),filestream,1001,1.0)
stopifnot(getCaseStreamLastId(filestream)==1001,

abs(getCaseStreamLastFreq(filestream)-1.0) <.0001)

## Close it
filestream <- CloseCaseStream(filestream)
stopifnot (is.CaseFileStream(filestream),

!isCaseStreamOpen(filestream))

## Reopen it
filestream <- OpenCaseStream(filestream)
stopifnot (is.CaseFileStream(filestream),

isCaseStreamOpen(filestream))

##Case 1
RetractNetFindings(abc)
filestream <- ReadFindings(list(A,B,C),filestream,"FIRST")
stopifnot(getCaseStreamLastId(filestream)==1001,

abs(getCaseStreamLastFreq(filestream)-1.0) <.0001)

##Clean Up
CloseCaseStream(filestream)
DeleteNetwork(abc)
stopSession(sess)



FindingsProbability 77

FindingsProbability Finds the probability of the findings entered into a Netica network.

Description

This function assumes that the network has been compiled and that a number of findings have
been entered. The function calculates the prior probability for the entered findings (that is, the
normalization constant of the Bayesian network).

Usage

FindingsProbability(net)

Arguments

net An active and compiled Bayesian Network (class NeticaBN).

Details

In the usual algorithms for propagating probabilities in a Bayesian network the probabilities are
passed unnormalized. When reporting the probabilities, a normalization constant is calculated.
This normalization constant is the probability of all of the findings that have been entered through
NodeFinding(). (See Almond, 1995, for details on the use of normalization constants as probabil-
ities of findings.)

It is not meaningful to call this function before the network has been compiled. Calling it before
findings have been entered will result in a value of 1.0.

Value

A scalar real value representing the probability of the findings, or NA if the network was not found
or not compiled.

Note

Netica gives a warning about the interpretation if likelihood findings have been set (through NodeLikelihood().
In this case, the value is perhaps better though of as a normalization constant.

Author(s)

Russell Almond

References

Almond, R. G. (1995) Graphical Belief Modeling. Chapman and Hall.

http://norsys.com/onLineAPIManual/index.html: FindingsProbability_bn()

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/FindingsProbability_bn.html


78 GenerateRandomCase

See Also

NeticaNode,NeticaBN, NodeBeliefs(), EnterNegativeFinding(), RetractNodeFinding(), NodeLikelihood()

Examples

sess <- NeticaSession()
startSession(sess)

EMSMMotif <- ReadNetworks(file.path(library(help="RNetica")$path,
"sampleNets","EMSMMotif.dne"), session=sess)

CompileNetwork(EMSMMotif)
norm1 <- FindingsProbability(EMSMMotif)
stopifnot ( abs(norm1-1) <.0001)

## Find observable nodes
obs <- NetworkNodesInSet(EMSMMotif,"Observable")

NodeFinding(obs$Obs1a1) <- "Right"
NodeFinding(obs$Obs1a2) <- "Wrong"

prob1r2w <- FindingsProbability(EMSMMotif)
stopifnot (prob1r2w < 1, prob1r2w > 0)

## Clear it out and try again
RetractNetFindings(EMSMMotif)
NodeLikelihood(obs$Obs2a) <- c(.75,.75,.75)
prob75 <- FindingsProbability(EMSMMotif)
stopifnot( abs(prob75-.75) < .0001)

DeleteNetwork(EMSMMotif)
stopSession(sess)

GenerateRandomCase Generates random cases for nodes in a Netica network

Description

This function generates a random instantiation of the nodes in nodelist using the current (that is
posterior to any findings entered into the net) joint probability distribution of those nodes in the
network.

Usage

GenerateRandomCase(nodelist, method = "Default", timeout = 100, rng = NULL)



GenerateRandomCase 79

Arguments

nodelist A list of active NeticaNode objects, all of which belong to the same network.

method A character scalar used to describe the method used select the random numbers.
This should have one of the values "Join_Tree_Sampling", "Forward_Sampling"
or "Default_Sampling" (see details). Only the first letter is used and case is
ignored, so "J", "F" and "D" are legal values.

timeout This is a number describing how long to carry on computations under the for-
ward sampling method. It is ignored under the join tree sampling method or
when the default sampling method turns out to be join tree.

rng This either be an existing NeticaRNG object or NULL in which case the default
random number generator for the net is used.

Details

The function visits each node in nodelist and randomly sets a finding for that node based on the
current beliefs about that node. This takes into account any findings previously entered into the
graph (including the previously sampled nodes in the list). In particular, to generate multiple cases,
the findings need to be retracted (using RetractNodeFinding(node) or RetractNetFindings(net)
between each generation.

Netica supports three methods for doing the sampling:

Join_Tree_Sampling. For each node in turn, the beliefs are calculated and a random state is se-
lected and entered as a finding (with beliefs propagating). The network must be compiled for
this method to work.

Forward_Sampling. Random cases are generated directly using equations for continuous nodes
if these are available. Random results not compatible with the current findings are rejected.
This method is not guaranteed to converge, and may be quite slow if the current set of findings
has a low probability. It will only run for a period of time indicated by timeout and returns a
negative value if it does not complete successfully.

Default_Sampling. Netica figures out which method is better to use. It uses forward sampling if
either rejections aren’t a problem (presumably because there are no findings) or if the network
is uncompiled. Otherwise it uses join tree sampling.

The rng argument can be used to associate a random number generator with the generation (see
NeticaRNG). If the rng argument is NULL, then the default random number generator for the network
is used. This is either a random number generator associated with the network using NetworkSetRNG,
or else the default Netica random number generator.

Value

Invisibly returns 0 if the case was successfully generated or -1 if the case could not be generated
(using the forward sampling method). In the latter case, a warning is issued as well.

Author(s)

Russell Almond



80 GenerateRandomCase

References

http://norsys.com/onLineAPIManual/index.html: GenerateRandomCase_bn()

See Also

NetworkSetRNG(), NeticaRNG(), NodeFinding, RetractNetFindings ReadFindings, CaseStream

Examples

sess <- NeticaSession()
startSession(sess)

irt5 <- ReadNetworks(file.path(library(help="RNetica")$path,
"sampleNets","IRT5.dne"), session=sess)

irt5.theta <- NetworkFindNode(irt5,"Theta")
irt5.x <- NetworkFindNode(irt5,paste("Item",1:5,sep="_"))

CompileNetwork(irt5)

GenerateRandomCase(irt5.x)
sapply(irt5.x,NodeFinding)

RetractNetFindings(irt5)

GenerateRandomCase(irt5.x)
sapply(irt5.x,NodeFinding)

## This generates a fixed series of random cases and saves them to a
## file.
N <- 10L
rnodes <- c(list(irt5.theta),irt5.x)
casefile <- tempfile("irt5testcase",fileext=".cas")
filestream <- CaseFileStream(casefile, session=sess)
rng <- NewNeticaRNG(123456779, session=sess)
WithOpenCaseStream(filestream,

WithRNG(rng,
for (n in 1L:N) {

GenerateRandomCase(rnodes,rng=rng)
WriteFindings(rnodes,filestream,n)
lapply(rnodes,RetractNodeFinding) # Only retract findings for

# generated nodes
}))

## With constructs force closure even on error exit.
stopifnot(!isNeticaRNGActive(rng),

!isCaseStreamOpen(filestream))

DeleteNetwork(irt5)
stopSession(sess)

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GenerateRandomCase_bn.html


GetNamedNetworks 81

GetNamedNetworks Finds a Netica network (if it exists) for the name.

Description

This searches through the currently open Netica networks in the NeticaSession and returns a
NeticaBN object pointing to the networks with the given names. If no network with the name is
found NULL is returned instead, so this provides a way to check whether a network exists.

CheckNamedNetworks checks the internal Netica list of networks, not the networks cached in the
NeticaSession object, so it can be used to check for inconsistencies.

Usage

GetNamedNetworks(namelist, session=getDefaultSession())
CheckNamedNetworks(namelist, session=getDefaultSession())

Arguments

namelist A character vector giving the name or names of the networks to be found.

session An object of type NeticaSession which defines the reference to the Netica
workspace.

Details

GetNamedNetworks() searches the list of network names looking for a network with the appro-
priate name. If it is found, a handle to that network is returned as a NeticaBN object. If not,
NULL is returned. Note that if a network of the specified name existed, it could return an inactive
NeticaBN object corresponding to the deleted network, so it is probably good to check the result
with is.active.

There are two ways that RNetica can check for a network of a given name. The first the network
cache maintained by the NeticaSession object (session$nets). The function GetNamedNetworks
just checks the cache, so it should be relatively fast. The function CheckNamedNetworks iterates
through all of the networks in Netica’s internal memory, so it should be slower, but should also spot
problems with RNetica and Netica getting out of sync.

Value

If namelist is of length 1, then a single NeticaBN object or NULL will be returned.

If namelist is of length greater than 1, then a list of the same length as namelist is returned. Each
element is a NeticaBN related to the corresponding name or NULL if the name does not refer to a
network.



82 GetNamedNetworks

Note

Each NeticaBN is given a name when it is created. When the network is created, either through
a call to CreateNetwork or ReadNetworks, the NeticaSession object updates its cache of the
network names in its nets field. The nets field of the session object is an environment which
associate the network’s name with a NeticaBN object. Internally, functions that return a NeticaBN
object (primarily NodeNet), search the network cache in the session object for the network with the
corresponding name.

GetNamedNetworks uses the cache (which is hashed) and so should be fairly fast.

CheckNamedNetworks does a linear search through all networks, so it could be pretty slow if there
are a large number of networks open. It should raise an error if the cache and the internal Netica
specs are out of sync.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNthNet_bn()

See Also

CreateNetwork(), GetNthNetwork()

Examples

sess <- NeticaSession()
startSession(sess)

net1 <- CreateNetwork("myNet", session=sess)
## Fetch the network we just created by name.
net2 <- GetNamedNetworks("myNet", session=sess)
stopifnot(is(net2,"NeticaBN"))
stopifnot(NetworkName(net1)==NetworkName(net2))
stopifnot(net1==net2)

net3 <- CheckNamedNetworks("myNet", session=sess)
stopifnot(net1==net3)

## No network named "fish", this should return NULL
fish <- GetNamedNetworks("fish", session=sess)
stopifnot(all(sapply(fish,is.null)))
fish <- CheckNamedNetworks("fish", session=sess)
stopifnot(all(sapply(fish,is.null)))

DeleteNetwork(net1)
net1a <- GetNamedNetworks("myNet", session=sess)
stopifnot(NetworkName(net1a)=="myNet",!is.active(net1a))

net1b <- CheckNamedNetworks("myNet", session=sess)

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNthNet_bn.html


GetNetworkAutoUpdate 83

stopifnot(is.null(net1b))

stopSession(sess)

GetNetworkAutoUpdate Turns Netica automatic updating on or off for a network.

Description

Netica networks can either propagate the effects of new findings immediately, or they can delay
propagation until the user queries the network. These functions toggle the switch that controls the
autoupdate mechanism

Usage

GetNetworkAutoUpdate(net)
SetNetworkAutoUpdate(net, newautoupdate)
WithoutAutoUpdate(net,expr)

Arguments

net A NeticaBN object to be queried or changed.

newautoupdate A logical values, TRUE to turn automatic updating on. A value NA produces an
error.

expr An R expression to be evaluated with automatic updating turned off.

Details

Automatic updating means that queries operate very quickly, however, if a large number of finding
are to be entered before the next query, they can slow the network down. These functions provide a
mechanism for controlling that.

GetNetworkAutoUpdate() returns the current status of the autoupdate flag. SetNetworkAutoUpdate()
sets flag, but returns its current value (to make it easier to restore). The function WithoutAutoUpdate
provides a mechanism for turning updating off while performing a series of operations.

Value

GetNetworkAutoUpdate() and SetNetworkAutoUpdate both returns the current autoupdate flag
as a logical value.

WithoutAutoUpdate() returns the value of executing expr, unless executing expr results in an
error in which case it returns a try-error.

Note

Automatic updating makes a lot of sense when Netica is running under the GUI, but not so much
when it is running as an API. It is probably easiest to just set this to false all the time.



84 GetNthNetwork

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: SetNetAutoUpdate_bn(), GetNetAutoUp-
date_bn()

See Also

NeticaBN, NodeBeliefs(), NodeFinding()

Examples

sess <- NeticaSession()
startSession(sess)

autoNet <- CreateNetwork("AutomaticTest", session=sess)

GetNetworkAutoUpdate(autoNet)

SetNetworkAutoUpdate(autoNet,FALSE)
stopifnot(!GetNetworkAutoUpdate(autoNet))
stopifnot(!SetNetworkAutoUpdate(autoNet,TRUE))
stopifnot(GetNetworkAutoUpdate(autoNet))

result <- TRUE
WithoutAutoUpdate(autoNet, result <<-GetNetworkAutoUpdate(autoNet))
stopifnot(!result)

DeleteNetwork(autoNet)
stopSession(sess)

GetNthNetwork Fetch a Netica network by its position in the Netica list.

Description

Fetches networks according to an internal sequence list of networks maintained inside of Netica.
If the number passed is greater than the number of currently defined networks, this function will
return NULL

Usage

GetNthNetwork(n, session = getDefaultSession())

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/SetNetAutoUpdate_bn.html
http://norsys.com/onLineAPIManual/functions/GetNetAutoUpdate_bn.html
http://norsys.com/onLineAPIManual/functions/GetNetAutoUpdate_bn.html


GetNthNetwork 85

Arguments

n A vector of integers greater than 1.

session An object of class NeticaSession which provides the link to the Netica en-
vironment. If not supplied, then the default value is the value of the function
getDefaultSession() which is usually the value of DefaultNeticaSession
in the global environment.

Details

The primary use for this function is probably to loop through all open networks. As this function
will return NULL when there are no more networks, that can be used to terminate the loop.

Note that the sequence numbers can change, particularly after functions that open and close net-
works.

This is a wrapper for the Netica function GetNthNet_bn().

Starting with RNetica 0.5, the session object is a container which contains the open networks, so
this function is no longer really needed.

Value

If n is of length 1, then a single NeticaBN object or NULL will be returned.

If n is of length greater than 1, then a list of the same length as n is returned. Each element is a
NeticaBN related or NULL if the number is greater than the number of open networks.

Note

The Netica shared library uses a zero-based reference (i.e., the first net is 0), but this function
subtracts 1 from the argument, so it uses a one-based reference system (the first net is 1).

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNthNet_bn()

See Also

NeticaSession, CreateNetwork(), GetNamedNetworks()

Examples

sess <- NeticaSession()
startSession(sess)

count <- 1
while (!is.null(net <- GetNthNetwork(count,sess))) {

cat("Network number ",count," is ",net,".\n")

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNthNet_bn.html


86 HasNodeTable

count <- count +1
}
cat("Found ",count-1," networks.\n")

stopSession(sess)

HasNodeTable Tests to see if a Netica node has a conditional probability table.

Description

This function tests to see if a conditional probability table has been assigned to node. The function
returns two values, the first tests for existence of the table, the second tests for a complete table (no
NAs).

Usage

HasNodeTable(node)

Arguments

node An active NeticaNode whose conditional probability table is to be tested.

Details

This function returns two values. The first is true or false according to whether the conditional
probability table has been established, that is has NodeProbs() been set. The second value tests to
see whether the conditional probability table is complete, that is, does it have any NAs associated
with it.

In many cases, it is the second value that is of interest, so all(HasNodeTable(node)) is often a
useful idiom.

Value

A logical vector with two elements. The first states whether or not the node has any of its conditional
probabilities set. The second tests whether or not the table has been completely specified.

Note

Generating incomplete tables is pretty hard to do in RNetica, a row must be deliberately set to NA.
However, a network read in from a file might have incomplete tables.

Author(s)

Russell Almond



IDname 87

References

http://norsys.com/onLineAPIManual/index.html: HasNodeTable_bn()

See Also

NeticaNode, NodeParents(), NodeInputNames(), DeleteNodeTable()

Examples

sess <- NeticaSession()
startSession(sess)

ab1 <- CreateNetwork("AB1", session=sess)
A <- NewDiscreteNode(ab1,"A",c("A1","A2","A3"))
B <- NewDiscreteNode(ab1,"B",c("B1","B2"))
AddLink(A,B)

##Nodes start undefined.
stopifnot(

HasNodeTable(A)==c(FALSE,FALSE)
)

NodeProbs(A) <- c(0,1,0)
stopifnot(

HasNodeTable(A)==c(TRUE,TRUE)
)

for (node in NetworkAllNodes(ab1)) {
if (!all(HasNodeTable(node))) {
cat("Node ", toString(node),
" still needs a conditional probability table.\n")
}

}

DeleteNetwork(ab1)
stopSession(sess)

IDname Tests to see if a string is a valid as a Netica Identifier.

Description

The function is.IDname() returns a logical vector indicating whether or not each element of x is a
valid Netica identifier. The function is.IDname() attempts to massage the input value to conform
to the IDname rules.

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/HasNodeTable_bn.html


88 IDname

Usage

is.IDname(x)
as.IDname(x,prefix="y",maxlen=25)

Arguments

x A character vector of possible identifier names.

prefix A character scalar that provides an alphabetic prefix for names that start with an
illegal character.

maxlen The maximum number of characters to use in the converted name, which should
be less than Netica’s maximum of 30 characters.

Details

Netica identifiers (net names, node names, state names, and similar) are limited to 30 characters
which must be a valid letter, number or the character ’_’. The first character must be a letter. The
function is.IDname() tests to see if a string conforms to these rules, and thus is a legal name.

The function as.IDname() attempts to coerce its argument into the IDname format by applying the
following transformations.

1. The argument is coerced into a character vector.

2. If any value begins with a nonalphabetic character, the prefix argument is prepended to all
values.

3. All non-alphanumeric characters are converted to ’_’.

4. Each value is truncated to maxlen characters in length.

The truncation works by the following mechanism:

1. The string is truncated to length maxlen-3.

2. The UTF 8 values of the remaining characters is summed and the result is taken modulo 100
to provide a 2-digit hash code for the remaining characters.

3. The hash code is appended to the end of the truncated string separated with an _.

This should result in strings which are likely, but not guaranteed to be unique if the difference
between two names is only after the last maxlen-3 characters.

Note that although Netica allows variable names up to 30 characters in length, in some cases (par-
ticularly when stub variables are created after separating an edge from its parent) Netica creates new
variable names by appending characters onto existing ones. That is why the recommended value
for maxlen is set to 25.

Value

A logical vector of the same length of x.

Note

This is primarily a utility for doing argument checking inside of functions that require a Netica
IDname.



is.active 89

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html

See Also

CreateNetwork(), NewDiscreteNode(), NodeStates(), NodeName(), NodeInputNames(),

Examples

stopifnot(
is.IDname(c("aFish","Wanda1","feed me","fish_food","1more","US$",

"a123456789012345678901234567890")) ==
c(TRUE,TRUE,FALSE,TRUE,FALSE,FALSE,FALSE),

as.IDname(c("aFish","Wanda1","feed me","fish_food","1more","US$",
"a123456789012345678901234567890")) ==

c("aFish","Wanda1","feed_me","fish_food","y1more","US_",
"a123456789012345678901_25")

)

is.active Check to see if a Netica network or node object is still valid.

Description

NeticaSession, NeticaBN, NeticaNode, CaseStream, and NeticaRNG objects all contain embed-
ded pointers into Netica’s memory. The function is.active() checks to see that the corresponding
Netica object still exists.

Usage

is.active(x)

Arguments

x A NeticaBN or NeticaNode object to test, or a list of such objects.

Details

Internally, NeticaSession, NeticaBN and NeticaNode objects all contain pointers to the corre-
sponding Netica objects. The DeleteNetwork() and DeleteNodes() functions deletes the Netica
objects (and clears the pointers in the R objects). It is difficult to control when R objects are deleted,
especially if they are protected in data structures that are saved in the workspace. The function
is.active() is meant to check if the corresponding object is still valid. In most cases, RNetica
will give an error (or at least a warning) if an inactive object is supplied as an argument.

http://norsys.com/onLineAPIManual/index.html


90 is.active

For CaseStream objects (and its sub-classes FileCaseStream and MemoryCaseStream) active and
open have the same meaning.

For NeticaRNG objects, they become inactive when they are freed.

Note that the function StopNetica() should make all NeticaBN and NeticaNode objects inactive.
Thus, these objects cannot be saved from one R session to another, and should be recreated when
needed. In particular, any Netica object restored from a saved workspace should be inactive.

Value

The function is.active() returns TRUE if the argument still points to a network or node loaded in
Netica’s memory, and FALSE if that network or node has been deleted. It returns NA if the argument
is not a NeticaSession, NeticaBN, NeticaNode, CaseStream, or NeticaRNG object.

If x is a list, then a logical vector of the same length of x is returned with is.active() recursively
applied to each one.

Note

The actual test done is to test the pointer to see if it is null or not. It should be the case that when an
R object is disconnected from its Netica counterpart, the pointer is set to null.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html, http://lib.stat.cmu.edu/R/CRAN/doc/
manuals/R-exts.html

See Also

StopNetica(), NeticaBN, DeleteNetwork(), NeticaNode, DeleteNodes(), NeticaSession, CaseStream,
NeticaRNG

Examples

sess <- NeticaSession()
stopifnot(!is.active(sess))
startSession(sess)
stopifnot(is.active(sess))

anet <- CreateNetwork("ActiveNet", session=sess)
stopifnot(is.active(anet))

anodes <- NewContinuousNode(anet,paste("ActiveNode",1:2,sep=""))
stopifnot(all(is.active(anodes)))

inode <- DeleteNodes(anodes[[1]])
stopifnot(!is.active(anodes[[1]]))
stopifnot(!is.active(inode))

http://norsys.com/onLineAPIManual/index.html
http://lib.stat.cmu.edu/R/CRAN/doc/manuals/R-exts.html
http://lib.stat.cmu.edu/R/CRAN/doc/manuals/R-exts.html


is.discrete 91

stopifnot(is.active(anodes[[2]]))

DeleteNetwork(anet)
stopifnot(!is.active(anet))
## Node gets deleted along with network
stopifnot(!any(is.active(anodes)))

rng <- NewNeticaRNG(1, session=sess)
stopifnot(is.active(rng))
FreeNeticaRNG(rng)
stopifnot(!is.active(rng))

casefile <- tempfile("testcase",fileext=".cas")
filestream <- CaseFileStream(casefile, session=sess)
stopifnot(is.active(filestream))
CloseCaseStream(filestream)
stopifnot(!is.active(filestream))

stopSession(sess)
stopifnot(!is.active(sess))

is.discrete Determines whether a Netica node is discrete or continuous.

Description

A NeticaNode object can take on either a discrete set of values or an arbitrary real value. These
functions determine which type of node this is.

Usage

is.discrete(node)
is.continuous(node)

Arguments

node A NeticaNode object to test.

Details

While in the Netica GUI, one first creates a node and then determines whether it will be discrete or
continuous, in the API this is determined at the time of creation (by calling NewContinuousNode()
or NewDiscreteNode(). These functions determine which type of node the given node is.

Note that setting NodeLevels can make a continuous node behave like a discrete one and vice
versa. For continuous nodes, the levels are cut points for getting a discrete state from the node. For
a discrete node, the levels are real values representing the midpoint of the states.

Value

TRUE or FALSE depending on whether a node is discrete or continuous.



92 is.NodeRelated

Note

Currently, this function does not actually look at the internal Netica state, but rather looks at the
field "discrete" which is set when the node is created.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNodeType_bn(), SetNodeLevels_bn()

See Also

NewDiscreteNode(), NewContinuousNode(), NeticaNode, NodeLevels(), NodeStates()

Examples

sess <- NeticaSession()
startSession(sess)

netx <- CreateNetwork("netx", session=sess)

bnode <- NewDiscreteNode(netx,"bool",c("True","False"))
stopifnot(is.discrete(bnode))
stopifnot(!is.continuous(bnode))

rnode <- NewContinuousNode(netx,"real")
stopifnot(!is.discrete(rnode))
stopifnot(is.continuous(rnode))

DeleteNetwork(netx)
stopSession(sess)

is.NodeRelated Computes topological proprieties of a Netica network.

Description

The function is.NodeRelated() tests to see if relation holds between node1 and node2. The
function GetRelatedNodes creates a list of all nodes that satisfy the relation with any node in
nodelist.

Usage

is.NodeRelated(node1, node2, relation = "connected")
GetRelatedNodes(nodelist, relation = "connected")

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNodeType_bn.html
http://norsys.com/onLineAPIManual/functions/SetNodeLevels_bn.html


is.NodeRelated 93

Arguments

node1 An active NeticaNode whose relationship will be tested.
node2 Another active NeticaNode whose relationship will be tested.
relation A character scalar which should be one of the values: "parents", "children", "an-

cestors", "descendents" [sic], "connected", "markov_blanket", or "d_connected".
Singular forms and modifiers are also allowed, see details.

nodelist A list of active NeticaNode whose relationship will be tested.

Details

These functions are useful for testing the topology of a network. Each of the functions offers a
measure related to the network. The is.NodeRelated() form tests the relationship between node1
and node2. The function GetRelatedNodes() returns a list of any nodes for which the relationship
holds with any of the elements of nodelist. The plural and singular forms of the relationships can
be used with both functions.

"parent", "parents". True if node1 is a parent of node2, or returns a list of parents of the nodes
in nodelist.

"ancestor", "ancestors". True if there is a directed (parent to child) path from node1 to node2,
or returns a list of ancestors of the nodes in nodelist.

"child", "children". True if node1 is a child of node2, or returns a list of children of the nodes
in nodelist.

"descendent", "descedents" [This is the spelling used by Netica]. True if there is a directed
(parent to child) path from node2 to node1, or returns a list of descedants of the nodes in nodelist.

"connected". True if there is a chain (unordered path) from node1 to node2, or returns a list of all
nodes connected to any of the nodes in nodelist.

"markov_blanket". The Markov blanket of nodeset is the a set of nodes that renders the nodes
in nodeset conditionally independent of the remaining nodes given the ones in the blanket. The
simple form returns true if node2 is in the Markov blanket of node1.

"d_connected". The rules for d-connection are somewhat complex (see Pearl, 1988), but basically
node1 and node2 are d-connected if they are not independent given the current findings. The func-
tion returns true if node1 and node2 are d-connected or a list of all nodes that are d-connected to
the nodes in nodelist.

In addition, the relation can be modified in the GetRelatedNodes() form by adding one or more
modifiers to the main relation separated by commas. The two that are useful in RNetica are:

"include_evidence_nodes". For the "markov_boundary" and "d_connected" relations indi-
cates whether nodes with findings should be included in the result (they would normally not be
included in the result).

"exclude_self". For the "ancestors", "descendents", "connected", and "d_connected" re-
lations, the elements of nodelist are not initially added to the result.

Value

For is.NodeRelated() TRUE or FALSE, or NA if one of the input nodes was not active.

For GetNodeRelated() a list of NeticaNode objects which have the target relationship with one of
the nodes in nodelist. There may be duplicates in this list.



94 is.NodeRelated

Note

GetRelatedNodes() uses GetRelatedNodesMult_bn(), not GetRelatedNode_bn(), but that should
not present any serious issues. Also, it always passes an empty list for the related_nodes argu-
ments. Consequently, the "append", "union", "intersection", and "subtract" options don’t
make much sense. This is only a minor limitation as R provides similar functions.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: IsNodeRelated_bn(), GetRelatedNodes_bn(),
GetRelatedNodesMult_bn()

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems. Morgan–Kaufmann.

See Also

NeticaNode, NodeParents(), NodeChildren(), AddLink()

Examples

sess <- NeticaSession()
startSession(sess)

testnet <- CreateNetwork("ABCDEFG", session=sess)
### A D
### \ / \
### C F - G
### / \ /
### B E
A <- NewDiscreteNode(testnet,"A")
B <- NewDiscreteNode(testnet,"B")
C <- NewDiscreteNode(testnet,"C")
D <- NewDiscreteNode(testnet,"D")
E <- NewDiscreteNode(testnet,"E")
F <- NewDiscreteNode(testnet,"F")
G <- NewDiscreteNode(testnet,"G")

AddLink(A,C)
AddLink(B,C)

AddLink(C,D)
AddLink(C,E)

AddLink(D,F)
AddLink(E,F)

AddLink(F,G)

stopifnot(

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/IsNodeRelated_bn.html
http://norsys.com/onLineAPIManual/functions/GetRelatedNodes_bn.html
http://norsys.com/onLineAPIManual/functions/GetRelatedNodesMult_bn.html


IsNodeDeterministic 95

is.NodeRelated(A,C,"parent"),
is.NodeRelated(D,C,"child"),
is.NodeRelated(C,G,"ancestor"),
is.NodeRelated(E,C,"descendent"),
is.NodeRelated(A,B), ## Same as connected
is.NodeRelated(D,E,"markov_blanket"),
!is.NodeRelated(A,B,"d_connected"), ## No common ancestor
is.NodeRelated(D,E,"d_connected") ## Common ancestor

)

stopifnot(
setequal(GetRelatedNodes(F,"parents"),list(D,E)),
setequal(GetRelatedNodes(C,"children"),list(D,E)),
setequal(GetRelatedNodes(D,"descendents"),list(D,F,G)),
setequal(GetRelatedNodes(E,"ancestors"),list(E,C,A,B)),
setequal(GetRelatedNodes(E,"ancestors,exclude_self"),

GetRelatedNodes(D,"ancestors,exclude_self")),
setequal(GetRelatedNodes(A),list(A,B,C,D,E,F,G)), ##All nodes connected
setequal(GetRelatedNodes(D,"markov_blanket"),list(C,E,F)),
setequal(GetRelatedNodes(A,"d_connected"),list(A,C,D,E,F,G))

)

DeleteNetwork(testnet)
stopSession(sess)

IsNodeDeterministic Determines if a node in a Netica Network is deterministic or not.

Description

A node in a Bayesian network is deterministic if its value is determined by the states of its parents,
that is if all conditional probabilities are 0 or 1.

Usage

IsNodeDeterministic(node)

Arguments

node An active NeticaNode whose conditional probability table is to be tested.

Details

For discrete nodes, this returns TRUE if all the conditional probabilities are zero or one. It returns
FALSE otherwise.

Value

TRUE if the conditional probability table for node is deterministic, FALSE otherwise. If the node is
not active, or there is otherwise an error it returns NA.



96 JointProbability

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: IsNodeDeterministic_bn()

See Also

NeticaNode, NodeParents(), NodeInputNames(), NodeStates()

Examples

sess <- NeticaSession()
startSession(sess)

ab <- CreateNetwork("AB", session=sess)
A <- NewDiscreteNode(ab,"A",c("A1","A2","A3"))
B <- NewDiscreteNode(ab,"B",c("B1","B2"))
AddLink(A,B)

##Undefined node is not deterministic.
stopifnot(!IsNodeDeterministic(A))

NodeProbs(A) <- c(0,1,0)
stopifnot(IsNodeDeterministic(A))

NodeProbs(A) <- c(1/3,1/3,1/3)
stopifnot(!IsNodeDeterministic(A))

NodeProbs(B) <- rbind(c(0,1), c(0,1), c(1,0))
stopifnot(IsNodeDeterministic(B))

DeleteNetwork(ab)
stopSession(sess)

JointProbability Calculates the joint probability over several network nodes.

Description

The Bayesian network, once compiled, gives the joint probability of all nodes in the network given
the findings. This function calculates the joint probability over all of the nodes its argument and
returns it as an array.

Usage

JointProbability(nodelist)

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/IsNodeDeterministic_bn.html


JointProbability 97

Arguments

nodelist A list of active NeticaNode objects from the same network.

Details

This calculates the joint probability distribution over two, three or more variables in the same net-
work. Calculating the joint probability is easy if all of the nodes are in the same clique, so one
might want to use the function MakeCliqueNode(nodelist) before compiling the network to force
the nodes in the same clique. The function can calculate the joint probability table for nodes not in
the same clique, it just takes longer.

Value

A multidimensional array given the probabilities of the various configurations. The dimensions cor-
respond to the variables in nodelist, and the dimnames of the result are the result of sapply(nodelist,NodeStates).

Note

One possible use for the joint probability function is to get a joint likelihood over the footprint
nodes in an evidence model (see Almond et al, 1999; Almond & Mislevy, 1999). However, Netica
currently does not support inserting a likelihood on a clique, just on a single node.

Author(s)

Russell Almond

References

Almond, R. G. & Mislevy, R. J. (1999) Graphical models and computerized adaptive testing. Ap-
plied Psychological Measurement, 23, 223–238.

Almond, R., Herskovits, E., Mislevy, R. J., & Steinberg, L. S. (1999). Transfer of information
between system and evidence models. In Artificial Intelligence and Statistics 99, Proceedings (pp.
181–186). Morgan-Kaufmann

http://norsys.com/onLineAPIManual/index.html: JointProbability_bn()

See Also

NeticaNode,NodeBeliefs() MakeCliqueNode(), AddLink(), JunctionTreeReport(), MostProbableConfig()

Examples

sess <- NeticaSession()
startSession(sess)

EMSMMotif <- ReadNetworks(file.path(library(help="RNetica")$path,
"sampleNets","EMSMMotif.dne"), session=sess)

## Force Skills 1 and 2 into the same clique.
Skills12 <- NetworkFindNode(EMSMMotif,c("Skill1","Skill2"))
cn <- MakeCliqueNode(Skills12)

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/JointProbability_bn.html


98 JunctionTreeReport

CompileNetwork(EMSMMotif)

## Prior Joint probability.
prior <- JointProbability(Skills12)
stopifnot (abs(sum(prior)-1) <.0001)

## Find observable nodes
obs <- NetworkNodesInSet(EMSMMotif,"Observable")

NodeFinding(obs$Obs1a1) <- "Right"
NodeFinding(obs$Obs1a2) <- "Wrong"

post <- JointProbability(GetClique(cn))
stopifnot (abs(sum(post)-1) <.0001)

DeleteNetwork(EMSMMotif)
stopSession(sess)

JunctionTreeReport Produces a report about the junction tree from a compiled Netica net-
work.

Description

The process of compilation transforms the network into a junction tree – a tree of cliques in the
original graph – that is more convenient computationally. The function JunctionTreeReport(net)
produces a report on the junction tree. The function NetworkCompiledSize(net) reports on the size
of the compiled network. The network must be compiled (CompileNetwork(net) must be called)
before these functions are called.

Usage

JunctionTreeReport(net)
NetworkCompiledSize(net)

Arguments

net An active and compiled NeticaBN object.

Value

For JunctionTreeReport() a character vector giving the report, one element per line.

For NetworkCompiledSize() a scalar value giving the size of the network.

Note

Currently, no attempt is made to parse the report, which has a fairly well structured format. Future
versions may produce a report object instead.



LearnCases 99

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: ReportJunctionTree_bn(), SizeCompiled-
Net_bn()

See Also

NeticaBN, CompileNetwork(), EliminationOrder(),

Examples

sess <- NeticaSession()
startSession(sess)

EMSMMotif <- ReadNetworks(file.path(library(help="RNetica")$path,
"sampleNets","EMSMMotif.dne"), session=sess)

CompileNetwork(EMSMMotif)

JunctionTreeReport(EMSMMotif)

NetworkCompiledSize(EMSMMotif)

DeleteNetwork(EMSMMotif)
stopSession(sess)

LearnCases Learn Conditional Probability Tables from a Netica Case Stream

Description

This function updates the conditional probabilities associated with the given list of nodes based on
the findings associated with that node and its parents found in the caseStream argument, which
should be a CaseStream object.

Usage

LearnCases(caseStream, nodelist, weight = 1)

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/ReportJunctionTree_bn.html
http://norsys.com/onLineAPIManual/functions/SizeCompiledNet_bn.html
http://norsys.com/onLineAPIManual/functions/SizeCompiledNet_bn.html


100 LearnCases

Arguments

caseStream This should be a CaseStream object, or else an object which can be made into a
case stream: either a pathname for a case file, or a data frame of the format de-
scribed in MemoryCaseStream. The case stream can be either opened or closed.
If closed it is reopened before updating. In either case, it is closed at the end of
the function. Warning, due to a bug in Netica, memory streams are not working
and should not be used with Netica API 5.04 or earlier. See below.

nodelist A list of active NeticaNode objects that reference the conditional probability
tables to be updated.

weight A multiplier for the weights of the cases in terms of number of observations.
Negative weights unlearn previously learned cases.

Details

This is like calling the function LearnFindings repeatedly with the values of the nodes set to each
of the case rows in turn. Thus, it updates the conditional probability tables for each nodes based
on observed counts in the case files, taking the current probability and the NodeExperience as the
prior distribution.

If the case stream has a column NumCases, then the weight assigned to Row j is weight*NumCases[j].
If the case stream does not have such a column, then it is treated as if each column has weight 1.
(Among other purposes, this allows case data to be stored in a compact format where all of the
possible cases are enumerated along with a count of repetitions.) Note that negative weights will
unlearn cases.

Value

This function returns the CaseStream used in the analysis. This might have either been passed
directly as the caseStream argument, or created from the value of the caseStream argument. In
either case, the stream is closed at the end of the function.

Netica Bugs

In version 5.04 of the Netica API, there is a problem with using Memory Streams that seems to
affect the functions LearnCases and LearnCPTs. Until this problem is fixed, most uses of Memory
Streams will require file streams instead. Write the case file using write.CaseFile, and then create
a file stream using CaseFileStream.

Note

To learn without using the current probabilities as priors, call DeleteNodeTable first.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: ReviseCPTsByCaseFile_bn()

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/ReviseCPTsByCaseFile_bn.html


LearnCases 101

See Also

NodeExperience, NodeProbs, NodeFinding, FadeCPT, LearnFindings, DeleteNodeTable, LearnCPTs

Examples

sess <- NeticaSession()
startSession(sess)

abb <- CreateNetwork("ABB", session=sess)
A <- NewDiscreteNode(abb,"A",c("A1","A2"))
B1 <- NewDiscreteNode(abb,"B1",c("B1","B2"))
B2 <- NewDiscreteNode(abb,"B2",c("B1","B2"))

AddLink(A,B1)
AddLink(A,B2)

A[] <- c(.5,.5)
NodeExperience(A) <- 10

B1["A1"] <- c(.8,.2)
B1["A2"] <- c(.2,.8)
B2["A1"] <- c(.8,.2)
B2["A2"] <- c(.2,.8)
NodeExperience(B1) <- c(10,10)
NodeExperience(B2) <- c(10,10)

casesabb <-
data.frame(A=c("A1","A1","A1","A1","A1","A2","A2","A2","A2","A2"),

B1=c("B1","B1","B1","B2","B2","B2","B2","B2","B1","B1"),
B2=c("B1","B1","B1","B1","B2","B2","B2","B2","B2","B1"))

## LearnCases(casesabb,list(A,B1))
## There is currently a bug in Netica, so that this function does not
## work with memory streams. As a work around, use proper file streams
## instead.

outfile <- tempfile("casesabb",fileext=".cas")
write.CaseFile(casesabb,outfile, session=sess)
LearnCases(outfile,list(A,B1))

## Probs for A & B1 modified, but B2 left alone
stopifnot(

NodeExperience(A)==20,
NodeExperience(B1)==c(15,15),
NodeExperience(B2)==c(10,10),
sum(abs(NodeProbs(A) - .5)) < .001,
sum(abs(B1[["A1"]] - c(11,4)/15)) < .001,
sum(abs(B1[["A2"]] - c(4,11)/15)) < .001,
sum(abs(B2[["A1"]] - c(8,2)/10)) < .001,
sum(abs(B2[["A2"]] - c(2,8)/10)) < .001

)

DeleteNetwork(abb)



102 LearnCPTs

stopSession(sess)

LearnCPTs Learn Conditional Probability Tables with Missing Data.

Description

This function updates the conditional probabilities associated with the given list of nodes based on
the findings associated with that node and its parents found in the caseStream argument, which
should be a CaseStream object. Unlike LearnCases, these algorithms can support cases with
missing or latent variables.

Usage

LearnCPTs(caseStream, nodelist, method = "COUNTING", maxIters = 1000L, maxTol = 1e-06, weight = 1)

Arguments

caseStream This should be a CaseStream object, or else an object which can be made into a
case stream: either a pathname for a case file, or a data frame of the format de-
scribed in MemoryCaseStream. The case stream can be either opened or closed.
If closed it is reopened before updating. In either case, it is closed at the end of
the function. Warning, due to a bug in Netica, memory streams are not working
and should not be used with Netica API 5.04 or earlier. See below.

nodelist A list of active NeticaNode objects that reference the conditional probability
tables to be updated.

method A character scalar giving the name of the method to be used. This should be one
of “GRADIENT”, “EM” or “COUNTING” (the default). See details.

maxIters An integer scalar giving the maximum number of interactions for the EM and
gradient decent algorithms.

maxTol A real scalar giving the difference in log-likelihood required before the EM or
gradient decent algorithms to be considered converged.

weight A multiplier for the weights of the cases in terms of number of observations.
Negative weights unlearn previously learned cases.

Details

This function attempts to update the conditional probability tables of the nodes named in nodelist
using the data referenced in the first argument. Three different algorithms are available: Counting,
EM and Gradient Decent. The Counting algorithm cannot handle cases with missing data or latent
variables in the model. The method argument determines which method is used.

The Counting algorithm is the same as the one used in LearnCases. Cases where either the parent
or the child variable is missing are ignored when updating the conditional probability table for the
node, that is the neither affect the NodeExperience or the NodeProbs. As a consequence, models
with latent variables cannot be fit with this algorithm.



LearnCPTs 103

The EM is similar to the Counting algorithms, but does more intelligent things with missing ob-
servations (particularly, missing parent variables). In particular, the complete data case of the EM
algorithm is the same as the counting algorithm.

The Gradient Decent algorithm is an alternative iterative algorithm. According to the Netica doc-
umentation it is similar to back propagation in neural networks. Again according to Netica, it is
faster than EM, but more likely to find a local maxima. It appears not to respect prior information
about the conditional probability tables, and it sets the node experience to -Inf.

Both EM and Gradient Decent are an iterative algorithms. For these algorithms maxIters gives
the maximum number of iterations, and maxTol gives the convergence criteria (required difference
in log likelihood). These parameters are ignored for the Counting algorithm. Currently, Netica
gives no indication of whether the algorithm terminated by achieving convergence (difference in
log likelihood less than maxTol) or by exceeding maxIters. Norsys says they will fix this in an
upcoming release.

If the case stream has a column NumCases, then the weight assigned to Row j is weight*NumCases[j].
If the case stream does not have such a column, then it is treated as if each column has weight 1.
(Among other purposes, this allows case data to be stored in a compact format where all of the
possible cases are enumerated along with a count of repetitions.) Note that negative weights will
unlearn cases.

Value

Currently, NULL is returned. In the future, an object containing details about the convergence will
be returned.

Netica Bugs

In version 5.04 of the Netica API, there is no indication of whether the call to LearnCPTs_bn has
converged (terminated because the difference in log likelihood is less than maxTol) or not (termi-
nated because the number of iterations exceeded maxIters). Norsys has indicated that they will
add this functionality to a later release.

In version 5.04 of the Netica API, there is a problem with using Memory Streams that seems to
affect the functions LearnCases and LearnCPTs. Until this problem is fixed, most uses of Memory
Streams will require file streams instead. Write the case file using write.CaseFile, and then create
a file stream using CaseFileStream.

Note

The LearnCPTs function will not update the conditional probability table of a node unless NodeExperience
has been set for that node. Instead it will issue a warning and update the other nodes.

Author(s)

Russell G. Almond

References

http://norsys.com/onLineAPIManual/index.html: LearnCPTS_bn(), NewLearner_bn(), SetLearn-
erMaxTol_bn(), SetLearnerMaxTol_bn()

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/LearnCPTS_bn.html
http://norsys.com/onLineAPIManual/functions/NewLearner_bn.html
http://norsys.com/onLineAPIManual/functions/SetLearnerMaxTol_bn.html
http://norsys.com/onLineAPIManual/functions/SetLearnerMaxTol_bn.html
http://norsys.com/onLineAPIManual/functions/SetLearnerMaxTol_bn.html


104 LearnCPTs

See Also

NodeExperience, NodeProbs, NodeFinding, FadeCPT, RetractNetFindings, LearnFindings
LearnCases

Examples

sess <- NeticaSession()
startSession(sess)

abb <- CreateNetwork("ABB", session=sess)
A <- NewDiscreteNode(abb,"A",c("A1","A2"))
B1 <- NewDiscreteNode(abb,"B1",c("B1","B2"))
B2 <- NewDiscreteNode(abb,"B2",c("B1","B2"))

AddLink(A,B1)
AddLink(A,B2)

A[] <- c(.5,.5)
NodeExperience(A) <- 10

B1["A1"] <- c(.8,.2)
B1["A2"] <- c(.2,.8)
B2["A1"] <- c(.8,.2)
B2["A2"] <- c(.2,.8)
NodeExperience(B1) <- c(10,10)
NodeExperience(B2) <- c(10,10)
casesabb <-

data.frame(A=c("A1","A1","A1","A1","A1","A2","A2","A2","A2","A2"),
B1=c("B1","B1","B1","B2","B2","B2","B2","B2","B1","B1"),
B2=c("B1","B1","B1","B1","B2","B2","B2","B2","B2","B1"))

## LearnCPTs(casesabb,list(A,B1))
## There is currently a bug in Netica, so that this function does not
## work with memory streams. As a work around, use proper file streams
## instead.

outfile <- tempfile("casesabb",fileext=".cas")
write.CaseFile(casesabb,outfile, session=sess)
LearnCPTs(outfile,list(A,B1))

## Probs for A & B1 modified, but B2 left alone
stopifnot(

NodeExperience(A)==20,
NodeExperience(B1)==c(15,15),
NodeExperience(B2)==c(10,10),
sum(abs(NodeProbs(A) - .5)) < .001,
sum(abs(B1[["A1"]] - c(11,4)/15)) < .001,
sum(abs(B1[["A2"]] - c(4,11)/15)) < .001,
sum(abs(B2[["A1"]] - c(8,2)/10)) < .001,
sum(abs(B2[["A2"]] - c(2,8)/10)) < .001

)



LearnCPTs 105

## Missing Data
## NAs in parents affect both parent and child.
casesabb1 <-

data.frame(A=c("A1","A1","NA","A1","A1","A2","A2","A2","A2","A2"),
B1=c("B1","B1","B1","B2","B2","B2","B2","NA","B1","B1"),
B2=c("B1","B1","B1","NA","B2","B2","B2","B2","B2","B1"))

outfile1 <- tempfile("casesabb1",fileext=".cas")
write.CaseFile(casesabb1,outfile1, session=sess)
LearnCPTs(outfile1,list(A,B1,B2))

stopifnot(
NodeExperience(A)==29,
NodeExperience(B1)==c(19,19),
NodeExperience(B2)==c(13,15),
sum(abs(NodeProbs(A) - c(14,15)/29)) < .001,
sum(abs(B1[["A1"]] - c(13,6)/19)) < .001,
sum(abs(B1[["A2"]] - c(6,13)/19)) < .001,
sum(abs(B2[["A1"]] - c(10,3)/13)) < .001,
sum(abs(B2[["A2"]] - c(3,12)/15)) < .001

)

DeleteNetwork(abb)

####################################
## Start again with EM learning.

abb <- CreateNetwork("ABB", session=sess)
A <- NewDiscreteNode(abb,"A",c("A1","A2"))
B1 <- NewDiscreteNode(abb,"B1",c("B1","B2"))
B2 <- NewDiscreteNode(abb,"B2",c("B1","B2"))

AddLink(A,B1)
AddLink(A,B2)

A[] <- c(.5,.5)
NodeExperience(A) <- 10

B1["A1"] <- c(.8,.2)
B1["A2"] <- c(.2,.8)
B2["A1"] <- c(.8,.2)
B2["A2"] <- c(.2,.8)
NodeExperience(B1) <- c(10,10)
NodeExperience(B2) <- c(10,10)
casesabb <-

data.frame(A=c("A1","A1","A1","A1","A1","A2","A2","A2","A2","A2"),
B1=c("B1","B1","B1","B2","B2","B2","B2","B2","B1","B1"),
B2=c("B1","B1","B1","B1","B2","B2","B2","B2","B2","B1"))

## LearnCPTs(casesabb,list(A,B1),method="EM")
## There is currently a bug in Netica, so that this function does not
## work with memory streams. As a work around, use proper file streams
## instead.



106 LearnCPTs

outfile <- tempfile("casesabb",fileext=".cas")
write.CaseFile(casesabb,outfile, session=sess)
LearnCPTs(outfile,list(A,B1),method="EM")

## Complete data, this should look identical to the counting case.
## Note that NodeExperience is no longer an integer
stopifnot(

abs(NodeExperience(A)-20) < .001,
sum(abs(NodeExperience(B1)-c(15,15))) < .001,
NodeExperience(B2)==c(10,10),
sum(abs(NodeProbs(A) - .5)) < .001,
sum(abs(B1[["A1"]] - c(11,4)/15)) < .001,
sum(abs(B1[["A2"]] - c(4,11)/15)) < .001,
sum(abs(B2[["A1"]] - c(8,2)/10)) < .001,
sum(abs(B2[["A2"]] - c(2,8)/10)) < .001

)

## Missing Data
## EM deals more intelligently with missing data.
casesabb1 <-

data.frame(A=c("A1","A1","NA","A1","A1","A2","A2","A2","A2","A2"),
B1=c("B1","B1","B1","B2","B2","B2","B2","NA","B1","B1"),
B2=c("B1","B1","B1","NA","B2","B2","B2","B2","B2","B1"))

outfile1 <- tempfile("casesabb1",fileext=".cas")
write.CaseFile(casesabb1,outfile1, session=sess)
LearnCPTs(outfile1,list(A,B1,B2),method="EM")

stopifnot(
NodeExperience(A)>29,
NodeExperience(B1)>c(19,19),
NodeExperience(B2)>c(13,15)

)

## EM can handle complete latent variable case.
casesabb2 <-

data.frame(B1=c("B1","B1","B1","B2","B2","B2","B2","NA","B1","B1"),
B2=c("B1","B1","B1","NA","B2","B2","B2","B2","B2","B1"))

outfile2 <- tempfile("casesabb2",fileext=".cas")
write.CaseFile(casesabb1,outfile2, session=sess)
LearnCPTs(outfile1,list(A,B1,B2),method="EM")

stopifnot(
NodeExperience(A)>39,
NodeExperience(B1)>c(24,23),
NodeExperience(B2)>c(14,20)

)

DeleteNetwork(abb)



LearnCPTs 107

####################################
## One more time with Gradient Decent learning.

abb <- CreateNetwork("ABB", session=sess)
A <- NewDiscreteNode(abb,"A",c("A1","A2"))
B1 <- NewDiscreteNode(abb,"B1",c("B1","B2"))
B2 <- NewDiscreteNode(abb,"B2",c("B1","B2"))

AddLink(A,B1)
AddLink(A,B2)

A[] <- c(.5,.5)
NodeExperience(A) <- 10

B1["A1"] <- c(.8,.2)
B1["A2"] <- c(.2,.8)
B2["A1"] <- c(.8,.2)
B2["A2"] <- c(.2,.8)
NodeExperience(B1) <- c(10,10)
NodeExperience(B2) <- c(10,10)
casesabb <-

data.frame(A=c("A1","A1","A1","A1","A1","A2","A2","A2","A2","A2"),
B1=c("B1","B1","B1","B2","B2","B2","B2","B2","B1","B1"),
B2=c("B1","B1","B1","B1","B2","B2","B2","B2","B2","B1"))

## LearnCPTs(casesabb,list(A,B1),method="GRADIENT")
## There is currently a bug in Netica, so that this function does not
## work with memory streams. As a work around, use proper file streams
## instead.

outfile <- tempfile("casesabb",fileext=".cas")
write.CaseFile(casesabb,outfile, session=sess)
LearnCPTs(outfile,list(A,B1),method="GRADIENT")

## Complete data, this should look identical to the counting case.
## Note that NodeExperience is no longer used, and the posterior
## distribution no longer reflects the prior.
stopifnot(

NodeExperience(B2)==c(10,10),
sum(abs(NodeProbs(A) - .5)) < .001,
sum(abs(B1[["A1"]] - c(3,2)/5)) < .001,
sum(abs(B1[["A2"]] - c(2,3)/5)) < .001,
sum(abs(B2[["A1"]] - c(8,2)/10)) < .001,
sum(abs(B2[["A2"]] - c(2,8)/10)) < .001

)

## Gradient algorithm sets experience to -infinity, so need to reset.
NodeExperience(A) <- 10
NodeExperience(B1) <- c(10,10)
NodeExperience(B2) <- c(10,10)

## Missing Data
## GRADIENT deals more intelligently with missing data.



108 LearnFindings

casesabb1 <-
data.frame(A=c("A1","A1","NA","A1","A1","A2","A2","A2","A2","A2"),

B1=c("B1","B1","B1","B2","B2","B2","B2","NA","B1","B1"),
B2=c("B1","B1","B1","NA","B2","B2","B2","B2","B2","B1"))

outfile1 <- tempfile("casesabb1",fileext=".cas")
write.CaseFile(casesabb1,outfile1, session=sess)
LearnCPTs(outfile1,list(A,B1,B2),method="GRADIENT")

## Gradient algorithm sets experience to -infinity, so need to reset.
NodeExperience(A) <- 10
NodeExperience(B1) <- c(10,10)
NodeExperience(B2) <- c(10,10)

## GRADIENT can handle complete latent variable case.
casesabb2 <-

data.frame(B1=c("B1","B1","B1","B2","B2","B2","B2","NA","B1","B1"),
B2=c("B1","B1","B1","NA","B2","B2","B2","B2","B2","B1"))

outfile2 <- tempfile("casesabb2",fileext=".cas")
write.CaseFile(casesabb1,outfile2, session=sess)
LearnCPTs(outfile1,list(A,B1,B2),method="GRADIENT")

DeleteNetwork(abb)
stopSession(sess)

LearnFindings Learn Netica conditional probabilities from findings.

Description

This function updates the conditional probabilities associated with the given list of nodes based on
the findings associated with that node and its parents. Before calling this function the findings to be
learned should be set using NodeFinding.

Usage

LearnFindings(nodes, weight = 1)

Arguments

nodes A list of active NeticaNode objects that reference the conditional probability
tables to be updated.

weight The weight of the current observation in terms of number of observations. Neg-
ative weights unlearn previously learned cases.



LearnFindings 109

Details

For the purposes of this function, Netica regards the probabilities in Row j of the CPT for each
selected node as having an independent Dirichlet distribution with parameters (aj1, . . . , ajK) =
nj(pj1, . . . , pjK) where pjk is the probability associated with State k in Row j and nj is the expe-
rience associated with Row j.

If LearnFindings is called on a node which is currently instantiated to State k and whose parents
are currently instantiated to the configuration which selects Row j of the table, then n′

j = nj +
weight and a′jk = ajk + weight with all other values remaining the same. The new conditional
probabilities are p′jk = a′jk/n

′
j .

The function FadeCPT is often used between calls to LearnFindings to down weight old cases
when the conditional probabilities are thought to be changing slowly over time.

Value

This returns the list of nodes whose conditional probability tables have been modified.

Note

Do not confuse this function with NodeFinding. NodeFinding instantiates a node and updates all
of the other beliefs associated with a node to reflect the new evidence. LearnFindings incorporates
the current case (the currently instantiated set of findings) into the CPTs for the nodes.

The LearnFindings function will not update the conditional probability table of a node unless
NodeExperience has been set for that node. Instead it will issue a warning and update the other
nodes.

Author(s)

Russell G. Almond

References

http://norsys.com/onLineAPIManual/index.html: ReviseCPTsByFindings_bn()

See Also

NodeExperience, NodeProbs, NodeFinding, FadeCPT, RetractNetFindings, LearnCases, LearnCPTs

Examples

sess <- NeticaSession()
startSession(sess)

abb <- CreateNetwork("ABB", session=sess)
A <- NewDiscreteNode(abb,"A",c("A1","A2"))
B1 <- NewDiscreteNode(abb,"B1",c("B1","B2"))
B2 <- NewDiscreteNode(abb,"B2",c("B1","B2"))

AddLink(A,B1)
AddLink(A,B2)

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/ReviseCPTsByFindings_bn.html


110 LearnFindings

A[] <- c(.5,.5)
NodeExperience(A) <- 10

B1["A1"] <- c(.8,.2)
B1["A2"] <- c(.2,.8)
B2["A1"] <- c(.8,.2)
B2["A2"] <- c(.2,.8)
NodeExperience(B1) <- c(10,10)
NodeExperience(B2) <- c(10,10)

## First Case
NodeFinding(A) <- "A1"
NodeFinding(B1) <- "B1"
NodeFinding(B2) <- "B2"

LearnFindings(list(A,B1))
## Probs for A & B1 modified, but B2 left alone
stopifnot(

NodeExperience(A)==11,
NodeExperience(B1)==c(11,10),
NodeExperience(B2)==c(10,10),
sum(abs(NodeProbs(A) - c(6,5)/11)) < .001,
sum(abs(B1[["A1"]] - c(9,2)/11)) < .001,
sum(abs(B1[["A2"]] - c(2,8)/10)) < .001,
sum(abs(B2[["A1"]] - c(8,2)/10)) < .001,
sum(abs(B2[["A2"]] - c(2,8)/10)) < .001

)

## Second Case
RetractNetFindings(abb)
NodeFinding(A) <- "A2"
NodeFinding(B1) <- "B1"
NodeFinding(B2) <- "B1"

LearnFindings(list(A,B1))
## Probs for A & B1 modified, but B2 left alone
stopifnot(

NodeExperience(A)==12,
NodeExperience(B1)==c(11,11),
NodeExperience(B2)==c(10,10),
sum(abs(NodeProbs(A) - c(6,6)/12)) < .001,
sum(abs(B1[["A1"]] - c(9,2)/11)) < .001,
sum(abs(B1[["A2"]] - c(3,8)/11)) < .001,
sum(abs(B2[["A1"]] - c(8,2)/10)) < .001,
sum(abs(B2[["A2"]] - c(2,8)/10)) < .001

)

## Retract Case 2
LearnFindings(list(A,B1),-1)
## Back to where we were before Case 1
stopifnot(

NodeExperience(A)==11,



MakeCliqueNode 111

NodeExperience(B1)==c(11,10),
NodeExperience(B2)==c(10,10),
sum(abs(NodeProbs(A) - c(6,5)/11)) < .001,
sum(abs(B1[["A1"]] - c(9,2)/11)) < .001,
sum(abs(B1[["A2"]] - c(2,8)/10)) < .001,
sum(abs(B2[["A1"]] - c(8,2)/10)) < .001,
sum(abs(B2[["A2"]] - c(2,8)/10)) < .001

)

DeleteNetwork(abb)
stopSession(sess)

MakeCliqueNode Forces a collection of nodes in a Netica network to be in the same
clique.

Description

When a junction tree is compiled, if the nodes are in the same clique, it is easier to calculate
their joint probability. The function MakeCliqueNode(nodelist) forces the nodes in nodelist by
making a special one state clique node with all of the nodes in nodelist as a parent.

Usage

MakeCliqueNode(nodelist)
is.CliqueNode(x)
GetClique(cliquenode)

Arguments

nodelist A list of active NeticaNode objects from the same network.

x An object to be tested to see if it is a clique node.

cliquenode A CliqueNode to be queried.

Details

It is substantially easier to calculate the joint probability of a number of nodes if they are all in
the same clique (see JointProbability(nodelist). If it is known that such a query will be com-
mon, the analyst can take steps to force the nodes into the same clique if required. The Student
Model/Evidence Model algorithm of Almond and Mislevy (1999) also requires that the student
model variables that are referenced in an evidence model all be in the same clique (although this
algorithm is not currently supported by Netica).

A node and its parents is always a clique or a subset of a clique in the junction tree (see CompileNetwork()
or JunctionTreeReport()). This function forces nodes into the same clique by creating a new
CliqueNode and making all of the nodes in nodelist parents of the new node.



112 MakeCliqueNode

The CliqueNode is a subclass of NeticaNode. It has a number of special features. It’s name is
always “Clique” followed by a number. It only has one state, and it has a special "clique" field
which records the nodelist used to create it. The function is.CliqueNode() tests a node to see if
it is a clique node, and the function GetClique(node) retrieves the nodelist. (This should not be
set manually).

The CliqueNode objects should, for the most part, behave like regular nodes. However, it is almost
certainly a mistake to try and set findings on a CliqueNode.

Value

The function MakeCliqueNode(nodelist) returns a new CliqueNode object whose parents are the
variables in nodelist. This behaves in most respects like an ordinary node, but it would almost
certainly be a mistake to try and enter findings for this node. In particular, deleting the clique node
will no longer constrain its parents to be in the same clique (although other connections in the
network may cause the nodes to be placed in the same clique).

The function is.CliqueNode(x) returns a logical value which is true if x is a clique node.

The function GetClique(node) returns the nodelist used to create the clique node.

Note

Clique nodes only last for the R session that was used to create them. After that, they will appear
like ordinary nodes. They will still be present in the network, but the special "clique" attribute
will be lost.

Currently Netica only allows virtual evidence at the node level (NodeLikelihood()). I’m lobby-
ing to get Netica to support it at the clique level as well. At which point, this function becomes
extremely useful.

Author(s)

Russell Almond

References

Almond, R. G. & Mislevy, R. J. (1999) Graphical models and computerized adaptive testing. Ap-
plied Psychological Measurement, 23, 223-238.

Almond, R., Herskovits, E., Mislevy, R. J., & Steinberg, L. S. (1999). Transfer of information
between system and evidence models. In Artificial Intelligence and Statistics 99, Proceedings (pp.
181–186). Morgan-Kaufmann

http://norsys.com/onLineAPIManual/index.html: See the NeticaEx function FormCliqueWith
is the documentation for JointProbability_bn()

See Also

CliqueNode, NeticaNode, JointProbability(), AddLink(), JunctionTreeReport()

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/JointProbability_bn.html


MemoryCaseStream-class 113

Examples

sess <- NeticaSession()
startSession(sess)

EMSMSystem <- ReadNetworks(file.path(library(help="RNetica")$path,
"sampleNets","System.dne"), session=sess)

CompileNetwork(EMSMSystem)
## Note that Skill1 and Skill2 are in different cliques
JunctionTreeReport(EMSMSystem)

Skills12 <- NetworkFindNode(EMSMSystem,c("Skill1","Skill2"))
cn <- MakeCliqueNode(Skills12)
cnclique <- GetClique(cn)

stopifnot(
is.CliqueNode(cn),
setequal(sapply(cnclique,NodeName),sapply(Skills12,NodeName))

)

CompileNetwork(EMSMSystem)
## Note that Skill1 and Skill2 are in different cliques
JunctionTreeReport(EMSMSystem)

DeleteNodes(cn) ## This clears the clique.

DeleteNetwork(EMSMSystem)
stopSession(sess)

MemoryCaseStream-class

Class "MemoryCaseStream"

Description

This object is subclass of CaseStream so it is a wrapper around a Netica stream which is used
to read/write cases. In this subclass, the case stream is associated with a data frame containing
the dase file information. The function CaseMemoryStream is the constructor. the case stream
is associated with a memory buffer that corresponds to an R data.frame object. The function
MemoryStreamContents accesses the contents as a data frame.

Details

A Netica case file has a format that very much resembles the output of write.table. The first row
is a header row, which contains the names of the variables, the second and subsequent rows contain
a set of findings: an assignment of values to the nodes indicated in the columns. There are no row
numbers, and the separator and missing value codes are the values of CaseFileDelimiter(), and
CaseFileMissingCode() respectively.



114 MemoryCaseStream-class

In addition to columns representing variables, two special columns are allowed. The column named
“IDnum”, if present should contain integers which correspond to ID numbers for the cases (this
correspond to the id argument of WriteFindings). The column named “NumCases” should con-
tain number values and this allows rows to be differentially weighted (this correspond to the freq
argument of WriteFindings).

A simple way to convert a data frame into a set of cases for use with various Netica functions
that use cases would be to write the data frame to a file of the proper format, and then create a
CaseFileStream on the just written file. The MemoryCaseStream shortcuts that process by writing
the data frame to a memory buffer and then creating a stream around the memory buffer. Like
the FileCaseStream, the MemoryCaseStream is a subclass of CaseStream and follows the same
conventions.

The function CaseMemoryStream opens a new memory stream using data.frame as the source. If
data.frame is NULL a new memory stream for writing is created. The function CloseCaseStream
closes an open case stream (and is harmless if the stream is already closed. Although RNetica tries
to close open case streams when they are garbage collected, users should not count on this behavior
and should close them manually. Also be aware that all case streams are automatically closed when
R is closes or RNetica is unloaded. The function isCaseStreamOpen tests to see if the stream is
open or closed. The function OpenCaseStream if called on a closed MemoryCaseStream will reopen
the stream in Netica using the current value of MemoryStreamContents as the source. (If called on
an open stream it will do nothing but issue a warning).

The function getCaseStreamDataFrameName provides the value of label when the stream was
created.

Extends

Class "CaseStream", directly.

All reference classes extend and inherit methods from "envRefClass". Note that because this is
a reference class unlike traditional S3 and S4 classes it can be destructively modified. Also fields
(slots) are accessed using the ‘$’ operator.

Netica Bugs

In version 5.04 of the Netica API, there is a problem with using Memory Streams that seems to
affect the functions LearnCases and LearnCPTs. Until this problem is fixed, most uses of Memory
Streams will require file streams instead. Write the case file using write.CaseFile, and then create
a file stream using CaseFileStream.

Fields

Note these should be regarded as read-only from user code.

Name: Object of class character identifier for stream. Default is the expression used to reference
the data.

Session: Object of class NeticaSession

Session: Object of class NeticaSession a link to the session in which this case stream was cre-
ated.

Netica_Case_Stream: Object of class externalptr a pointer to the case stream in Netica mem-
ory.



MemoryCaseStream-class 115

Case_Stream_Position: Object of class integer the number of the last read/writen record. This
is NA if the end of the file has been reached.

Case_Stream_Lastid: Object of class integer the ID number of the last read/written record.

Case_Stream_Lastfreq: Object of class numeric giving the frequence of the last read/written
record. This is used as a weight in learning applications.

Case_Stream_DataFrameName: Object of class character giving the expression used for the data
frame.

Case_Stream_DataFrame: Object of class data.frame or NULL the data object that is the contents
of the buffer, or NULL if the stream was created for writing.

Case_Stream_Buffer: Object of class externalptr used for an R-side string buffer, currently not
used.

Methods

open(): Opens a connection too the file in Netica.

show(): Provides a description of the field

initialize(Name, Session, Case_Stream_Path, ...): internal constructor; user code should
use CaseFileStream.

The following methods are inherited (from CaseStream): close ("CaseStream"), isActive ("CaseS-
tream"), isOpen ("CaseStream"), show ("CaseStream"), clearErrors ("CaseStream"), reportErrors
("CaseStream"), initialize ("CaseStream")

Note

In version 0.5 of RNetica, this class was renamed. It is now called MemoryCaseStream and the
constructor is called CaseMemoryStream (while previously the class and the constructore had the
same name). This matches the usage of FileCaseStream and its constructor CaseFileStream.
This is not likely to be a problem as memory streams are not working well.

MemoryCaseStreams are most useful for small to medium size data frames. Larger data frames are
probably better handled through case files.

Internally, a weak reference system is used to keep a list of Netica stream objects which need to
be closed when RNetica is unloaded. Stream objects should also be forced closed when garbage
collected. The weak reference system is somewhat experimental, so well designed code should
manually close the streams when the program is through with it.

Stream objects are fragile, and will not survive saving and restoring an R session. However, the
object retains information about itself, so that calling OpenCaseStream on the saved object, should
reopen the stream. Note that any position information will be lost.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: NewMemoryStream_ns(), http://homepage.
stat.uiowa.edu/~luke/R/references/weakfinex.html

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/NewMemoryStream_ns.html
http://homepage.stat.uiowa.edu/~luke/R/references/weakfinex.html
http://homepage.stat.uiowa.edu/~luke/R/references/weakfinex.html


116 MemoryCaseStream-class

See Also

See CaseStream for the superclass and FileCaseStream for a sibling class. The function CaseMemoryStream
is the constructor.

CaseFileDelimiter, CaseFileMissingCode, WriteFindings, ReadFindings, MemoryStreamContents

Examples

sess <- NeticaSession()
startSession(sess)

abc <- CreateNetwork("ABC", session=sess)
A <- NewDiscreteNode(abc,"A",c("A1","A2","A3","A4"))
B <- NewDiscreteNode(abc,"B",c("B1","B2","B3"))
C <- NewDiscreteNode(abc,"C",c("C1","C2"))

AddLink(A,B)
AddLink(A,C)
AddLink(B,C)

## This is the file written in CaseFileStream help.
casefile <- file.path(library(help="RNetica")$path,

"testData","abctestcases.cas")

CaseFileDelimiter("\t", session=sess)
CaseFileMissingCode("*", session=sess)
cases <- read.CaseFile(casefile, session=sess)

memstream <- CaseMemoryStream(cases, session=sess)

##Case 1
memstream <- ReadFindings(list(A,B,C),memstream,"FIRST")
stopifnot(NodeFinding(A) == "A1",

NodeFinding(B) == "B1",
NodeFinding(C) == "C1",
getCaseStreamLastId(memstream)==1001,
abs(getCaseStreamLastFreq(memstream)-1.0) <.0001)

##Case 2
memstream <- ReadFindings(list(A,B,C),memstream,"NEXT")
stopifnot(NodeFinding(A) == "A2",

NodeFinding(B) == "B2",
NodeFinding(C) == "C2",
getCaseStreamLastId(memstream)==1002,
abs(getCaseStreamLastFreq(memstream)-2.0) <.0001)

##Case 3
memstream <- ReadFindings(list(A,B,C),memstream,"NEXT")
stopifnot(NodeFinding(A) == "A3",

NodeFinding(B) == "B3",
NodeFinding(C) == "@NO FINDING",
getCaseStreamLastId(memstream)==1003,



MemoryStreamContents 117

abs(getCaseStreamLastFreq(memstream)-1.0) <.0001)

## EOF
memstream <- ReadFindings(list(A,B,C),memstream,"NEXT")
stopifnot (is.na(getCaseStreamPos(memstream)))

##Clean Up
CloseCaseStream(memstream)
DeleteNetwork(abc)

stopSession(sess)

MemoryStreamContents Access the contents of a MemoryCaseStream

Description

This function returns the contents of a MemoryCaseStream’s internal buffer as a data.frame. Al-
ternatively, it sets the contents of the buffer to a given data frame.

Usage

MemoryStreamContents(stream)
MemoryStreamContents(stream) <- value

Arguments

stream A MemoryCaseStream object whose contents is to be access.

value Either a data frame giving the new value (see details), or else NULL.

Details

A set of cases for a Netica network corresponds to a data.frame. The columns represent nodes in
the graph, and the values in that particular column correspond to findings for that node: a particular
instantiation for that state, with a value of NA if the state of that node is unknown.

In addition to columns representing variables, two special columns are allowed. The column named
“IDnum”, if present should contain integers which correspond to ID numbers for the cases (this
correspond to the id argument of WriteFindings). The column named “NumCases” should con-
tain number values and this allows rows to be differentially weighted (this correspond to the freq
argument of WriteFindings).

A MemoryCaseStream contains an R data frame object written out in string form. This func-
tion converts between the internal string object and the data frame representation. When called
as MemoryStreamContents(stream) it reads the current value of the stream and converts it to a
data frame. When called as setter function, it converts the value into a string and focuses the
MemoryCaseStream object on this string.



118 MemoryStreamContents

Setting the contents to NULL creates a new empty stream buffer inside of the stream object. This is
useful for creating a blank buffer for writing cases.

The code MemoryCaseStream object maintains a cached copy of the data frame associated with the
memory stream. Calling the function in either the setter or getter form updates that cache. Calling
this function when the stream is closed, will access the cached copy. In the case of the setter form,
this will updated the cached value, and if the stream is reopened, it will focus on the new cached
value. Note that if the stream is closed before MemoryStreamContents is called, then the value
returned will be the cached value created when MemoryStreamContents was last called, or when
the stream is opened.

Value

A data frame which corresponds to the contents of the stream buffer, or NULL if the stream buffer is
empty.

Note

The cached value of the stream can be accessed with the expression stream$Case_Stream_DataFrame.
While it is almost certainly a mistake to set this value directly, there may be situations (e.g., avoiding
duplicating the data frame when the stream is essentially open for reading only) where it is useful.
On the other hand, there may be situations where it is useful to read the cached value without forcing
a reread of the memory buffer.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: SetStreamContents_ns(),

See Also

CaseFileDelimiter, CaseFileMissingCode, WriteFindings, ReadFindings, MemoryCaseStream,
CaseStream

Examples

sess <- NeticaSession()
startSession(sess)

casefile <- file.path(library(help="RNetica")$path,
"testData","abctestcases.cas")

CaseFileDelimiter("\t", session=sess)
CaseFileMissingCode("*", session=sess)
cases <- read.CaseFile(casefile, session=sess)

memstream <- CaseMemoryStream(cases, session=sess)

## Should be the same as cases

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/SetStreamContents_ns.html


MemoryStreamContents 119

stopifnot(all.equal(MemoryStreamContents(memstream),cases))

MemoryStreamContents(memstream) <- cases

CloseCaseStream(memstream) ## Don't forget to read off the value
## first if needed before closing.

stopifnot(!isCaseStreamOpen(memstream))
## This should return the cached value.
MemoryStreamContents(memstream)

## Will clear stream when next open
MemoryStreamContents(memstream) <- NULL

OpenCaseStream(memstream)
stopifnot(is.null(MemoryStreamContents(memstream)))

CloseCaseStream(memstream)

## Second test, do this from scratch.

casesabb <-
data.frame(IDnum=1001:1010,NumCases=rep(1,10),

A=c("A1","A1","A1","A1","A1","A2","A2","A2","A2","A2"),
B1=c("B1","B1","B1","B2","B2","B2","B2","B2","B1","B1"),
B2=c("B1","B1","B1","B1","B2","B2","B2","B2","B2","B1"))

abbstream <- CaseMemoryStream(casesabb, session=sess)
MemoryStreamContents(abbstream)
CloseCaseStream(abbstream)

abb <- CreateNetwork("ABB", session=sess)
A <- NewDiscreteNode(abb,"A",c("A1","A2"))
B1 <- NewDiscreteNode(abb,"B1",c("B1","B2"))
B2 <- NewDiscreteNode(abb,"B2",c("B1","B2"))

AddLink(A,B1)
AddLink(A,B2)

A[] <- c(.5,.5)
NodeExperience(A) <- 10

B1["A1"] <- c(.8,.2)
B1["A2"] <- c(.2,.8)
B2["A1"] <- c(.8,.2)
B2["A2"] <- c(.2,.8)
NodeExperience(B1) <- c(10,10)
NodeExperience(B2) <- c(10,10)

abbstream <- CaseMemoryStream(casesabb, session=sess)
## This does not appear to work correctly
abbstream <- ReadFindings(list(A,B1,B2),abbstream,"FIRST")



120 MostProbableConfig

NodeFinding(A)
NodeFinding(B1)
NodeFinding(B2)

CloseCaseStream(abbstream)
DeleteNetwork(abb)
stopSession(sess)

MostProbableConfig Finds the configuration of the nodes most likely to have lead to ob-
served findings.

Description

Findings a set of values for each of the nodes in nodelist such that the probability of that value
set is highest given the state of any findings entered into the network. This is sometimes called the
“Most Probable Explanation” for the findings.

Usage

MostProbableConfig(net,nth = 0)

Arguments

net An active and compiled NeticaBN.

nth Leave this at its default value of zero, it is for future expansion.

Details

The most probable configuration of the nodes in the Bayesian network is the set of values for each
of the nodes in the network which have the highest joint probability. This may or may not be thee
same as setting the value of each node to the value that maximizes its NodeBeliefs(). Pearl (1988)
describes a special max-propagation algorithm which can calculate the most likely configuration of
nodes in a Bayesian network. This function runs that algorithm. The probability that is maximized
is the posterior probability given the findings.

Note that this produces a configuration over all of the nodes in the network, not just the nodes in
some particular set. The Netica documentation suggests running AbsorbNodes() over the unneces-
sary nodes first. Another possibility (if the set of interesting nodes is small) is to call JointProbability()
on the affected nodes and then find the max of that.

Value

A character vector whose names are the names of the nodes in the network (see NetworkAllNodes(net))
and whose values are the names of the states that maximize the posterior probability given the find-
ings.



MostProbableConfig 121

Warning

The documentation for the Netica function MostProbableConfig_bn() states that likelihood findings
(NodeLikelihood()) are not handled properly in MostProbableConfig(). Seems to indicate that
this works properly, but some caution is still advised.

Note

The Bayesian network literature also discusses algorithms for the 2nd, 3rd, 4th, etc. most likely
findings. These algorithms are slightly more difficult to implement, but are possible on future plans
for the Netica API, as it offers the nth argument to the function MostProbableConfig_bn(). At this
point in time, it is an error to set nth to anything but 0.

Author(s)

Russell Almond

References

Pearl, J. (1988) Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann.

http://norsys.com/onLineAPIManual/index.html: MostProbableConfig_bn()

See Also

NeticaBN, NodeBeliefs(), EnterNegativeFinding(), RetractNodeFinding(), NodeFinding()
JointProbability(), FindingsProbability()

Examples

sess <- NeticaSession()
startSession(sess)

EMSMMotif <- ReadNetworks(file.path(library(help="RNetica")$path,
"sampleNets","EMSMMotif.dne"), session=sess)

CompileNetwork(EMSMMotif)
obs <- NetworkNodesInSet(EMSMMotif,"Observable")
prof <- NetworkNodesInSet(EMSMMotif,"Proficiency")

NodeFinding(obs$Obs1a1) <- "Right"
NodeFinding(obs$Obs1a2) <- "Wrong"
NodeFinding(obs$Obs1b1) <- "Right"
NodeFinding(obs$Obs1b2) <- "Wrong"

mpe <- MostProbableConfig(EMSMMotif)

## Observed values should be set at their findings level.
stopifnot (

mpe$Obs1a1 == "Right",
mpe$Obs1a2 == "Wrong",

http://norsys.com/onLineAPIManual/functions/MostProbableConfig_bn.html
http://norsys.com/onLineAPIManual/functions/MostProbableConfig_bn.html
http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/MostProbableConfig_bn.html


122 MutualInfo

mpe$Obs1b1 == "Right",
mpe$Obs1b2 == "Wrong"

)

## MPE for just proficiency variables.
mpe[names(prof)]

DeleteNetwork(EMSMMotif)
stopSession(sess)

MutualInfo Calculates strength of relationship between two nodes in a network

Description

The mutual information is a measure of how closely related one node is to another, i.e., how much
information each node in nodelist provides about the target node. The expression MutualInfo(target, nodelist)
calculates the mutual information of each node in nodelist with target.

The function VarianceOfReal() is similar, but instead it measures the reduction in variance of the
target. The target node must be continuous or have numeric values assigned to all levels using
NodeLevels.

Usage

MutualInfo(target, nodelist)
VarianceOfReal(target, nodelist)

Arguments

target An active NeticaNode object that is the target of inference (i.e., we want to find
the influence of other nodes on this node).

nodelist A non-empty list of active NeticaNode objects whose effect on target is desired.

Details

The mutual information between two discrete variables is defined as:

MI(X,Y ) =
∑
x,y

Pr(x, y) log
Pr(x, y)

Pr(x) Pr(y)
.

It is a measure of how much information X provides about Y. This measure is appropriate when both
X and Y are discrete variables.

Mutual information is often used to select the next best variable to test (in the educational con-
text, this would be the next item to select for an adaptive test). The highest value of the mutual
information will provide the most information. (See Chapter 7 of Almond et al, 2015).

The function VarianceOfReal(target,nodelist) is related, but in this case target must either be
continuous (is.continuous(target) is true) or have numeric values assigned to each level using



MutualInfo 123

NodeLevels(target). For this function, the value returned is the amount by which the variance of
target is expected to be reduced if the value of the observable node in the nodelist was learned.
Again, higher values indicate better information.

Value

Returns a named numeric vector with the names corresponding to the nodes in nodelist and the
value the mutual information or variance reduction.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: MutualInfo_bn(), VarianceOfReal_bn()

Almond, R. G., Mislevy, R. J., Steinberg, L. S., Yan, D. & Williamson, D. M. (2015) Bayesian
Networks in Educational Assessment. Springer.

See Also

is.continuous(), NodeExpectedValue(), NodeLevels(),

Examples

sess <- NeticaSession()
startSession(sess)

irt5 <- ReadNetworks(file.path(library(help="RNetica")$path,
"sampleNets","IRT5.dne"), session=sess)

irt5.theta <- NetworkFindNode(irt5,"Theta")
irt5.x <- NetworkFindNode(irt5,paste("Item",1:5,sep="_"))

CompileNetwork(irt5)

MutualInfo(irt5.theta,irt5.x)

VarianceOfReal(irt5.theta,irt5.x)

DeleteNetwork(irt5)
stopSession(sess)

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/MutualInfo_bn.html
http://norsys.com/onLineAPIManual/functions/VarianceOfReal_bn.html


124 NeticaBN

NeticaBN An object referencing a Bayesian network in Netica.

Description

This file is now obsolete: See NeticaBN for the new class description.

This object is returned by various RNetica functions which create or find network objects, and
contain handles to the Bayesian network. A NeticaBN object represents an active network. The
function is.active() tests whether the network is still loaded into Netica’s memory.

Usage

is.NeticaBN(x)

Arguments

x The object to print or test

Details

This is an object of class NeticaBN. It consists of a name, and an invisible handle to a Netica net-
work. The function is.active() tests the state of that handle and returns FALSE if the network is no
longer in active memory (usually because of a call to DeleteNetwork()). The printed representa-
tion depends on whether or not it is active (inactive nodes print as "<Deleted Network: Name >").

For active networks, the equality test tests to see if both object point to the same object in Netica
memory. Not that the name of the network is embedded in the object implementation and may get
out of sync with the network, so the printed representations may be unequal even if it points to the
same network. For inactive networks, the objects are compared using the cached names.

Value

For toString() a string. The function print() is usually called for its side effects.

The function is.NeticaBN() returns a logical scalar depending on whether or not its argument is a
NeticaBN.

The function Ops.NeticaBN() returns a logical value depending on whether the objects are equal.

Note

[This reflects RNetica version 0.1–0.4. It is no longer current as of version 0.5.]

Internally, the NeticaBN objects are character strings with extra attributes. So as.character(net)
will return the name of the network. Because of this, the default c() function will strip off the
essential attributes returning them to strings. Use the cc() function instead to avoid this problem.

Note that if a NeticaBN object is stored in an R object, and the network is subsequently renamed
(with a call to the set method of NetworkName), the old object may persist with the wrong name.
This may result in a situation where the printed names of the objects are different but net1==net2
returns true. This can be fixed with the code NetworkName(net) <- NetworkName(net).



NeticaBN 125

NeticaBN objects are all rendered inactive when StopNetica() is called, therefore they do not per-
sist across R sessions. Generally speaking, the network should be saved, using WriteNetworks()
and then reloaded in the new session using ReadNetworks(). When a network is saved or loaded
the "Filename" attribute is set, to provide a mechanism for storing the filename across R sessions.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIurl/index.html: GetNetUserData_bn(), SetNetUserData_bn()
(these are used to maintain the back pointers to the R object).

See Also

CreateNetwork(),DeleteNetwork(), GetNamedNetworks(),NetworkName(), is.active(), NetworkAllNodes(),
WriteNetworks(), GetNetworkFileName(), cc()

Examples

## Not run:
net1 <- CreateNetwork("aNet")
stopifnot(is.NeticaBN(net1))
stopifnot(is.active(net1))
stopifnot(net1$Name=="aNet")

net2 <- GetNamedNetworks("aNet")
stopifnot(net2$Name=="aNet")
stopifnot(net1==net2)

NetworkName(net1) <- "Unused"
stopifnot(net1==net2)

netd <- DeleteNetwork(net1)
stopifnot(!is.active(net1))
stopifnot(!is.active(net2))
stopifnot(netd$Name=="Unused")
stopifnot(netd == net1)
## Warning: The following expression used to not be true (RNetica <0.5)
## but now is.
net1 = net2

## End(Not run)

http://norsys.com/onLineAPIurl/index.html
http://norsys.com/onLineAPIManual/functions/GetNetUserData_bn.html
http://norsys.com/onLineAPIManual/functions/SetNetUserData_bn.html


126 NeticaBN-class

NeticaBN-class Class "NeticaBN"

Description

This is an R side container for a Netica netork. Note that it has a container for the nodes which have
been advertised from the network.

Details

A NeticaBN is an R wrapper for the internal pointer to the Netica nework. A network is said to be
‘active’ if it references a network object in a current Netica session. A network become inactive
when it is deleted (with a call to DeleteNetwork) or when the R session is saved an restored. In the
latter case, if the network was saved with a call to WriteNetworks, then calling ReadNetworks on
the inactive network will reload it from the save file.

Generally, NeticaBN objects are created with calls to either CreateNetwork or ReadNetworks.
Both require a reference to an active NeticaSession object. NeticaBN objects are registered with
the NeticaSession object, which contains a collection of all of the networks known about by the
session.

The nodes field of the NeticaBN object (net$nodes) contains a cache of all code NeticaNode
objects that are contained by the network and known about by R. Nodes are registered by their
Netica name so the expression net$nodes$nodename or net$nodes[[nodename]] references a
node with the name nodename in net .

Note that R node objects are created when a node is created in R, but not when a network is read in
using ReadNetworks. This is useful for cases where the network is large and only a few nodes will
be reference in the R code. The function NetworkFindNode() will find a node by name and create
the R object corresponding to the node if needed. The function NetworkAllNodes() will create R
objects for all nodes in the net.

Extends

All reference classes extend and inherit methods from "envRefClass". Note that because this is
a reference class unlike traditional S3 and S4 classes it can be destructively modified. Also fields
(slots) are accessed using the ‘$’ operator.

Methods

Compare signature(e1 = "NeticaBN", e2 = "NeticaBN"): Tests for equality (mainly of
pointers.

is.active signature(x = "NeticaBN"): Returns true if the NeticaBN objectcurrently references
an active Netica object, and returns false if it references a deleted network or a network created
in a previous sesion which has not be re-activated.

print signature(x = "NeticaBN"): Creates a printed representation.

toString signature(x = "NeticaBN"): Creates a character representation.

is.element signature(el = "NeticaBN", set = "list"): Checks to see if el is in list of nets.



NeticaBN-class 127

Fields

Note these should be regarded as read-only from user code.

Name: Object of class character giving the Netica name of the network. Must follow the IDname
rules. This should not be set by user code, use NetworkName instead.

PathnameName: Object of class character giving the path from which the network was last read
or to which it was last saved.

Netica_bn: Object of class externalptr linking to the Netica object corresponding to this net-
work.

Session: Object of class NeticaSession: a back pointer to the NeticaSession object in which
the network was created.

nodes: Object of class environment which contains a cache of NeticaNode objects belonging to
this network.

Class-Based Methods

listNodes(): Lists all of the cached nodes. (Contrast this to NetworkAllNodes(net) which lists
all nodes in the network.

searchNodes(pattern): Lists all cached nodes matching the regular expression given in pattern.
(See objects.)

show(): Gives a detailed description of the object.

isActive(): Returns true if the object currently points to a Netica network, and false if it does not.

findNode(nodename): Searches for a cached node with name nodename, returns it if found or
NULL if not.

clearErrors(severity): Calls clearErrors on the Session object.

reportErrors(maxreport, clear): Calls reportErrors on the Session object.

initialize(Name, Session, ...): Initialization function. Should not be called by user code.

deactivate(): Destroys the pointer to the Netica object. Should not be called by user code.

deactivateNodes(): Recursively deactives all nodes contained by this network. Should not be
called by user code.

Note

The NeticaBN class was changed into a formal R6 reference class as of version 0.5 of RNetica.
Prior to that, it was an S3 class created by adding attributes to a string. That proved to be less than
robust, as several R functions (notably c()) would strip the attributes.

Another change is the method for finding the network object from the Netica pointer inside of the
C code. Now the R objects are cached inside of a NeticaSession object by their netica name. The
R object is found by searching the cache inside of the session object.

Author(s)

Russell Almond



128 NeticaCaseStream

References

http://norsys.com/onLineAPIurl/index.html: GetNetUserData_bn(), SetNetUserData_bn()
(these are used to maintain the back pointers to the R object).

See Also

NeticaBN objects are contained by NeticaSession objects and contain NeticaNode objects.

CreateNetwork(),DeleteNetwork(), GetNamedNetworks(),NetworkName(), is.active(), NetworkAllNodes(),
WriteNetworks(), GetNetworkFileName(),

Examples

sess <- NeticaSession()
startSession(sess)

net1 <- CreateNetwork("aNet",sess)
stopifnot(is.NeticaBN(net1))
stopifnot(is.active(net1))
stopifnot(net1$Name=="aNet")

net2 <- GetNamedNetworks("aNet",sess)
stopifnot(net2$Name=="aNet")
stopifnot(net1==net2)

NetworkName(net1) <- "Unused"
stopifnot(net1==net2)

netd <- DeleteNetwork(net1)
stopifnot(!is.active(net1))
stopifnot(!is.active(net2))
stopifnot(netd$Name=="Unused")
stopifnot(netd == net1)

stopSession(sess)

NeticaCaseStream Functions for manipulating Netica case streams

Description

The CaseStream object is a wrapper around a Netica stream which is used to read/write cases—
sets of findings entered into a Netica network. There are two subclasses: FileCaseStream and
MemoryCaseStream. The function ReadFindings reads the findings from the stream and the func-
tion WriteFindings writes them out.

http://norsys.com/onLineAPIurl/index.html
http://norsys.com/onLineAPIManual/functions/GetNetUserData_bn.html
http://norsys.com/onLineAPIManual/functions/SetNetUserData_bn.html


NeticaCaseStream 129

Usage

OpenCaseStream(oldstream)
CloseCaseStream(stream)
is.NeticaCaseStream(x)
isCaseStreamOpen(stream)
getCaseStreamPos(stream)
getCaseStreamLastId(stream)
getCaseStreamLastFreq(stream)

Arguments

oldstream A previously closed CaseStream object.

stream A CaseStream object.

x A object to be printed or whose type is to be determined.

... Other arguments to toString. These are ignored.

Details

A CaseStream object is an R wrapper around a Netica stream object. There are two special cases:
FileCaseStream objects are streams focused on a case file, and MemoryCaseStream objects are
streams focused on a hunk of memory corresponding to an R data frame object.

Although the function WriteFindings always appends a new case to the end of a file (and hence
does not need to keep the stream object open between calls), the function ReadFindings will read
(by default) sequentially from the cases in the stream, and hence the stream needs to be kept open
between calls.

The functions CaseFileStream and CaseMemoryStream create new streams and open them. The
function OpenCaseStream will reopen a previously closed stream, and will issue a warning if the
stream is already open. The function CloseCaseStream closes an open case stream (and is harm-
less if the stream is already closed). Although RNetica tries to close open case streams when they
are garbage collected, users should not count on this behavior and should close them manually.
Also be aware that all case streams are automatically closed when R is closes or RNetica is un-
loaded. The function isCaseStreamOpen tests to see if the stream is open or closed. The function
WithOpenCaseStream executes an arbitrary R expression in a context where the stream is open, and
then closed afterwards.

Netica internally keeps track of the current position of the stream when it is read or written.
The functions getCaseStreamPos, getCaseStreamLastId and getCaseStreamLastFreq get in-
formation about the position in the file, the user generated id number and the frequency/weight
assigned to the case at the time the stream was last read or written. In particular, the function
ReadFindings returns a CaseStream object, which should be queried to find the ID and Fre-
quencies read from the stream. When ReadFindings reaches the end of the stream, the value
of getCaseStreamPos(stream) will be NA.

Value

The functions OpenCaseStream and CloseCaseStream both return their argument, which should
be a CaseStream.



130 NeticaCaseStream

The function toString.CaseStream returns a string providing information about the source and
status its argument.

The functions is.NeticaCaseStream and isCaseStreamOpen both return logical values indicat-
ing whether or not the condition holds. The latter function returns NA if its argument is not a
CaseStream.

The function getCaseStreamPos returns a scalar integer values giving the position of the last record
read from or written to the stream. The position is an integer corresponding to the number of
characters that have been read in the stream. If an attempt has been made to read past the end of the
stream, this value will be NA.

The function getCaseStreamLastId is a user specified integer associated with the case last read
from or written to the stream. It’s value is -1 if the user did not assign ID numbers.

The function getCaseStreamLastFreq returns a numeric scalar which is the weight associated
with the last case read from or written to stream. If the user did not specify frequencies when the
stream was written, the value returned is -1.

The functions LearnCPTs and LearnCases update the CPTs of a Bayesian network based on the
cases in the case stream.

Note

The functions ReadNetworks and WriteNetworks also use Netica streams internally. However, as
it is almost certainly a mistake to keep the stream open after the network has been read or written,
no CaseStream object is created.

Internally, a weak reference system is used to keep a list of Netica stream objects which need to
be closed when RNetica is unloaded. Stream objects should also be forced closed when garbage
collected. The weak reference system is somewhat experimental, so well designed code should
manually close the streams when the program is through with them.

Stream objects are fragile, and will not survive saving and restoring an R session. However, the
object retains information about itself, so that calling OpenCaseStream on the saved object, should
reopen the stream. Note that any position information will be lost.

The functions LearnCPTs and LearnCases don’t seem to work with MemoryCaseStreams; for now,
work around by writing the data out to a file and then writing using a FileCaseStream.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: NewFileStream_ns(),NewMemoryStream_ns(),
DeleteStream_ns() http://homepage.stat.uiowa.edu/~luke/R/references/weakfinex.html

See Also

See CaseStream for details about the stream object. See FileCaseStream and MemoryCaseStream
for specific details about these stream types.

CaseFileDelimiter, CaseFileMissingCode, WriteFindings, ReadFindings, CaseMemoryStream,CaseFileStream,
WithOpenCaseStream LearnCPTs, LearnCases

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/NewFileStream_ns.html
http://norsys.com/onLineAPIManual/functions/NewMemoryStream_ns.html
http://norsys.com/onLineAPIManual/functions/DeleteStream_ns.html
http://homepage.stat.uiowa.edu/~luke/R/references/weakfinex.html


NeticaCaseStream 131

Examples

sess <- NeticaSession()
startSession(sess)

abc <- CreateNetwork("ABC",sess)
A <- NewDiscreteNode(abc,"A",c("A1","A2","A3","A4"))
B <- NewDiscreteNode(abc,"B",c("B1","B2","B3"))
C <- NewDiscreteNode(abc,"C",c("C1","C2"))

AddLink(A,B)
AddLink(A,C)
AddLink(B,C)

## Outputfilename
casefile <- tempfile("testcase",fileext=".cas")

filestream <- CaseFileStream(casefile,sess)
stopifnot(is.NeticaCaseStream(filestream),

isCaseStreamOpen(filestream))

## Case 1
NodeFinding(A) <- "A1"
NodeFinding(B) <- "B1"
NodeFinding(C) <- "C1"
filestream <- WriteFindings(list(A,B,C),filestream,1001,1.0)
stopifnot(getCaseStreamLastId(filestream)==1001,

abs(getCaseStreamLastFreq(filestream)-1.0) <.0001)
pos1 <- getCaseStreamPos(filestream)
RetractNetFindings(abc)

## Case 2
NodeFinding(A) <- "A2"
NodeFinding(B) <- "B2"
NodeFinding(C) <- "C2"
## Double weight this case
filestream <- WriteFindings(list(A,B,C),filestream,1002,2.0)
pos2 <- getCaseStreamPos(filestream)
stopifnot(pos2>pos1,getCaseStreamLastId(filestream)==1002,

abs(getCaseStreamLastFreq(filestream)-2.0) <.0001)
RetractNetFindings(abc)

## Case 3
NodeFinding(A) <- "A3"
NodeFinding(B) <- "B3"
## C will be missing
filestream <- WriteFindings(list(A,B,C),filestream,1003,1.0)
stopifnot(getCaseStreamLastId(filestream)==1003,

abs(getCaseStreamLastFreq(filestream)-1.0) <.0001)
RetractNetFindings(abc)

## Close it
filestream <- CloseCaseStream(filestream)



132 NeticaNode

stopifnot (is.NeticaCaseStream(filestream),
!isCaseStreamOpen(filestream))

## Reopen it
filestream <- OpenCaseStream(filestream)
stopifnot (is.NeticaCaseStream(filestream),

isCaseStreamOpen(filestream))

##Case 1
RetractNetFindings(abc)
filestream <- ReadFindings(list(A,B,C),filestream,"FIRST")
pos1a <- getCaseStreamPos(filestream)
stopifnot(pos1a==pos1,

getCaseStreamLastId(filestream)==1001,
abs(getCaseStreamLastFreq(filestream)-1.0) <.0001)

##Case 2
RetractNetFindings(abc)
filestream <- ReadFindings(list(A,B,C),filestream,"NEXT")
stopifnot(getCaseStreamPos(filestream)==pos2,

getCaseStreamLastId(filestream)==1002,
abs(getCaseStreamLastFreq(filestream)-2.0) <.0001)

##Clean Up
CloseCaseStream(filestream)
CloseCaseStream(filestream) ## This should issue a warning but be
## harmless.
DeleteNetwork(abc)

stopSession(sess)

NeticaNode An object referencing a node in a Netica Bayesian network.

Description

OBSOLETE: See NeticaNode (class) for current (RNetica 0.5 and beyond) implementation.

This object is returned by various RNetica functions which create or find nodes in a NeticaBN
network. A NeticaNode object represents a node object inside of Netica’s memory. The function
is.active() tests whether the node is still a valid reference.

Usage

is.NeticaNode(x)

Arguments

x The object to print or test



NeticaNode 133

Details

This information is current only for Version 0.4 and earlier of RNetica.

This is an object of class NeticaNode. It consists of a name, and an invisible handle to a Netica
node. The function is.active() tests the state of that handle and returns FALSE if the node is no
longer in active memory (usually because of a call to DeleteNode() or DeleteNetwork().

NeticaNodes come in two types: discrete and continuous (see is.discrete()). The two types
give slightly different meanings to the NodeStates() and NodeLevels() attributes of the node.
The printed representation shows whether the node is discrete, continuous or inactive (deleted).

For active nodes, the equality test tests to see if both object point to the same object in Netica
memory. Note that the name of the node is embedded in the R object implementation and may get
out of sync with Netica memory, so the printed representations may be unequal even if it points to
the same node. For inactive nodes, the objects are compared using the cached names.

Value

For toString() a string. The function print() is usually called for its side effects.

The function is.NeticaNode() returns a logical scalar depending on whether or not its argument
is a NeticaBN.

Note

The first two paragraphs are obsolete as of Version 0.5.

Internally, the NeticaNode objects are character strings with extra attributes. So as.character(node)
will return the name of the node. Because of this, the default c() function will strip off the essential
attributes returning them to strings. Use the cc() function instead to avoid this problem.

Note that if a NeticaNode object is stored in an R object, and the Node is subsequently renamed
(with a call to the set method of NodeName), the old object may persist with the wrong name. This
may result in a situation where the printed names of the objects are different but node1==node2
returns true. This can be fixed with the code NodeName(net) <- NodeName(net).

NeticaNode objects are all rendered inactive when StopNetica() is called, therefore they do not
persist across R sessions. Generally speaking, the network should be saved, using WriteNetworks()
and then reloaded in the new session using ReadNetworks(). The node objects should then be
recreated via a call to NetworkFindNode().

Note that RNetica is lazy about creating NeticaNode objects for nodes when a network is read from
a file. Probably users should avoid creating or saving NetworkNode objects unless they are going to
use them frequently.

Author(s)

Russell Almond

References

http://norsys.com/onLurl/Manual/index.html: AddNodeToNodeset_bn(), RemoveNodeFromNode-
set_bn(), IsNodeInNodeset_bn() GetNodeUserData_bn(), SetNodeUserData_bn() (these are used to
maintain the back pointers to the R object).

http://norsys.com/onLurl/Manual/index.html
http://norsys.com/onLineAPIManual/functions/AddNodeToNodeset_bn.html
http://norsys.com/onLineAPIManual/functions/RemoveNodeFromNodeset_bn.html
http://norsys.com/onLineAPIManual/functions/RemoveNodeFromNodeset_bn.html
http://norsys.com/onLineAPIManual/functions/IsNodeInNodeset_bn.html
http://norsys.com/onLineAPIManual/functions/GetNodeUserData_bn.html
http://norsys.com/onLineAPIManual/functions/SetNodeUserData_bn.html


134 NeticaNode-class

See Also

NeticaBN, NetworkFindNode(), is.active(), is.discrete(), NewContinuousNode(), NewDiscreteNode(),
DeleteNodes(), NodeName(), NodeStates(), NodeLevels(), cc()

Examples

## Not run:
nety <- CreateNetwork("yNode")

node1 <- NewContinuousNode(nety,"aNode")
stopifnot(is.NeticaNode(node1))
stopifnot(is.active(node1))
stopifnot(as.character(node1)=="aNode")

node2 <- NetworkFindNode(nety,"aNode")
stopifnot(as.character(node2)=="aNode")
stopifnot(node1==node2)

NodeName(node1) <- "Unused"
stopifnot(node1==node2)
## Warning: The following expression is true!
as.character(node1) != as.character(node2)

noded <- DeleteNodes(node1)
stopifnot(!is.active(node1))
stopifnot(!is.active(node2))
stopifnot(as.character(noded)=="Unused")
stopifnot(noded == node1)
## Warning: The following expression is true!
node1 != node2

DeleteNetwork(nety)

## End(Not run)

NeticaNode-class Class "NeticaNode"

Description

This object is returned by various RNetica functions which create or find nodes in a NeticaBN
network. A NeticaNode object represents a node object inside of Netica’s memory. The function
is.active() tests whether the node is still a valid reference.

Details

This is an object of class NeticaNode. It consists of a name, and an pointer to a Netica node in the
workspace. The function is.active() tests the state of that handle and returns FALSE if the node
is no longer in active memory (usually because of a call to DeleteNode() or DeleteNetwork().



NeticaNode-class 135

NeticaNodes come in two types: discrete and continuous (see is.discrete()). The two types
give slightly different meanings to the NodeStates() and NodeLevels() attributes of the node.
The printed representation shows whether the node is discrete, continuous or inactive (deleted).

NeticaNode objects are created at two different times. First, when the user creates a node in a
network using the NewContinuousNode() or NewDiscreteNode() functions. The second is when
a user first reads the network in from a file using ReadNetworks and then subsequently searches
for the node using NetworkFindNode. Note that this latter means that there may be nodes in the
Netica network for which no R object has yet been created. When NeticaNode objects are created,
they are cached in the NeticaBN object. Cached objects can be referenced by the nodes field of the
NeticaBN object (which is an R environment). Thus, the expressions net$nodes$nodename and
net$nodes[[nodename]] both reference a node with the Netica name nodename in the network
net . Note that both of these expressions will yeild NULL if no R object has yet been created for the
node. The function NetworkAllNodes(net) will as a side effect create node objects for all of the
nodes in net .

The function match (and consequently %in% does not like it when the first argument is a node. To
get around this problem, wrap the node in a list. I’ve added a method for the function is.element
which does this automatically.

Extends

All reference classes extend and inherit methods from "envRefClass". Note that because this is
a reference class unlike traditional S3 and S4 classes it can be destructively modified. Also fields
(slots) are accessed using the ‘$’ operator.

Methods

[<- signature(x = "NeticaNode"): Sets conditional probabliity table for node, see Extract.NeticaNode.

[ signature(x = "NeticaNode"): Gets conditional probabliity table for node, see Extract.NeticaNode.

[[ signature(x = "NeticaNode"): Gets conditional probabliity table for node, see Extract.NeticaNode.

Compare signature(e1 = "NeticaNode", e2 = "ANY"): Tests two nodes for equality

is.element signature(el = "NeticaNode", set = "list"): Checks to see if el is in list of
nodes.

print signature(x = "NeticaNode"): Makes printed representation.

toString signature(x = "NeticaNode"): Makes character representation.

Fields

Note these should be regarded as read-only from user code.

Name: Object of class character giving the Netica name of the node. Must follow the IDname
rules. This should not be modified by user code, use NodeName instead.

Netica_Node: Object of class externalptr giving the address of the node in Netica’s memory
space.

Net: Object of class NeticaBN, a back reference to the network in which this node resides.

discrete: Object of class logical true if the node is discrete and false otherwise.



136 NeticaNode-class

Class-Based Methods

show(): Prints a description of the node.

isActive(): Returns true if the object currently points to a Netica node, and false if it does not.

clearErrors(severity): Calls clearErrors on the Net$Session object.

reportErrors(maxreport, clear): Calls reportErrors on the Net$Session object.

initialize(Name, Net, discrete, ...): Initialziation function. Should not be called directly
by user code. Use NewDiscreteNode or NewContinuousNode instead.

deactivate(): Recursively deactives all nodes contained by this network. Should not be called
by user code.

Note

NeticaNode objects are all rendered inactive when StopNetica() is called, therefore they do not
persist across R sessions. Generally speaking, the network should be saved, using WriteNetworks()
and then reloaded in the new session using ReadNetworks(). The node objects should then be
recreated via a call to NetworkFindNode() or NetworkAllNodes().

Author(s)

Russell Almond

References

http://norsys.com/onLurl/Manual/index.html: AddNodeToNodeset_bn(), RemoveNodeFromNode-
set_bn(), IsNodeInNodeset_bn() GetNodeUserData_bn(), SetNodeUserData_bn() (these are used to
maintain the back pointers to the R object).

See Also

Its container class can be found in NeticaBN.

The help file Extract.NeticaNode explains the principle methods of referencing the conditional
probability table.

NetworkFindNode(), is.active(), is.discrete(), NewContinuousNode(), NewDiscreteNode(),
DeleteNodes(), NodeName(), NodeStates(), NodeLevels(),

Examples

sess <- NeticaSession()
startSession(sess)

nety <- CreateNetwork("yNode",sess)

node1 <- NewContinuousNode(nety,"aNode")
stopifnot(is.NeticaNode(node1))
stopifnot(is.active(node1))
stopifnot(node1$Name=="aNode")

http://norsys.com/onLurl/Manual/index.html
http://norsys.com/onLineAPIManual/functions/AddNodeToNodeset_bn.html
http://norsys.com/onLineAPIManual/functions/RemoveNodeFromNodeset_bn.html
http://norsys.com/onLineAPIManual/functions/RemoveNodeFromNodeset_bn.html
http://norsys.com/onLineAPIManual/functions/IsNodeInNodeset_bn.html
http://norsys.com/onLineAPIManual/functions/GetNodeUserData_bn.html
http://norsys.com/onLineAPIManual/functions/SetNodeUserData_bn.html


NeticaRNG 137

node2 <- NetworkFindNode(nety,"aNode")
stopifnot(node2$Name=="aNode")
stopifnot(node1==node2)

NodeName(node1) <- "Unused"
stopifnot(node1==node2)
node1$Name == node2$Name

noded <- DeleteNodes(node1)
stopifnot(!is.active(node1))
stopifnot(!is.active(node2))
stopifnot(noded$Name=="Unused")
stopifnot(noded == node1)
node1 == node2

DeleteNetwork(nety)
stopSession(sess)

NeticaRNG Creates a Netica Random Number Generator

Description

These functions create and manipulate Netica Random Number Generators (NeticaRNG. Note that
the storage for NeticaRNG objects should be freed when you are done with them by calling FreeNeticaRNG(rng).

Usage

NewNeticaRNG(seed = sample.int(.Machine$integer.max,1L), session=getDefaultSession())
FreeNeticaRNG(rng)
WithRNG(rng,expr)
is.NeticaRNG(x)
isNeticaRNGActive(rng)

Arguments

seed An unsigned integer to use as a seed for the random number generator.

session An object of type NeticaSession which defines the reference to the Netica
workspace.

rng A NeticaRNG object

x An arbitrary object

expr An expression to be executed.



138 NeticaRNG

Details

Netica supports random number generator objects which serve can be used to generate random
cases (GenerateRandomCase()). In either case explicitly creating a random number generator is
optional. If this is not done, the default random number generator is uses, which is slightly slower
because it needs to be threadsafe. As RNetica probably adds more overhead than the non-threadsafe
RNG, the primary use for creating a NeticaRNG is to produce a reproducable sequence of random
cases.

Creating a random number generator with rng <- NewNeticaRNG(seed) generates an object in
Netica space. The memory for that object should be freed when that is complete. The expression
FreeNeticaRNG(rng) frees this object. The function WithRNG can be used to execute code in a
context where the RNG will be freed after after completion or in the case of early termination due
to an error.

When the random number generator is freed, or if the R session or Netica session is terminated, the
NeticaRNG object will become inactive. The function isNeticaRNGActive(rng) tests to see if the
random number generator is active (the Netica version still exists).

Value

The value of NewNetiaRNG(seed) is an active NeticaRNG object.

The value of FreeRNG(rng) is its argument which is now inactive.

The value of WithRNG(rng,expr) is the result of evaluating expr.

The values of is.NeticaRNG(x) and isNeticaRNGActive(rng) are logical scalars.

Note

There are two other uses of newly created Netica RNG objects in the Netica Manual which are not
currently supported by RNetica. One is to simply generate uniform random numbers which seems
superfluous given R’s richer random number generation facilities. The second it to associate the
RNG with a network. According to the manual, such RNGs no longer need to be deleted when you
are done with them. This seems like it could lead to a situation where a single RNG was associated
with two networks and then the RNG was deleted when the first network was deleted. Therefore
the function NetworkSetRNG() always creates a new RNG.

Internally, a weak reference system is used to keep a list of Netica RNG objects which need to
be closed when RNetica is unloaded. RNG objects should also be forced closed when garbage
collected. The weak reference system is somewhat experimental, so well designed code should
manually close the RNG when the program is through with it.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: NewRandomGenerator_ns(), DeleteRan-
domGen_ns() http://homepage.stat.uiowa.edu/~luke/R/references/weakfinex.html

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/NewRandomGenerator_ns.html
http://norsys.com/onLineAPIManual/functions/DeleteRandomGen_ns.html
http://norsys.com/onLineAPIManual/functions/DeleteRandomGen_ns.html
http://homepage.stat.uiowa.edu/~luke/R/references/weakfinex.html


NeticaRNG-class 139

See Also

An object of NeticaRNG which is what is produced by a call to NewNeticaRNG.

NetworkSetRNG(), GenerateRandomCase()

Examples

sess <- NeticaSession()
startSession(sess)

rng <- NewNeticaRNG(123456789,sess)

stopifnot(is.NeticaRNG(rng),
isNeticaRNGActive(rng))

FreeNeticaRNG(rng)
stopifnot(!isNeticaRNGActive(rng))

stopSession(sess)

NeticaRNG-class Class "NeticaRNG"

Description

This is an object containing a reference to a Netica Random Number Generator. Note that the stor-
age for NeticaRNG objects should be freed when you are done with them by calling FreeNeticaRNG(rng).

Details

Netica supports random number generator objects which serve can be used to generate random
cases (GenerateRandomCase()). In either case explicitly creating a random number generator is
optional. If this is not done, the default random number generator is uses, which is slightly slower
because it needs to be threadsafe. As RNetica probably adds more overhead than the non-threadsafe
RNG, the primary use for creating a NeticaRNG is to produce a reproducable sequence of random
cases.

Creating a random number generator with rng <- NewNeticaRNG(seed) generates an object in
Netica space. The memory for that object should be freed when that is complete. The expression
FreeNeticaRNG(rng) frees this object. The function WithRNG can be used to execute code in a
context where the RNG will be freed after after completion or in the case of early termination due
to an error.

When the random number generator is freed, or if the R session or Netica session is terminated, the
NeticaRNG object will become inactive. The function isNeticaRNGActive(rng) tests to see if the
random number generator is active (the Netica version still exists).



140 NeticaRNG-class

Extends

All reference classes extend and inherit methods from "envRefClass". Note that because this is
a reference class unlike traditional S3 and S4 classes it can be destructively modified. Also fields
(slots) are accessed using the ‘$’ operator.

Methods

print signature(x = "NeticaRNG"): Produces a printer representation of the RNG object.

toString signature(x = "NeticaRNG"): Produces a string representation of the RNG object.

Fields

Note these should be regarded as read-only from user code.

Name: Object of class character giving a name to the RNG. These are autogenerated with a num-
ber.

Session: Object of class NeticaSession : a back pointer to the NeticaSession object in which
the network was created.

Netica_RNG: Object of class externalptr which hold the pointer to the RNG object in the Netica
workspace.

Seed: Object of class integer giving the seed used to initialize the RNG.

Class-Based Methods

show(): Provides a printed description

free(): Frees the RNG in Netica Memory. Equivalent to FreeNeticaRNG.

isActive(): Test to see if the RNG is active (been created in Netica) or inactive (already freed).

clearErrors(severity): Calls clearErrors on the Session object.

reportErrors(maxreport, clear): Calls reportErrors on the Session object.

initialize(Name, Session, Seed, ...): Initialization function. Should not be called by user
code.

Note

There are two other uses of newly created Netica RNG objects in the Netica Manual which are not
currently supported by RNetica. One is to simply generate uniform random numbers which seems
superfluous given R’s richer random number generation facilities. The second it to associate the
RNG with a network. According to the manual, such RNGs no longer need to be deleted when you
are done with them. This seems like it could lead to a situation where a single RNG was associated
with two networks and then the RNG was deleted when the first network was deleted. Therefore
the function NetworkSetRNG() always creates a new RNG.

Internally, a weak reference system is used to keep a list of Netica RNG objects which need to
be closed when RNetica is unloaded. RNG objects should also be forced closed when garbage
collected. The weak reference system is somewhat experimental, so well designed code should
manually close the RNG when the program is through with it.



NeticaSession 141

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: NewRandomGenerator_ns(), DeleteRan-
domGen_ns() http://homepage.stat.uiowa.edu/~luke/R/references/weakfinex.html

See Also

An object of NeticaRNG which is produced by a call to NewNeticaRNG.

NetworkSetRNG(), GenerateRandomCase()

Examples

sess <- NeticaSession()
startSession(sess)

rng <- NewNeticaRNG(123456789,sess)

stopifnot(is.NeticaRNG(rng),
isNeticaRNGActive(rng))

FreeNeticaRNG(rng)
stopifnot(!isNeticaRNGActive(rng))

stopSession(sess)

NeticaSession Creates a connection between R and Netica

Description

This function creates a NeticaSession object which encapsulates the link between R and Netica.
It also contains a collection of the networks associated with this Netica session.

Usage

NeticaSession(...,LicenseKey=character(),
SessionName=paste("RNetica Session", date()),
Checking=character(), maxmem=integer())

getDefaultSession()

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/NewRandomGenerator_ns.html
http://norsys.com/onLineAPIManual/functions/DeleteRandomGen_ns.html
http://norsys.com/onLineAPIManual/functions/DeleteRandomGen_ns.html
http://homepage.stat.uiowa.edu/~luke/R/references/weakfinex.html


142 NeticaSession

Arguments

... Possible to pass other fields initializers for subclasses. Base class uses fields
below.

LicenseKey If supplied, this should be a character scalar providing the license key purchased
from Norsys http://www.norsys.com/. If left as default, RNetica will run in
a limited mode.

SessionName A character vector giving an identifier for the session. Only used in printing.
Checking Object of class character one of the keywords: "NO_CHECK", "QUICK_CHECK",

"REGULAR_CHECK", "COMPLETE_CHECK", or "QUERY_CHECK", which controls how
rigorous Netica is about checking errors. A value of character() uses the Net-
ica default which is "REGULAR_CHECK".

maxmem Object of class numeric containing an integer indicating the maximum amount
of memory to be used by the Netica shared library in bytes. If supplied, this
should be at least 200,000.

Details

Starting with verison 0.5 of RNetica, in order to start Netica, you must first create an object of class
NeticaSession and then call startSession on that object. This object then contains a pointer to
the Netica environment, and networks are created within the NeticaSession object.

Netica is commercial software. The RNetica package downloads and installs the demonstration
version of Netica which is limited in its functionality (particularly in the size of the networks it
handles). Unlocking the full version of Netica requires a license key which can be purchased from
Norsys (http://www.Norsys.com/). They will send a license key which unlocks the full capabili-
ties of the shared library. This should be given as the LicenseKey argument to the constructor. If no
license key is applied, then Netica will run in a limited mode which limits the number of networks
and nodes in the networks. This is sufficient to run the test cases, and explore the capabilities, but
for serious model building you will need to purchase a license.

The checking argument, if supplied, is used to call the Netica function ArgumentChecking_ns().
See the documentation of that function for the meaning of the codes. The default value, "REGULAR_CHECK"
is appropriate for most development situations.

The maxmem argument, if supplied, is used to limit the amount of memory used by Netica. This is
passed in a call to the Netica function LimitMemoryUsage_ns(). Netica will complain if this value
is less than 200,000. Leaving this as NULL will not place limits on the size of Netica’s memory for
tables and things.

Prior to version 0.5, the Netica session pointer was managed inside of the c layer of RNetica. Thus,
the session was an implicit argument to several functions. In particular, the functions CreateNetwork,
GetNthNetwork, GetNamedNetworks, and ReadNetworks all now have a session argument. A ses-
sion argument is also needed by some lower level functions which create Netica objects: CaseFileDelimiter,
CaseFileMissingCode, CaseFileStream, CaseMemoryStream, OpenCaseStream and NewNeticaRNG.
For backwards compatability, the default for the session argument is now the value of getDefaultSession().

In the previous version the session was created an the StartNetica() function was called when
the RNetica namespace was attached. Thus the user did not need to worry about starting the Netica
session. To be backwards compatable, the function getDefaultSession() searches for a default
NeticaSession object and if necessary creates one and starts it.

The function getDefaultSession() does the following steps:

http://www.norsys.com/
http://www.Norsys.com/


NeticaSession 143

1. It first looks for a variable DefaultNeticaSession in the global environment. If this exists,
it will be used as the session. If it does not exist, and R is running in interactive mode, then
the user will be prompted to create one. If running in batch mode, or if the user does not want
to create the default environment, then getDefaultSession() will raise an error.

2. If creating a new session, it will look for a variable called NeticaLicenseKey in the global
environment. If that exists, it will be used as the license key when creating a new session. If
not, then a new limited session will be created.

3. If a session object was found in step 1, or created in step 2, then, if necessary is it activated
with a call to startSession.

Value

An object of class NeticaSession.

License

The Netica API is not free-as-in-speech software, the use of the Netica shared library makes you
subject to the Netica License agreement (which can be found in the RNetica folder in your R library.
If you do not agree to the terms of that license, please uninstall RNetica.

The Netica API is also not free-as-in-beer software. The demonstration version of the Netica API,
however, is. In order for you to make full use of the RNetica API, you must purchase a Netica API
license from Norsys (http://norsys.com/).

RNetica itself (the glue layers between R and Netica) is free (in both the speech and beer senses)
software. Suggestions for improvements and bug fixes are welcome.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: NewNeticaEnviron_ns(), InitNetica2_bn(),
CloseNetica_bn(), LimitMemoryUsage_ns(), ArgumentChecking_ns()

See Also

See NeticaSession for a discription of methods that use the Netica Session object.

startSession, stopSession, CreateNetwork, GetNthNetwork, GetNamedNetworks, and ReadNetworks.
It is

Examples

## Not run:
## Create a fully licensed session, and save it as the default
DefaultNeticaSession <- NeticaSession(LicenseKey="License Key from Norsys")

## Create a limited mode session
sess <- NeticaSession()

http://norsys.com/
http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/NewNeticaEnviron_ns.html
http://norsys.com/onLineAPIManual/functions/InitNetica2_bn.html
http://norsys.com/onLineAPIManual/functions/CloseNetica_bn.html
http://norsys.com/onLineAPIManual/functions/LimitMemoryUsage_ns.html
http://norsys.com/onLineAPIManual/functions/ArgumentChecking_ns.html


144 NeticaSession-class

startSession(sess)
NeticaVersion(sess)
getDefaultSession()
stopSession(sess)

## End(Not run)

NeticaSession-class Class "NeticaSession"

Description

An R object which provides a link to the Netica session. One of these must be present and active to
allow access to Netica from R. This object is also how one enables the Netica license.

Details

A Netica session is an R wrapper for the internal pointer to the Netica workspace. It is used by a
number of high-level Netica functions to provide access to the workspace, notably: CreateNetwork,
GetNthNetwork, GetNamedNetworks, and ReadNetworks. It is also needed by some lower level
functions which create Netica objects: CaseFileDelimiter, CaseFileMissingCode, CaseFileStream,
CaseMemoryStream, OpenCaseStream and NewNeticaRNG.

When initially created, the NeticaSession object is not active; that is, the connection to the internal
Netica environment is not yet established. Calling the method startSession will start the session,
making it active. The method stopSession will deallocate the Netica workspace. Note that it will
also make any NeticaBN or NeticaNode objects it contains inactive. The function is.active()
tests to see whether the session is currently active.

Starting with the introduction of the NeticaSession class, a license key purchased from Norsys
(http://www.norsys.com/) is a field of the NeticaSession class. This field should either be a
character scalar giving the complete string supplied by Norsys or a character scalar vector of length
zero (the default). The licence key is passed to Netica with the call to startSession(); if it is a
valid license key, then Netica starts in unlimited mode. If it is not a valid license key, the Netica
will start in a limited mode which restricts the number of objects that can be created. All of the
examples in the documentation should work in the limited mode; but people wanting to do serious
work will need to purchase a license key.

As the LicenseKey is stored in the NeticaSession object, do not share dumps of the NeticaSession
object with people who are not eligible to use your license.

The nets field of the NeticaSession object contains a collection (actually an environment) of
all of the networks. They are referenced using their Netica names. In particular, the construct
session$nets$netname will return the network named netname if it exists, or NULL. Similarly, the
construct session$nets[[netname]] will attempt to return the network whose name is the value of
netname. The method session$listNets() lists the names of all networks registered with the ses-
sion. This collection is maintained by the CreateNetwork, DeleteNetwork, and ReadNetworks,
so it is almost certainly an error to try and manually change it. Network objects should be renamed
using NetworkName which will update the collection.

http://www.norsys.com/


NeticaSession-class 145

Note that if an R workspace containing a NeticaSession object is saved and restored, then the nets
field will be a collection of inactive NeticaBN objects corresponding to the networks that were open
when the session was saved. As these contain the pathnames where the networks were last saved, it
can be used to reload the networks for a project.

It is unknown what would happen if more than one NeticaSession is active at the same time. Many
possibilities are less than ideal.

Extends

All reference classes extend and inherit methods from "envRefClass". Note that because this is
a reference class unlike traditional S3 and S4 classes it can be destructively modified. Also fields
(slots) are accessed using the ‘$’ operator.

Methods

is.active signature(x = "NeticaSession"): Returns true if the link to Netica is currently active
and available and false if not.

startSession signature(session = "NeticaSession"): Starts the Netica session and makes it
available.

stopSession signature(session = "NeticaSession"): Stops the Netica session and makes all
NeticaBN and NeticaNode objects inactive.

restartSession signature(session = "NeticaSession"): Stops and restarts the session.

Fields

Note these should be regarded as read-only from user code.

LicenseKey: Object of class character giving the license key obtained from Norsys (http://
www.norsys.com/. Leaving this field as character(0) will result in the limited version of
Netica being used.

SessionName: Object of class character giving an identifier for the session. This is just used for
printing.

NeticaHandle: Object of class externalptr giving the C memory location of the Netica API
workspace. This should not be manipulated by users. If the session is inactive, this pointer
will be nil.

Checking: Object of class character one of the keywords: "NO_CHECK", "QUICK_CHECK", "REGULAR_CHECK",
"COMPLETE_CHECK", or "QUERY_CHECK", which controls how rigorous Netica is about check-
ing errors. A value of character() uses the Netica default which is "REGULAR_CHECK".

maxmem: Object of class numeric containing an integer indicating the maximum amount of memory
to be used by the Netica shared library in bytes. If supplied, this should be at least 200,000.

nets: Object of class environment used to store NeticaBN objects opened by this session. This
should be regarded as read-only by user code.

http://www.norsys.com/
http://www.norsys.com/


146 NeticaSession-class

Class-Based Methods

neticaVersion(): Returns the netica version associated with this session.

show(): Provides information about the session.

isActive(): Returns a logical value indicating whether Netica is currently started.

listNets(pattern=""): Lists the names of all of the networks registered with this session. If
pattern is supplied it should be a regular expression, only nets whose name contains the regular
expression will be listed.

initialize(..., SessionName, autostart): Creates a new session. If autostart is true,
then the session will be started after it is created.

findNet(netname): Returns a NeticaBN object associated with a network, or NULL if no network
with that name exists.

clearErrors(severity): Clears errors of a given severity level or lower. Severity levels in or-
der are: "NOTHING_ERR", "REPORT_ERR", "NOTICE_ERR", "WARNING_ERR", "ERROR_ERR",
"XXX_ERR". The default is to report all errors.

reportErrors(maxreport, clear): Reports errors. The maxreport value gives the maximum
number of errors to report. The clear value (default true) asks if errors should be cleared after
reporting. Note: errors are reported to standard output, not standard error.

Note

The session object is part of a fundamental redesign of the guts of the way RNetica works starting
with version 0.5. There are three features of this redesign:

1. The old NeticaBN and NeticaNode classes, which were implemented as S3 classes formed
by adding attributes to strings, have been replaced with R6 reference classes, which should be
more robust. In particular, the c() command strips attributes, which tended to destroy node
and net objects.

2. The session pointer used to be handled with a global variable in the RNetica source code. It is
now a field in the new session object. This should allow more flexibility as well as not relying
on a hidden mechanism.

3. Instead of using back-pointers from the Netica objects, Sessions contain an environment where
nets are registered and nets contain an environment where nodes are registered. This should
fix a problem with the backpointers pointing to the wrong location.

In the earlier design, the session object was hidden. For that reason, the function getDefaultSession()
has been added. This looks for an object called DefaultNeticaSession in the gobal environment.
If this object does not exist, the user will be prompted to make one the first time getDefaultSession()
is called. This is the default for most high level functions which take a section argument; hopefully,
this will provide backwards compatability.

The error reporting mechanism now also works through the session object. The session$reportErrors()
and session$clearErrors() methods are used to maintain this system. The NeticaBN object
contains a back pointer to its session, and delegates error reporting to the session. In particular,
net$Session returns the session object. Similarly, a NeticaNode contains a back pointer to the
NeticaBN, so node$Net$Session accesses the session.



NeticaSession-class 147

Author(s)

Russell Almond

References

https://pluto.coe.fsu.edu/RNetica/

See Also

CreateNetwork, GetNthNetwork, GetNamedNetworks, and ReadNetworks. It is also needed by
some lower level functions which create Netica objects: CaseFileDelimiter, CaseFileMissingCode,
CaseFileStream, CaseMemoryStream, OpenCaseStream and NewNeticaRNG.

NeticaBN

Examples

## Create a limited mode session
## Not run:
## Create a fully licensed session, and save it as the default
DefaultNeticaSession <- NeticaSession(LicenseKey="License Key from Norsys")

## End(Not run)
sess <- NeticaSession()

startSession(sess)
NeticaVersion(sess)

myNet <- CreateNetwork("myNet",sess)

stopifnot(myNet==sess$nets$myNet)
stopifnot(myNet==sess$nets[["myNet"]])
stopifnot(myNet==sess$findNet("myNet"))
stopifnot(identical(sess$listNets(),c("myNet")))

sess$reportErrors()
sess$clearErrors() ## Not necessary as the previous statement clears too.

stopSession(sess)

## Not run:
## Shows how to restore networks from a default session
## Existing in the workspace
for (netname in DefaultNeticaSession$listNets()) {

net <- DefaultNeticaSession$findNet(netname)
ReadNetworks(GetNetworkFileName(net),DefaultNeticaSession)

}

## End(Not run)

https://pluto.coe.fsu.edu/RNetica/


148 NeticaVersion

NeticaVersion Fetches the version number of Netica.

Description

The version number of Netica is returned as both an integer and a string.

Usage

NeticaVersion(session=getDefaultSession())

Arguments

session An object of type NeticaSession which defines the reference to the Netica
workspace.

Details

This is a synnonym for session$neticaVersion() (see NeticaSession).

This must be called after the call to StartNetica().

Value

A list with two elements:

number Netica version number times 100 (to make it an integer).

message String defining Netica version.

Note

RNetica was developed with Netica API 5.04

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNeticaVersion_bn()

See Also

NeticaSession StartNetica()

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNeticaVersion_bn.html


NetworkFindNode 149

Examples

sess <- NeticaSession()
startSession(sess)
print(sess$neticaVersion()$message)
stopifnot(NeticaVersion(sess)$number > 409) ## Version 4.09 is a popular one.
stopSession(sess)

NetworkFindNode Finds nodes in a Netica network.

Description

The function NetworkFindNode finds a node in a NeticaBN with the given name. If no node with
the specified name found, it will return NULL. The function NetworkAllNodes() returns a list of all
nodes in the network.

Usage

NetworkFindNode(net, name)
NetworkAllNodes(net)

Arguments

net The NeticaBN to search.

name A character vector giving the name or names of the desired nodes. Names must
follow the IDname protocol.

Details

Although each NeticaNode belongs to a single network, a network contains many nodes. Within a
network, a node is uniquely identified by its name. However, nodes can be renamed (see NodeName()).

The function NetworkAllNodes() returns all the nodes in the network, however, the order of the
nodes in the network could be different in different calls to this function.

Starting with RNetica version 0.5, NeticaBN objects keep a cache of node objects in the en-
vironment net$nodes. In particular, the methods net$findNode() will search the cache, and
net$listNodes() will list the names of the nodes in the cache. Also, net$nodes$nodename or
net$nodes[["nodename"]] will fetch the cached node (if it exists) or return NULL if it does not.

Nodes that are created in RNetica, using NewDiscreteNode or NewContinuousNode are automat-
ically added to the cache. This is also true of other functions which return NeticaNode objects.
For example, NodeParents(node) will add the parents of node to the cache if they are not there
already.

A potential problem arises when the network is read from a file using ReadNetworks. This function
does not automatically cache the nodes. Calling NetworkFindNode will add the nodes to the cache.
Calling NetworkAllNodes will add all nodes to the cache. Calling NetworkNodesInSet can be
used to pull just a subsetof nodes into the cache.



150 NetworkFindNode

Value

The NeticaNode object or list of NeticaNode objects corresponding to names, or a list of all node
objects for NetworkAllNodes(). In the latter case, the ‘names’ attribute of the returned list will be
set to the node names.

Note

NeticaNode objects do not survive the life of a Netica session (or by implication an R session). So
the safest way to "save" a NeticaNode object is to recreate it using NetworkFindNode() after the
network is reloaded.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html, GetNodeNamed_bn(), GetNetNodes_bn()

See Also

NeticaBN talks more about the node cache and has other functions for manipulating it.

NetworkNodesInSet can be used to find a labeled subset of nodes.

NodeNet() retrieves the network from the node.

Examples

sess <- NeticaSession()
startSession(sess)

tnet <- CreateNetwork("TestNet", session=sess)
nodes <- NewDiscreteNode(tnet,c("A","B","C"))

nodeA <- NetworkFindNode(tnet,"A")
stopifnot (nodeA==nodes[[1]])

nodeBC <- NetworkFindNode(tnet,c("B","C"))
stopifnot(nodeBC[[1]]==nodes[[2]])
stopifnot(nodeBC[[2]]==nodes[[3]])

allnodes <- NetworkAllNodes(tnet)
stopifnot(length(allnodes)==3)
stopifnot(is.element(nodeA,allnodes)) ## NodeA in there somewhere.

## Not run:
## Safe way to preserve node and network objects across R sessions.
tnet <- WriteNetworks(tnet,"Tnet.neta")
q(save="yes")
# R
library(RNetica)

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNodeNamed_bn.html
http://norsys.com/onLineAPIManual/functions/GetNetNodes_bn.html


NetworkFootprint 151

sess <- NeticaSession()
startSession(sess)
tnet <- ReadNetworks(tnet, session=sess)
nodes <- NetworkFindNodes(tnet,tnet$listNodes())

## End(Not run)
DeleteNetwork(tnet)
stopSession(sess)

NetworkFootprint Returns a list of names of unconnected edges.

Description

When a link is detached through setting a NodeParents() to NULL, or through copying a node but
not its parent to a new network, this leaves a stub node, an unsatisfied connection. This function
runs through the set of nodes in a network and lists the names of all unsatisfied connections.

Usage

NetworkFootprint(net)

Arguments

net An active NeticaBN to be examined.

Details

Stub nodes – unsatisfied links or connections – can happen in two ways. Either by setting one of
the values of NodeParents(node) to NULL, or by copying a node (using CopyNodes()) without
copying its parents. (This can also be done in the Netica GUI by detaching the link from the parent
end). This this case Netica names the NodeInputNames() according to the name of the old node.

The function NetworkFootprint(net) search all of the nodes in net to find stub nodes, and reports
the NodeInputNames() of the stub nodes. This function provides a test for unsatisfied connections,
and should be of assistance when joining two networks together. The function AdjoinNetwork(sm,em)
joins two networks together and attempts to resolve the unsatisfied connections in em.

One particular application of the footprint is in the EM–SM algorithm (Almond et al, 1999; Almond
and Mislevy, 1999). Here it is assumed that nodes in the footprint of an evidence model will be
joined. Making a clique node MakeCliqueNode() ensures that joint information from the evidence
model will find a good home in the system model network.

Value

A character vector giving the input names of the stub nodes in net. Duplicate values are removed.

Author(s)

Russell Almond



152 NetworkName

References

Almond, R. G. & Mislevy, R. J. (1999) Graphical models and computerized adaptive testing. Ap-
plied Psychological Measurement, 23, 223-238.

Almond, R., Herskovits, E., Mislevy, R. J., & Steinberg, L. S. (1999). Transfer of information
between system and evidence models. In Artificial Intelligence and Statistics 99, Proceedings (pp.
181–186). Morgan-Kaufman

See Also

NeticaNode, NodeParents(), MakeCliqueNode(), NodeInputNames(), CopyNodes(),AdjoinNetwork()

Examples

sess <- NeticaSession()
startSession(sess)

## System/Student model
EMSMSystem <- ReadNetworks(file.path(library(help="RNetica")$path,

"sampleNets","System.dne"), session=sess)

CompileNetwork(EMSMSystem)
JunctionTreeReport(EMSMSystem)

## Evidence model for Task 1a
EMTask1a <- ReadNetworks(file.path(library(help="RNetica")$path,

"sampleNets","EMTask1a.dne"), session=sess)

NetworkFootprint(EMTask1a)
## The corresponding clique is not in system model, so force it in.
MakeCliqueNode(NetworkFindNode(EMSMSystem, NetworkFootprint(EMTask1a)))
CompileNetwork(EMSMSystem)
JunctionTreeReport(EMSMSystem)

## Evidence model for Task 2a
EMTask2a <- ReadNetworks(file.path(library(help="RNetica")$path,

"sampleNets","EMTask2a.dne"), session=sess)
NetworkFootprint(EMTask2a)
## This is already a clique, so nothing to do.

DeleteNetwork(list(EMSMSystem,EMTask1a,EMTask2a))
stopSession(sess)

NetworkName Gets or Sets the name of a Netica network.

Description

Gets or sets the name of the network. Names must conform to the IDname rules.



NetworkName 153

Usage

NetworkName(net, internal=FALSE)
NetworkName(net) <- value

Arguments

net A NeticaBN object which links to the network.

internal A logical scalar. If true, the actual Netica object will be consulted, if false, a
cached value in the R object will be used.

value A character scalar containing the new name.

Details

Network names must conform to the IDname rules for Netica identifiers. Trying to set the network
to a name that does not conform to the rules will produce an error, as will trying to set the network
name to a name that corresponds to another different network.

The NetworkTitle() function provides another way to name a network which is not subject to the
IDname restrictions.

Note that the name of the network is stored in two places: in the Name field of the NeticaBN object
(net$Name), and internally in the Netica object. These should be the same; however, may not be.
The internal field is used to force a check of the internal Netica object rather than the field in the
R object.

Value

The name of the network as a character vector of length 1.

The setter method returns the modified object.

Note

This paragraph is obsolete as of RNetica version 0.5, it describes the previous versions only.

NeticaBN objects are internally implemented as character vectors giving the name of the network. If
a network is renamed, then it is possible that R will hold onto an old reference that still using the old
name. In this case, NetworkName(net) will give the correct name, and GetNamedNets(NetworkName(net))
will return a reference to a corrected object.

Starting with RNetica 0.5, NeticaBN objects are cached in the NeticaSession object. The setter
method for NetworkName updates the cache as well.

In versions of RNetica less than 0.5, trying to set the name of a node to a name that was already
used would generate a warning instead of an error. It now generates an error.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNetName_bn(), SetNetName_bn()

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNetName_bn.html
http://norsys.com/onLineAPIManual/functions/SetNetName_bn.html


154 NetworkNodeSetColor

See Also

CreateNetwork(), NeticaBN, GetNamedNetworks(), NetworkTitle()

Examples

sess <- NeticaSession()
startSession(sess)

net <- CreateNetwork("funNet", session=sess)
netcached <- net
stopifnot(!is.null(sess$findNet("funNet")))

stopifnot(NetworkName(net)=="funNet")
stopifnot(NetworkName(net,internal=TRUE)=="funNet")

NetworkName(net)<-"SomethingElse"
stopifnot(net$Name=="SomethingElse")
stopifnot(is.null(sess$findNet("funNet")))
stopifnot(!is.null(sess$findNet("SomethingElse")))

stopifnot(NetworkName(net)==NetworkName(netcached))
stopifnot(NetworkName(net)==NetworkName(netcached,internal=TRUE))

net1 <- CreateNetwork("funnyNet", session=sess)
cat("Next statement should generate an error message.\n")
nn <- try(NetworkName(net1) <- "SomethingElse")
stopifnot(is(nn,"try-error"))

DeleteNetwork(net)
DeleteNetwork(net1)
stopSession(sess)

NetworkNodeSetColor Returns or sets a display colour to use with a Netica node.b

Description

Returns the display colour associated with a node set or sets the node set colour to a specified
value. The colour of the node in the Netica GUI will be the colour of the highest priority node set
associated with the node (see NetworkSetPriority().

Usage

NetworkNodeSetColor(net, setname, newcolor)



NetworkNodeSetColor 155

Arguments

net An active NeticaBN object representing the network.

setname A character scalar giving the name of the node set to be coloured.

newcolor An optional scalar of any of the three kind of R colours, i.e., either a colour
name (an element of colors()), a hexadecimal string of the form "#rrggbb" or
"#rrggbbaa" (see rgb()), or an integer i meaning palette()[i]. Non-string
values are coerced to integer. There are two special values: NA is used to indicate
that the set should not have a colour associated with it. If newcolor is missing,
then the existing colour is returned and not changed.

Details

Netica determines the visual style of a node by stepping through the node sets to which the node
belongs in priority order (see NetworkSetPriority()) . Each node set can either have a colour
set, or a flag set to indicate that the next node in order or priority should be used to determine the
appearance of the node. The expression NetworkNodeSetColor(net,setname,NA) sets the flag so
that membership in setname does not affect the display of the node.

The function NetworkNodeSetColor(net,setname,colour) sets the colour associated with the vi-
sual display of these nodes (this is only visible when the network is open in the Netica GUI). The
colour can be specified in any of the usual ways that colours are specified in R (see col2rgb()).
The special value NA is used to indicate that the set should be ‘transparent’, that is the colour of the
next set in priority should be used to colour the node.

The function NetworkNodeSetColor(net,setname), with the third argument missing, returns the
current node set colour instead of setting it.

Value

The old value of the node colour as hexadecimal string value of the form "#rrggbb".

Note

The colors of the built-in Netica node sets serve as the ultimate default for the display of nodes.
These cannot be set or queried through this function. (This is a limitation of the Netica API).

Author(s)

Russell Almond

References

http://norsys.com/onLurl/Manual/index.html: ReorderNodesets_bn(), SetNodesetColor_bn()

See Also

NeticaNode, NodeSets(), NetworkNodeSets(), col2rgb(), rgb(), NetworkNodesInSet(), NetworkSetPriority()

http://norsys.com/onLurl/Manual/index.html
http://norsys.com/onLineAPIManual/functions/ReorderNodesets_bn.html
http://norsys.com/onLineAPIManual/functions/SetNodesetColor_bn.html


156 NetworkNodeSets

Examples

sess <- NeticaSession()
startSession(sess)

nsnet <- CreateNetwork("NodeSetExample", session=sess)

Ability <- NewContinuousNode(nsnet,"Ability")

X1 <- NewDiscreteNode(nsnet,"Item1",c("Right","Wrong"))
EssayScore <- NewDiscreteNode(nsnet,"EssayScore",paste("level",5:0,sep="_"))

Value <- NewContinuousNode(nsnet,"Value")
NodeKind(Value) <- "Utility"
Placement <- NewDiscreteNode(nsnet,"Placement",

c("Advanced","Regular","Remedial"))
NodeKind(Placement) <- "Decision"

NodeSets(Ability) <- "ReportingVariable"
NodeSets(X1) <- "Observable"
NodeSets(EssayScore) <- c("ReportingVariable","Observable")

## Default colour is NA (transparent)
stopifnot(

is.na(NetworkNodeSetColor(nsnet,"Observable"))
)

## Make Reporting variables a pale blue
NetworkNodeSetColor(nsnet,"ReportingVariable",rgb(1,.4,.4))
stopifnot(

NetworkNodeSetColor(nsnet,"ReportingVariable") == "#ff6666"
)
## Using R (nee X11) color list.
NetworkNodeSetColor(nsnet,"Observable","wheat2")
stopifnot(

NetworkNodeSetColor(nsnet,"ReportingVariable") == "#ff6666"
)

DeleteNetwork(nsnet)
stopSession(sess)

NetworkNodeSets Returns a list of node sets associated with a Netica network.

Description

A node set is a character label associated with a node which provides information about its role in
the models. This function returns the complete list of node sets associated with any node in the
network.



NetworkNodeSets 157

Usage

NetworkNodeSets(net, incSystem = FALSE)

Arguments

net An active NeticaBN object representing the network.

incSystem A logical flag. If TRUE then built-in Netica node sets are returned as well as the
user defined ones.

Details

Netica node sets are a collection of string labels that can be associated with various nodes in a
network using the function NodeSets(). Node sets do not have any meaning to Netica: node
set membership only affect the way the node is displayed (see NetworkNodeSetColor()). One
purpose of node sets is to label a set of nodes that play a similar role in the model. For example,
"ReportingVariable" or "Observable".

The expression NetworkNodeSets(net) returns the node sets that are currently associated with any
node in net . If incSystem=TRUE, then the internal Netica system node sets will be included as well.
These begin with a colon (‘:’). This value cannot be set directly, only indirectly through the use of
NodeSets.

Value

A character vector giving the node sets used by the network.

Note

Node sets cannot be destroyed, only created. An empty node set has no effect.

Author(s)

Russell Almond

References

http://norsys.com/onLurl/Manual/index.html: GetAllNodesets_bn()

See Also

NeticaNode, NodeSets(), NetworkSetPriority(), NetworkNodesInSet(), NetworkNodeSetColor()

Examples

sess <- NeticaSession()
startSession(sess)
nsnet <- CreateNetwork("NodeSetExample", session=sess)

Ability <- NewContinuousNode(nsnet,"Ability")

EssayScore <- NewDiscreteNode(nsnet,"EssayScore",paste("level",5:0,sep="_"))

http://norsys.com/onLurl/Manual/index.html
http://norsys.com/onLineAPIManual/functions/GetAllNodesets_bn.html


158 NetworkNodesInSet

Value <- NewContinuousNode(nsnet,"Value")
NodeKind(Value) <- "Utility"
Placement <- NewDiscreteNode(nsnet,"Placement",

c("Advanced","Regular","Remedial"))
NodeKind(Placement) <- "Decision"

stopifnot(
length(NetworkNodeSets(nsnet)) == 0, ## Nothing set yet
length(NetworkNodeSets(nsnet,TRUE)) == 22 ## Number of system states

)

NodeSets(Ability) <- "ReportingVariable"
stopifnot(

NetworkNodeSets(nsnet) == "ReportingVariable"
)
NodeSets(EssayScore) <- "Observable"
stopifnot(

setequal(NetworkNodeSets(nsnet),c("Observable","ReportingVariable"))
)
## Changing spelling of name adds new set, doesn't delete the old one.
NodeSets(EssayScore) <- "Observables"
stopifnot(

setequal(NetworkNodeSets(nsnet),
c("Observables", "Observable","ReportingVariable"))

)
## Nor does deletion
NodeSets(Ability) <- character()
stopifnot(

setequal(NetworkNodeSets(nsnet),
c("Observables", "Observable","ReportingVariable"))

)

DeleteNetwork(nsnet)
stopSession(sess)

NetworkNodesInSet Returns a list of node labeled with the given node set in a Netica Net-
work.

Description

A node set is a character label associated with a node which provides information about its role in
the models. This function returns a list of all nodes labeled with a particular node set.

Usage

NetworkNodesInSet(net, setname)
NetworkNodesInSet(net, setname) <- value



NetworkNodesInSet 159

Arguments

net An active NeticaBN object representing the network.

setname A character scalar giving the node set to look for.

value A list of active NeticaNode objects which should be in the node set.

Details

Netica node sets are a collection of string labels that can be associated with various nodes in a
network using the function NodeSets(). Node sets do not have any meaning to Netica: node
set membership only affect the way the node is displayed (see NetworkNodeSetColor()). One
purpose of node sets is to label a set of nodes that play a similar role in the model. For example,
"ReportingVariable" or "Observable".

The expression NetworkNodesInSet(net,setname) searches through the network for all nodes
labeled with the given setname. It returns a list of such nodes.

The expression NetworkNodesInSet(net,setname) <-value make sure that setname is in the
node sets of all nodes that are in value and that it is not in the node sets of any node that is not in
value .

Note that it is acceptable to use the system built-ins in the getter method (but not the setter). For
example searching for ":TableIncomplete" will return a collection of nodes for which the condi-
tional probability table has not yet been set.

Value

A list of nodes which are associated with the named node set.

Author(s)

Russell Almond

References

http://norsys.com/onLurl/Manual/index.html: GetAllNodesets_bn(), IsNodeInNodeset_bn()

See Also

NeticaBN, NodeSets(), NetworkSetPriority(), NetworkNodesInSet(), NetworkNodeSetColor()

Examples

sess <- NeticaSession()
startSession(sess)

nsnet <- CreateNetwork("NodeSetExample", session=sess)

Ability <- NewContinuousNode(nsnet,"Ability")

XX <- NewDiscreteNode(nsnet,paste("Item",1:5,sep=""),c("Right","Wrong"))
X1 <- XX[[1]]

http://norsys.com/onLurl/Manual/index.html
http://norsys.com/onLineAPIManual/functions/GetAllNodesets_bn.html
http://norsys.com/onLineAPIManual/functions/IsNodeInNodeset_bn.html


160 NetworkNodesInSet

EssayScore <- NewDiscreteNode(nsnet,"EssayScore",paste("level",5:0,sep="_"))

Value <- NewContinuousNode(nsnet,"Value")
NodeKind(Value) <- "Utility"
Placement <- NewDiscreteNode(nsnet,"Placement",

c("Advanced","Regular","Remedial"))
NodeKind(Placement) <- "Decision"

NodeSets(Ability) <- "ReportingVariable"
NodeSets(X1) <- "Observable"
NodeSets(EssayScore) <- c("ReportingVariable","Observable")

## setequal doesn't deal well with arbitrary objects, so
## just use the names.
nodeseteq <- function(x,y) {

setequal(sapply(x,NodeName),sapply(y,NodeName))
}

stopifnot(
nodeseteq(NetworkNodesInSet(nsnet,"ReportingVariable"),

list(Ability,EssayScore)),
nodeseteq(NetworkNodesInSet(nsnet,"Observable"),

list(X1,EssayScore)),
nodeseteq(NetworkNodesInSet(nsnet,"Observables"),

list()),
nodeseteq(NetworkNodesInSet(nsnet,":Nature"),

c(list(Ability,EssayScore),XX)),
nodeseteq(NetworkNodesInSet(nsnet,":Decision"),

list(Placement)),
nodeseteq(NetworkNodesInSet(nsnet,":Utility"),

list(Value))
)

NetworkNodesInSet(nsnet,"TestSet") <- XX[1:3]
stopifnot(

is.element("TestSet",NodeSets(XX[[1]])),
is.element("TestSet",NodeSets(XX[[2]])),
is.element("TestSet",NodeSets(XX[[3]])),
!is.element("TestSet",NodeSets(XX[[4]])),
!is.element("TestSet",NodeSets(XX[[5]]))

)
NetworkNodesInSet(nsnet,"TestSet") <- XX[2:4]
stopifnot(

!is.element("TestSet",NodeSets(XX[[1]])),
is.element("TestSet",NodeSets(XX[[2]])),
is.element("TestSet",NodeSets(XX[[3]])),
is.element("TestSet",NodeSets(XX[[4]])),
!is.element("TestSet",NodeSets(XX[[5]]))

)
NetworkNodesInSet(nsnet,"TestSet") <-

c(NetworkNodesInSet(nsnet,"TestSet"),XX[[5]])
stopifnot(



NetworkSetPriority 161

!is.element("TestSet",NodeSets(XX[[1]])),
is.element("TestSet",NodeSets(XX[[2]])),
is.element("TestSet",NodeSets(XX[[3]])),
is.element("TestSet",NodeSets(XX[[4]])),
is.element("TestSet",NodeSets(XX[[5]]))

)

DeleteNetwork(nsnet)
stopSession(sess)

NetworkSetPriority Changes the priority order of the node sets.

Description

Netica sets the visual appearance (i.e., colour, see NetworkNodeSetColor()) of a node according
to highest priority set to which the node belongs. This function changes the order of priority.

Usage

NetworkSetPriority(net, setlist)

Arguments

net An active NeticaBN object representing the network.

setlist A character vector containing a subset of the node set names. The first ones in
the sequence will have the highest priority.

Details

Netica determines the visual style of a node by stepping through the node sets to which the node
belongs in priority order. Each node set can either have a colour set, or a flag set to indicate that
the next node in order or priority should be used to determine the appearance of the node (see
NetworkNodeSetColor()).

This function switches the priority of the node sets names in the second argument. The node sets
note mentioned in setlist are not affected.

Value

Returns the net argument invisibly.

Note

The priority of the Netica internal node sets (the ones beginning with ‘:’) are set by Netica and
cannot be changed. They all have lower priority than the user-defined node sets.



162 NetworkSetRNG

Author(s)

Russell Almond

References

http://norsys.com/onLurl/Manual/index.html: ReorderNodesets_bn(), SetNodesetColor_bn()

See Also

NeticaNode, NodeSets(), NetworkNodeSets(), NetworkNodesInSet(), NetworkNodeSetColor()

Examples

sess <- NeticaSession()
startSession(sess)
nsnet <- CreateNetwork("NodeSetExample", session=sess)

Ability <- NewContinuousNode(nsnet,"Ability")

EssayScore <- NewDiscreteNode(nsnet,"EssayScore",paste("level",5:0,sep="_"))

Value <- NewContinuousNode(nsnet,"Value")
NodeKind(Value) <- "Utility"
Placement <- NewDiscreteNode(nsnet,"Placement",

c("Advanced","Regular","Remedial"))
NodeKind(Placement) <- "Decision"

NodeSets(EssayScore) <- c("ReportingVariable","Observable")

NetworkSetPriority(nsnet,c("Observable","ReportingVariable"))
## Now EssayScore should be coloured like an observable.
stopifnot( NodeSets(EssayScore) == c("Observable","ReportingVariable"))

NetworkSetPriority(nsnet,c("ReportingVariable","Observable"))
## Now EssayScore should be coloured like a Reporting Variable
stopifnot( NodeSets(EssayScore) == c("ReportingVariable","Observable"))

DeleteNetwork(nsnet)
stopSession(sess)

NetworkSetRNG Sets a random number generator associates with the network.

Description

This function creates a new random number generator using the given seed and associates it with
the network.

http://norsys.com/onLurl/Manual/index.html
http://norsys.com/onLineAPIManual/functions/ReorderNodesets_bn.html
http://norsys.com/onLineAPIManual/functions/SetNodesetColor_bn.html


NetworkSetRNG 163

Usage

NetworkSetRNG(net, seed=sample.int(.Machine$integer.max,1L))

Arguments

net An active NeticaBN whose random number generator is to be set.
seed An unsigned integer to be uses as the seed.

Details

Associating a random number generator with a Netica network has two effects. First, if the seed
is constant, then subsequent calls to GenerateRandomCase will create a reproducible sequence
of cases. Second, as the default random number generator Netica uses is threadsafe, the random
number generation will be slightly faster.

Value

Returns the net argument.

Note

This function both creates the random number generator (see NeticaRNG) and associates it with the
network argument. Following the Netica API, it should be possible to separate the two operations,
but it unclear what would happen if the RNG object was then freed (either manually or by asso-
ciating it with another network and then deleting that other network). It therefore seemed safer to
encapsulate the RNG creation process in the C code.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: NewRandomGenerator_ns(), SetNetRan-
domGen_bn()

See Also

NeticaRNG, NewNeticaRNG(), GenerateRandomCase()

Examples

sess <- NeticaSession()
startSession(sess)

rnet <- CreateNetwork("Random", session=sess)
NetworkSetRNG(rnet, 1234469767)

DeleteNetwork(rnet)
stopSession(sess)

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/NewRandomGenerator_ns.html
http://norsys.com/onLineAPIManual/functions/SetNetRandomGen_bn.html
http://norsys.com/onLineAPIManual/functions/SetNetRandomGen_bn.html


164 NetworkTitle

NetworkTitle Gets the title or comments associated with a Netica network.

Description

The title is a longer name for a network which is not subject to the Netica IDname restrictions. The
comment is a free form text associated with a network.

Usage

NetworkTitle(net)
NetworkTitle(net) <- value
NetworkComment(net)
NetworkComment(net) <- value

Arguments

net A NeticaBN object.

value A character object giving the new title or comment.

Details

The title is meant to be a human readable alternative to the name, which is not limited to the IDname
restrictions. The title also affects how the network is displayed in the Netica GUI.

The comment is any text the user chooses to attach to the network. If value has length greater than
1, the vector is collapsed into a long string with newlines separating the components.

Value

A character vector of length 1 providing the title or comment.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNetTitle_bn(), SetNetTitle_bn(), Get-
NetComments_bn(), SetNetComments_bn()

See Also

NeticaBN, NetworkName()

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNetTitle_bn.html
http://norsys.com/onLineAPIManual/functions/SetNetTitle_bn.html
http://norsys.com/onLineAPIManual/functions/GetNetComments_bn.html
http://norsys.com/onLineAPIManual/functions/GetNetComments_bn.html
http://norsys.com/onLineAPIManual/functions/SetNetComments_bn.html


NetworkUndo 165

Examples

sess <- NeticaSession()
startSession(sess)
firstNet <- CreateNetwork("firstNet", session=sess)

NetworkTitle(firstNet) <- "My First Bayesian Network"
stopifnot(NetworkTitle(firstNet)=="My First Bayesian Network")

now <- date()
NetworkComment(firstNet)<-c("Network created on",now)
## Print here escapes the newline, so is harder to read
cat(NetworkComment(firstNet),"\n")
stopifnot(NetworkComment(firstNet) ==

paste(c("Network created on",now),collapse="\n"))

DeleteNetwork(firstNet)
stopSession(sess)

NetworkUndo Undoes (redoes) a Netica operation on a network.

Description

Netica maintains an internal queue of reversible operations on a network. The NetworkUndo() rolls
them back off the stack. The NetworkRedo().

Usage

NetworkUndo(net)
NetworkRedo(net)

Arguments

net A NeticaBN object on which an action took place.

Details

The details of which operations are undoable is not clearly documented in Netica. Some obvious
things, like adding nodes, do not appear to work.

Value

Returns an invisible integer which is the return code from the underlying network function. Its value
is not documented, other than it will be negative if the undo/redo stack is empty.

Author(s)

Russell Almond



166 NetworkUserField

References

http://norsys.com/onLineAPIManual/index.html: UndoNetLastOper_bn(), RedoNetOper_bn()

See Also

NeticaBN, CreateNetwork

Examples

## Not run:
sess <- NeticaSession()
startSession(sess)

activeNet <- CreateNetwork("undoRedoTest", session=sess)

NewContinuousNode(activeNet,"Node1")
NewContinuousNode(activeNet,"Node2")
NewContinuousNode(activeNet,"Node3")

## These tests don't actually work, I'm not sure
## what constitutes an undoable action in Netica.
print(NetworkUndo(activeNet))
stopifnot(length(NetworkAllNodes(activeNet))==2)

print(NetworkUndo(activeNet))
stopifnot(length(NetworkAllNodes(activeNet))==1)

print(NetworkRedo(activeNet))
stopifnot(length(NetworkAllNodes(activeNet))==2)

DeleteNetwork(activeNet)
stopSession(sess)

## End(Not run)

NetworkUserField Gets user definable fields associated with a Netica network.

Description

Netica provides a mechanism for associating user defined values with a network as a series of
key/value pairs. The key must be a IDname and the value can be an arbitrary string (NetworkUserField)
or arbitrary object (NetworkUserObj).

Usage

NetworkUserField(net, fieldname)
NetworkUserField(net, fieldname) <- value
NetworkUserObj(net, fieldname)

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/UndoNetLastOper_bn.html
http://norsys.com/onLineAPIManual/functions/RedoNetOper_bn.html


NetworkUserField 167

NetworkUserObj(net, fieldname) <- value
NetworkAllUserFields(net)

Arguments

net A NeticaBN object indicating the network.

fieldname A character scalar conforming to the IDname rules.

value For NetworkUserField, an arbitrary character vector containing the new value.
Only the first element is used. For NetworkUserObj, an arbitrary object which
is serialized with dputToString and then saved.

Details

Netica contains a mechanism for associating user data with networks. In the Netica documentation,
they note that only strings are really supported as only strings are portable across implementations.
The function NetworkUserField provides direct access for storing strings.

The function NetworkUserObj wraps the call to NetworkUserField with a call to dputToString
or dgetFromString to allow the serialization of arbitrary objects.

Value

The function NetworkUserField returns a character scalar with the value stored in the field fieldname,
or NA if no such field exists.

The function NetworkUserObj returns an arbitrary object created by calling dgetFromString on
the value stored in the field fieldname, or NULL if no such field exists. If the string cannot be
interpreted as an R object, it generates an error.

The function NetworkAllUserFields returns a character vector containing all user data stored with
the network (this will be the serialized versions of objects, not the objects themselves). The names
of the result are the names of the fields.

Note

In his book Extending R John Chambers suggest serializing R objects through XML or JSON mech-
anisms rather than the older dump protocol. I may move to that later, although it will likely cause
backwards compatability issues.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html GetNetUserField_bn(), SetNetUserField_bn(),
GetNetNthUserField_bn()

See Also

NeticaBN, NetworkComment() NodeUserField, dputToString()

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNetUserField_bn.html
http://norsys.com/onLineAPIManual/functions/SetNetUserField_bn.html
http://norsys.com/onLineAPIManual/functions/GetNetNthUserField_bn.html


168 NewDiscreteNode

Examples

sess <- NeticaSession()
startSession(sess)

userNet <- CreateNetwork("UserNet", session=sess)
NetworkUserField(userNet,"Author") <- "Russell Almond"
NetworkUserField(userNet,"Status") <- "In Progress"

stopifnot(NetworkUserField(userNet,"Author")=="Russell Almond")
stopifnot(NetworkUserField(userNet,"Status")=="In Progress")

fields <- NetworkAllUserFields(userNet)
stopifnot(length(fields)==2)
stopifnot(all(!is.na(match(c("Russell Almond","In Progress"),fields))))
stopifnot(all(!is.na(match(c("Author","Status"),names(fields)))))

stopifnot(is.na(NetworkUserField(userNet,"gender")))
stopifnot(is.null(NetworkUserObj(userNet,"gender")))

x <- sample(1L:10L)
NetworkUserObj(userNet,"x") <- x
x1 <- NetworkUserObj(userNet,"x")
stopifnot(all(x==x1))

DeleteNetwork(userNet)
stopSession(sess)

NewDiscreteNode Creates (or destroys) a node in a Netica Bayesian network.

Description

Creates a new node in the NeticaBN net. Netica Nodes can be either discrete, in which case a list
of states must be given, or continuous, where states are not given. The function DeleteNodes()
deletes a single node or a list of nodes.

Usage

NewDiscreteNode(net, names, states = c("Yes","No"))
NewContinuousNode(net, names)
DeleteNodes(nodes)

Arguments

net A NeticaBN object point to the network where the nodes will be created.

names A character vector containing the name or names of the new nodes to be created.
The names must follow the IDname rules.



NewDiscreteNode 169

states Either or character vector, or a list of character vectors. If it is a list, its length
should be the same as the length of names. The character vectors give the names
of the states for the corresponding node. The entries should all correspond to
the IDname rules.

nodes A NeticaNode or list of NeticaNode objects to be deleted. If a list of nodes, all
must be from the same network.

Details

Both NewDiscreteNode() and NewContinuousNode() create new nodes in the network net . If
names has length greater than 1, multiple nodes are created.

Netica currently supports two types of nodes. Discrete nodes represent nominal variables. Contin-
uous nodes represent real variables. Continuous nodes cannot be changed to discrete nodes (or vise
versa) using calls to the API [this is a different from the GUI]. However, a continuous node can be
made to behave like a discrete node (or vise versa) by setting the NodeLevels() attribute.

NewDiscreteNode() additionally requires the states argument to set the initial set of states. (These
can be changed later through calls to NodeStates()). If states is a character vector, it is used for
the state names. If names has length greater than one, all nodes are created with the same set of
states. The default values create a collection of binary variables. If states is a list, then each entry
should be a character vector providing the list of states for the corresponding new node.

The function NewContinuousNode() creates a new continuous node. It appears as if Netica expects
continuous nodes to be used in one of three ways: (1) they can be discretized using NodeLevels(),
(2) they can be used as utilities, (3) they can be used as constants. The function NodeKind() can
change a nature node (the default) to a constant or utility node. It appears as if Netica will not
compile the network unless this is done for all nodes.

The function DeleteNode() deletes a single node or a group of nodes. If multiple nodes are to
be deleted in a single call, they must all belong to the same network. Node that any NeticaNode
objects that referenced the just deleted nodes will become inactive (see is.active()).

These functions will affect the cache of nodes maintained by the NeticaBN class (net$nodes). The
creation functions will add the new nodes to the cache, and the deletion function will remove the
nodes from the cache.

Value

For NewDiscreteNode() or NewContinuousNode(), this returns either a single object of class
NeticaNode or a list of such objects (depending on the length of names).

For DeleteNodes() a list of inactive NeticaNode objects corresponding to the recently deleted
nodes. If a node was not found, a value of NULL will be returned instead. These will be inactive.

Note

Netica nodes internally contain a pointer back to the net they are associated with (see NodeNet()),
so most functions involving nodes don’t require the net to be named. The node creation functions
are an exception.

Most functions involving lists of nodes assume that all nodes come from the same network. Netica
will generate an error if this is not the case.



170 NewDiscreteNode

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: NewNode_bn(), DeleteNode_bn(), GetN-
odeType_bn(), SetNodeLevels_bn()

See Also

CreateNetwork(), NeticaNode, NodeName(), is.discrete(), is.active(), NodeStates(), NodeLevels(),
NodeKind()

Examples

sess <- NeticaSession()
startSession(sess)
safetyNet <- CreateNetwork("safetyNet", session=sess)

noded1 <- NewDiscreteNode(safetyNet, "frayed") ## Yes/No
stopifnot(
NodeName(noded1) == "frayed",
NodeStates(noded1) == c("Yes", "No"),
is.discrete(noded1)
)

## Both variables should have the same set of states
noded23 <- NewDiscreteNode(safetyNet,c("TensionNS","TensionEW"),

c("High","Med","Low"))
stopifnot(

all(sapply(noded23,is.active)),
all(sapply(noded23,is.discrete)),
NodeNumStates(noded23[[1]]) == 3,
NodeStates(noded23[[1]])==NodeStates(noded23[[2]])

)

noded45 <- NewDiscreteNode(safetyNet,c("MeshSize","RopeThickness"),
list(c("Coarse","Fine"),c("Thick","Medium","Thin")))

stopifnot(
all(sapply(noded45,is.active)),
all(sapply(noded45,is.discrete)),
NodeNumStates(noded45[[1]]) == 2,
NodeNumStates(noded45[[2]]) == 3,
NodeStates(noded45[[1]])!=NodeStates(noded45[[2]])

)

nodec <- NewContinuousNode(safetyNet, "Area")
stopifnot(

is.active(nodec),
is.continuous(nodec),
NodeName(nodec) == "Area"

)

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/NewNode_bn.html
http://norsys.com/onLineAPIManual/functions/DeleteNode_bn.html
http://norsys.com/onLineAPIManual/functions/GetNodeType_bn.html
http://norsys.com/onLineAPIManual/functions/GetNodeType_bn.html
http://norsys.com/onLineAPIManual/functions/SetNodeLevels_bn.html


NodeBeliefs 171

stopifnot(length(NetworkAllNodes(safetyNet))==6)

DeleteNodes(nodec)
stopifnot(length(NetworkAllNodes(safetyNet))==5)

DeleteNodes(noded45)
stopifnot(length(NetworkAllNodes(safetyNet))==3)

DeleteNetwork(safetyNet)
stopSession(sess)

NodeBeliefs Returns the current marginal probability distribution associated with
a node in a Netica network.

Description

After a network is compiled, marginal probabilities are available at each of the nodes. Entering
findings changes these to probabilities associated with the conditions represented by the findings.
This function returns the marginal probabilities for the variable node conditioned on the findings.

The function IsBeliefUpdated(node) checks to see whether the value of findings have been prop-
agated to node yet.

Usage

NodeBeliefs(node)
IsBeliefUpdated(node)

Arguments

node An active NeticaNode representing the variable whose marginal distribution is
to be determined.

Details

The function NodeBeliefs() is not available until the network has been compiled (CompileNetwork()).
Asking for the marginal values before the network is compiled will throw an error.

When findings are entered, the marginal probabilities (or beliefs) associated with node will change.
The process of propagating the findings from an evidence node to a query node is known as up-
dating. Depending on the size and topology of the network, the updating process might take
some time. To speed up operations, the AutoUpdate flag on the network can be cleared using
SetNetworkAutoUpdate().

If the AutoUpdate flag is not set for the network, then calling NodeBeliefs(node) could trigger an
update cycle and hence take some time. The function IsBeliefUpdated(code) tests to see whether
the marginal probability for node currently incorporates all of the findings. It returns true if it does
and false if not.



172 NodeBeliefs

Value

The function NodeBeliefs(node) returns a vector of probabilities of length NodeNumStates(node).
The names of the result are the state names.

The function IsBeliefUpdated(node) returns TRUE if calling NodeBeliefs(node) will not result
in probabilities being updated.

Note

I tend to avoid the term "belief" because I’ve spent so much time writing about Dempster–Shafer
models (belief functions). Netica uses it to mean the marginal probability for a node given all of the
entered evidence and conditional probability tables of all of the nodes.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNodeBeliefs_bn(), IsBeliefUpdated_bn()

See Also

NeticaNode, NeticaBN, NodeProbs(), NodeFinding(), JointProbability(), MostProbableConfig(),
FindingsProbability() NodeExpectedValue(), NodeValue(), CalcNodeValue(),

Examples

sess <- NeticaSession()
startSession(sess)

irt5 <- ReadNetworks(file.path(library(help="RNetica")$path,
"sampleNets","IRT5.dne"), session=sess)

irt5.theta <- NetworkFindNode(irt5,"Theta")
irt5.x <- NetworkFindNode(irt5,paste("Item",1:5,sep="_"))

## Not run:
NodeBeliefs(irt5.theta) ## This call will produce an errors because irt5

## is not compiled

## End(Not run)
stopifnot(

!IsBeliefUpdated(irt5.theta)
)
CompileNetwork(irt5) ## Ready to enter findings

stopifnot (
## irt5 is parent node, so marginal beliefs and conditional
## probability table should be the same.
sum(abs(NodeBeliefs(irt5.theta) - NodeProbs(irt5.theta))) < 1e-6

)

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNodeBeliefs_bn.html
http://norsys.com/onLineAPIManual/functions/IsBeliefUpdated_bn.html


NodeChildren 173

## Marginal probability for Node 5
irt5.x5.init <- NodeBeliefs(irt5.x[[5]])

SetNetworkAutoUpdate(irt5,TRUE) ## Automatic updating
NodeFinding(irt5.x[[1]]) <- "Right"
stopifnot(

IsBeliefUpdated(irt5.x[[5]])
)
irt5.x5.time1 <- NodeBeliefs(irt5.x[[5]])
stopifnot (

sum(abs(irt5.x5.init-irt5.x5.time1)) > 1e-6
)

SetNetworkAutoUpdate(irt5,FALSE) ## Automatic updating
NodeFinding(irt5.x[[2]]) <- "Right"
stopifnot(

!IsBeliefUpdated(irt5.x[[5]])
)
irt5.x5.time2 <- NodeBeliefs(irt5.x[[5]])
stopifnot (

sum(abs(irt5.x5.time2-irt5.x5.time1)) > 1e-6,
IsBeliefUpdated(irt5.x[[5]]) ## Now we have updated it.

)

DeleteNetwork(irt5)
stopSession(sess)

NodeChildren Returns a list of the children of a node in a Netica network.

Description

The children of a node parent are the nodes which are directly connected to parent with an edge
oriented from parent . The function NodeChildren(parent) returns a list of the children of parent

Usage

NodeChildren(parent)

Arguments

parent A NeticaNode whose children are to be found.

Details

The function NodeChildren(parent) only returns the immediate descendants of parent. A list of
all descendants can be found using the function GetRelatedNodes(parent,"decendents").

The function link{NodeParents}() returns the opposite end of the link, however, unlike NodeParents(),
NodeChildren() cannot be directly set.



174 NodeEquation

Value

A list (possibly empty) of NeticaNode objects which are the children of parent .

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNodeChildren_bn()

See Also

NeticaNode, AddLink(), NodeParents(), GetRelatedNodes()

Examples

sess <- NeticaSession()
startSession(sess)

chnet <- CreateNetwork("ChildcareCenter", session=sess)
mom <- NewContinuousNode(chnet,"Mother")
stopifnot(

length(NodeChildren(mom))==0
)

daughters <- NewDiscreteNode(chnet,paste("Daughter",1:3,sep=""))
sapply(daughters, function(d) AddLink(mom,d))

stopifnot(
length(NodeChildren(mom))==3,
all(match(daughters,NodeChildren(mom),nomatch=0))>0

)

DeleteNetwork(chnet)
stopSession(sess)

NodeEquation Gets or sets the equation Netica uses to calculate the CPT for a node

Description

Netica contains a facility to calculate the conditional probability table for a node from an equa-
tion. NodeEquation() gets or sets the equation. EquationToTable() recalculates the conditional
probability table associated with the node.

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNodeChildren_bn.html


NodeEquation 175

Usage

NodeEquation(node)
NodeEquation(node,autoconvert=TRUE) <- value
EquationToTable(node, numSamples = 25, sampUnc = TRUE, addExist = TRUE)

Arguments

node An active NeticaNode object that references the node whose equation is to ma-
nipulated.

autoconvert A logical value that indicates whether or not the CPT should be recalculated
after the equation is set.

value A character value giving the equation. If it has length greater than one, it is
collapsed with newlines between.

numSamples In some cases Netica uses sampling to calculate the CPT. If it does, then this is
the number of sample.

sampUnc A logical flag indicating whether or not sampling uncertainty should be added
to the values. Note that setting this to FALSE could cause zero probabilities for
configurations not realized in the sampling, which may or may not be a good
thing.

addExist A logical flag indicating whether or not the sampled values should be added to
(TRUE) or replace (FALSE) the existing CPT. Can be used to create blended
CPTs.

Details

This is a fairly minimilistic support for Netica’s equation feature. Netica equations are strings, but
have a very specific syntax (see the Netica manual for details). The RNetica code does no checking
before passing the value to Netica.

The function EquationToTable() builds a conditional probability table from the equation and
must be called before Netica will update the table used in calculations. The documentation for this
function is somewhat unclear. In particular, it is not clear when Netica uses sampling to calculating
the CPT (this should not be needed in most of the examples I’ve worked with).

There are two differences between the RNetica implementation and the default Netica behavior.
First, equations can be fairly complex. If value is a character vector, RNetica will concatenate it into
a single string before passing it to Netica. Second, by default RNetica automatically recalculates
the table when the equation is set. This is usually the desired behavior, but can be suppressed by
setting autoconvert=FALSE.

Constants play a special role in Netica formulas. A formula can reference the value of a constant
node even if it is not a marked parent of the node whose equation is being defined. It appears as if
the value of the constant must be set before the table is created.

Value

The function NodeEquation returns the equation as a character scalar. The function EquationToTable
returns the node argument invisibly.



176 NodeEquation

Note

I personally find the Netica equation syntax to be verbose and unwieldy. I have found it easier to
calculate the CPTs directly in R (using functions from the CPTtools package, CPTtools-package)
and then entering those CPTs into Netica. The functions are provided here mainly for completeness.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNodeEquation_bn(), SetNodeEquation_bn(),
EquationToTable_bn()

The reference document for Netica equations: http://www.norsys.com/WebHelp/NETICA/X_Equations.
htm

See Also

NodeValue(),NodeKind(), NodeProbs(), Extract.NeticaNode

Examples

sess <- NeticaSession()
startSession(sess)

grn <- CreateNetwork("GradedResponseTest", session=sess)

## Set up the variables in our network
skill <- NewDiscreteNode(grn,"Skill",c("High","Medium","Low"))
NodeLevels(skill) <- c(1,0,-1)

score1 <- NewDiscreteNode(grn,"Score1",
c("FullCredit","PartialCredit","NoCredit"))

## Set up a couple of constants for use in formulae
a1 <- NewContinuousNode(grn,"A1")
NodeKind(a1) <- "Constant"
b1_1 <- NewContinuousNode(grn,"B1_1")
NodeKind(b1_1) <- "Constant"
b1_2 <- NewContinuousNode(grn,"B1_2")
NodeKind(b1_2) <- "Constant"
diffB1 <- NewContinuousNode(grn,"DiffB1")

NodeLevels(diffB1) <- seq(-4,4,.5)

NodeValue(a1) <- 1
NodeValue(b1_1) <- -1.5
NodeValue(b1_2) <- 0

## Note, this will generate an error if the values of the constants are
## not set first.

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNodeEquation_bn.html
http://norsys.com/onLineAPIManual/functions/SetNodeEquation_bn.html
http://norsys.com/onLineAPIManual/functions/EquationToTable_bn.html
http://www.norsys.com/WebHelp/NETICA/X_Equations.htm
http://www.norsys.com/WebHelp/NETICA/X_Equations.htm


NodeExpectedUtils 177

NodeEquation(diffB1) <- "DiffB1() = B1_2 - B1_1"

## I think this should return 1.5, but it return NA. I'm not sure what
## is happening here?
CalcNodeValue(diffB1)

## This is the rather clunky format for Netica formulae. This
## implements a graded response model.
dsformula <- c(
"p(Score1 | Skill) =",

" (Score1==FullCredit)? 1/(1+exp(-1.7*(A1/sqrt(1)*Skill-B1_2))) :",
" (Score1==PartialCredit) ? 1/(1+exp(-1.7*(A1/sqrt(1)*Skill-B1_1))) -",

" 1/(1+exp(-1.7*(A1/sqrt(1)*Skill-B1_2))) :",
"1 - 1/(1+exp(-1.7*(A1/sqrt(1)*Skill-B1_1)))"

)

AddLink(skill,score1)
NodeEquation(score1) <- dsformula

score1[]
## Expected value:
# Skill Score1.FullCredit Score1.PartialCredit Score1.NoCredit
#1 High 0.8455347 0.1404016 0.01406363
#2 Medium 0.5000000 0.4275735 0.07242648
#3 Low 0.1544653 0.5461019 0.29943281

NodeValue(b1_1) <- -2
score1[] ## Change not propagated yet

EquationToTable(score1)
score1[] ## Now it changes

DeleteNetwork(grn)
stopSession(sess)

NodeExpectedUtils Calculates expected utility for each value of a decision node

Description

Calculates the expected utility for a decision node. That is for each state of the decision node it
calculates the expected utility if that state is chosen.

Usage

NodeExpectedUtils(node)



178 NodeExpectedUtils

Arguments

node An active NeticaNode object that references the node. This should be a decision
node, that is NodeKind(node) should equal "Decision".

Details

This solves a decision problem. In an influence diagram (decision net), one decision node is con-
sidered a predecessor if its value is known at the time when a decision is made. The compilation
process for a decision net will fill in predecessor relationships when they are implied by paths
through nature nodes. Decision networks are typically “solved” by working backwards in time
from the last decision to the first.

The expression NodeExpectedUtils(node) will only return a meaningful result if either, node
represents the first sequential decision, or all prior decisions have been made (and their values are
known).

Value

This should return a named numeric vector of length NodeNumStates(node) with each element
corresponding to one of the states of node.

Warning

This function is currently returning an internal Netica error. Do not use until I get clarification from
Norsys.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNodeExpectedUtils_bn()

For more about decision nets: http://www.norsys.com/WebHelp/NETICA/X_Decision_Problems.
htm

See Also

NodeKind(), NodeValue(), NodeExpectedValue()

Examples

sess <- NeticaSession()
startSession(sess)

## Read the RTI network from the library.
rti <- ReadNetworks(file.path(library(help="RNetica")$path,

"sampleNets","CostOfTesting.dne"), session=sess)
## The two decision nodes
Test <- NetworkFindNode(rti,"Test")
Instruction <- NetworkFindNode(rti,"Instruction")

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNodeExpectedUtils_bn.html
http://www.norsys.com/WebHelp/NETICA/X_Decision_Problems.htm
http://www.norsys.com/WebHelp/NETICA/X_Decision_Problems.htm


NodeExpectedValue 179

## Network must be compiled before analysis:
CompileNetwork(rti)

## Not run:
## NETICA BUG, these currently give errors.
NodeExpectedUtils(Test)
NodeExpectedUtils(Instruction)

NodeFinding(Test) <- "Yes"

NodeExpectedUtils(Instruction)

## End(Not run)

DeleteNetwork(rti)
stopSession(sess)

NodeExpectedValue Calculates expected value for a numeric node

Description

Calculates the expected value for node based on the current beliefs about the nodes states. The
node should either be continuous or a discrete node with levels assigned to the values. The standard
deviation is supplied as an attribute.

Usage

NodeExpectedValue(node)

Arguments

node An active NeticaNode object that references the node. The node should be con-
tinuous or have a numeric value associated with each level (see NodeLevels).

Value

Returns a scalar real giving the expected value for node . It has an attribute called "std_dev" which
contains the standard deviation.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNodeExpectedValue_bn()

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNodeExpectedValue_bn.html


180 NodeExperience

See Also

NodeBeliefs(), NodeLevels(), NodeLevels(),is.continuous() NodeValue(),CalcNodeValue(),

Examples

sess <- NeticaSession()
startSession(sess)

irt5 <- ReadNetworks(file.path(library(help="RNetica")$path,
"sampleNets","IRT5.dne"), session=sess)

irt5.theta <- NetworkFindNode(irt5,"Theta")
irt5.x <- NetworkFindNode(irt5,paste("Item",1:5,sep="_"))

CompileNetwork(irt5) ## Ready to enter findings

## Prior should have mean 0, Std 1.095
stopifnot(abs(NodeExpectedValue(irt5.theta)) <.000001)
stopifnot(abs(attr(NodeExpectedValue(irt5.theta),"std_dev")-1.095445)<.00001)

NodeFinding(irt5.x[[1]]) <- "Right"
## Expected value should go up
stopifnot(NodeExpectedValue(irt5.theta)>0)

DeleteNetwork(irt5)
stopSession(sess)

NodeExperience Gets or sets the amount of experience associated with a node.

Description

In learning, if the row of the conditional probability table has a Dirichlet distribution, this sets the
sum of the parameters for the row. This is the number of pseudo observations for that row of the
CPT.

Usage

NodeExperience(node)
NodeExperience(node) <- value

Arguments

node An active NeticaNode.

value An array of pseudo counts, these should be positive values. The shape of the
array should match the ParentStates(node).



NodeExperience 181

Details

When learning the conditional probabilities associated with a conditional probability table, the most
general model considers each row of the conditional probability table as an independent Dirichlet
distribution. If there are k states, then the parameters of the Dirichlet distribution are a1, . . . , ak and
the expected value is p1 = a1/n, . . . , pk = ak/n, where n = a1 + . . . + ak is the normalization
constant. An alternative way to represent the Dirichlet parameters is with the probability vector
and the normalization. The experience is the normalization constant. Note that after observing
m additional observations, the normalization constant will become n + m, so the experience can
be thought of as a pseudo-observation count. Finally, the variance of the Dirichlet distribution
decreases, as n increases, so it can also be thought of as a measure of precision.

An unconditional distribution has exactly one normalization constant. A conditional distribution has
on for each row of the conditional probability, that is associated with each possible configuration
of the parent variables. The value of NodeExperience(node) is an array with dimnames matching
ParentStates(node). In particular, this means that specific values of experience can be accessed
by using the names of the parent states.

Value

An array whose dimnames are ParentStates(node). If the node has no parents, the value is a
scalar.

Note

I tend to refer to this distribution as a "hyper-Dirichlet" distribution, although Spiegelhalter and
Lauritzen (1990) used that term to refer to a network in which all of the nodes were parameterized
in that way.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: SetNodeExperience_bn(), GetNodeExpe-
rience_bn()

See Also

NeticaNode, NodeParents(), NodeProbs(), CPA

Examples

sess <- NeticaSession()
startSession(sess)
abc <- CreateNetwork("ABC", session=sess)
A <- NewDiscreteNode(abc,"A",c("A1","A2","A3","A4"))
B <- NewDiscreteNode(abc,"B",c("B1","B2","B3"))
C <- NewDiscreteNode(abc,"C",c("C1","C2"))

AddLink(A,B)

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/SetNodeExperience_bn.html
http://norsys.com/onLineAPIManual/functions/GetNodeExperience_bn.html
http://norsys.com/onLineAPIManual/functions/GetNodeExperience_bn.html


182 NodeFinding

AddLink(A,C)
AddLink(B,C)

## Parentless node, only need one value
NodeExperience(A) <- 10
stopifnot(

abs(NodeExperience(A)-10)<.00001
)

NodeExperience(B) <- c(1,2,3,4)
stopifnot(

length(NodeExperience(B))==4,
all(names(NodeExperience(B))==NodeStates(A)),
abs(NodeExperience(B)[2]-2)<.00001

)

## Set them all to the same value.
NodeExperience(C) <- 10
stopifnot(

all(dim(NodeExperience(C))==sapply(ParentStates(C),length)),
all(dimnames(NodeExperience(C))[[1]]==ParentStates(C)[[1]]),
all(dimnames(NodeExperience(C))[[2]]==ParentStates(C)[[2]]),
all(names(dimnames(NodeExperience(C)))==ParentNames(C)),
abs(NodeExperience(C)[3,2]-10)<.00001

)
NodeExperience(C)["A3","B2"] <- 11
stopifnot(

abs(NodeExperience(C)[3,2]-11)<.00001
)

DeleteNetwork(abc)
stopSession(sess)

NodeFinding Returns of sets the observed value associated with a Netica node.

Description

A finding is an observed variable in a Bayesian network. The expression NodeFinding(node) <- value
indicates that the observed value of node should be set to value . The function NodeFinding(node)
returns the current value.

Usage

NodeFinding(node)
NodeFinding(node) <- value



NodeFinding 183

Arguments

node An active NeticaNode whose value was observed or hypothesized.

value A character or integer scalar indicating the value which was observed or hypoth-
esized. If a character, it should be one of the values in NodeStates(node). If
an integer it should be a value between 1 and NodeNumStates(node) inclusive.

Details

Setting NodeFinding(node) <- value essentially asserts that Pr(node = value) = 1. The value
may be either expressed as a character name of one of the states, or an integer giving the index into
the state table.

Note that setting NodeFinding(node) <- value clears any previous findings (including virtual
findings set through NodeLikelihood() or EnterNegativeFinding()), that may have been set.
The function RetractNodeFinding(node) will clear the current finding without setting it to a new
value.

The function NodeFinding(node) returns the currently set finding, if there is one. It can also return
one of the three special values:

1. "@NEGATIVE FINDINGS" — Negative findings have been entered using EnterNegativeFinding().

2. "@LIKELIHOOD" — Uncertain evidence which provides a likelihood of various states of the
node were entered using NodeLikelihood(node)

3. "@NO FINDING" — No findings, including negative findings or likelihood findings were en-
tered.

Value

The expression NodeFinding(node)<-value returns the modified node invisibly.

The function NodeFinding(node) returns a string which is either the currently set finding or one
of the special values "@NO FINDING", "@LIKELIHOOD", or "@NEGATIVE FINDINGS".

Note

If SetNetworkAutoUpdate() has been set to TRUE, then this function could take some time as each
finding is individually propagated. Consider wrapping multiple calls setting NodeFinding() in
WithoutAutoUpdate(net, ...).

Unlike the Netica function EnterFinding_bn() the function "NodFinding<-" internally calls
RetractFindings. So there is no need to do this manually.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNodeFinding_bn(), EnterFinding_bn()

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNodeFinding_bn.html
http://norsys.com/onLineAPIManual/functions/EnterFinding_bn.html


184 NodeFinding

See Also

NeticaBN, NodeBeliefs(), EnterNegativeFinding(), EnterFindings(), RetractNodeFinding(),
NodeLikelihood(), EnterGaussianFinding(), EnterIntervalFinding(), JointProbability(),NodeValue(),
MostProbableConfig(), FindingsProbability()

Examples

sess <- NeticaSession()
startSession(sess)
irt5 <- ReadNetworks(file.path(library(help="RNetica")$path,

"sampleNets","IRT5.dne"), session=sess)

irt5.theta <- NetworkFindNode(irt5,"Theta")
irt5.x <- NetworkFindNode(irt5,paste("Item",1:5,sep="_"))

CompileNetwork(irt5) ## Ready to enter findings

stopifnot (
## irt5 is parent node, so marginal beliefs and conditional
## probability table should be the same.
sum(abs(NodeBeliefs(irt5.theta) - NodeProbs(irt5.theta))) < 1e-6

)
## Marginal probability for Node 5
irt5.x5.init <- NodeBeliefs(irt5.x[[5]])

SetNetworkAutoUpdate(irt5,TRUE) ## Automatic updating
NodeFinding(irt5.x[[1]]) <- "Right"
stopifnot(

IsBeliefUpdated(irt5.x[[5]])
)
irt5.x5.time1 <- NodeBeliefs(irt5.x[[5]])
stopifnot (

sum(abs(irt5.x5.init-irt5.x5.time1)) > 1e-6
)

SetNetworkAutoUpdate(irt5,FALSE) ## Automatic updating
NodeFinding(irt5.x[[2]]) <- 2 ## Wrong
stopifnot(

!IsBeliefUpdated(irt5.x[[5]]),
NodeFinding(irt5.x[[2]]) == "Wrong"

)
irt5.x5.time2 <- NodeBeliefs(irt5.x[[5]])
stopifnot (

sum(abs(irt5.x5.time2-irt5.x5.time1)) > 1e-6,
IsBeliefUpdated(irt5.x[[5]]) ## Now we have updated it.

)

## Negative finding
EnterNegativeFinding(irt5.theta,c("neg1","neg2")) ## Rule out negatives.
stopifnot(

NodeFinding(irt5.theta) == "@NEGATIVE FINDINGS"
)



NodeInputNames 185

## Clearing Findings
RetractNodeFinding(irt5.theta)
stopifnot(

NodeFinding(irt5.theta) == "@NO FINDING"
)

##Virtual findings for X3. Assume judge has said right, but judge has
## 80% accuracy rate.
NodeLikelihood(irt5.x[[3]]) <- c(.8,.2)
stopifnot(

NodeFinding(irt5.x[[3]]) == "@LIKELIHOOD"
)

DeleteNetwork(irt5)
stopSession(sess)

NodeInputNames Associates names with incoming edges on a Netica node.

Description

The function NodeInputNames() can be used to set or retrieve names for each of the parents of
node . This facilitates operations such as copying and reconnecting the nodes.

Usage

NodeInputNames(node)
NodeInputNames(node) <- value

Arguments

node A NeticaNode object whose parent link names will be retrieved or set.

value A character vector of length length(NodeParents(node) giving the new names.
Names must conform to the IDname convention.

Details

When a parent node is detached from a child, Netica names the link with the name of the old node.
For example, suppose that the following commands were executed AddLink(A,C); AddLink(B,C).
Then if the node B is detached, via NodeParents(C)[2]<-list(NULL), Netica will replace B with
a stub node, and name the link "B". The command NodeParents(C)$B <- D would then attach the
node D where the old node was attached.

Rather than relying on the automatic naming scheme, the node names can be directly set using
NodeInputNames(node)<-newvals . Netica will not rename a detached link if there already exists
a name for that link. Explicitly naming the links rather than relying on Netica’s naming scheme is



186 NodeInputNames

probably good practice. If node input names are set, then they will be used names for the return
value of NodeParents()

The getter form NodeInputNames() returns the currently set names of the input links. If an input
link whose name has not been set either directly or via inserting a NULL in NodeParents() has a
name of "".

Value

The function NodeInputNames() returns a character vector of the same length as GetNodeParents()
giving the current names of the links. If a link has not yet been named, the corresponding entry of
the vector will be the empty string.

The setter function returns the node object invisibly.

Note

To detach a parent, you must use list(NULL) on the left hand side of NodeParents(node)[i] <- list(NULL)
and not NULL.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNodeInputNames_bn(), SetNodeInput-
Names_bn(), SwitchNodeParent_bn()

See Also

NeticaNode, AddLink(), NodeParents()

Examples

sess <- NeticaSession()
startSession(sess)
abnet <- CreateNetwork("AB", session=sess)

anodes <- NewDiscreteNode(abnet, paste("A",1:3,sep=""))
B <- NewDiscreteNode(abnet,"B")

NodeParents(B) <- anodes
stopifnot(

all(NodeInputNames(B)=="")
)

NodeParents(B)[2] <- list(NULL)
stopifnot(

NodeInputNames(B)==c("","A2","")
)

## Now can use A2 as name

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNodeInputNames_bn.html
http://norsys.com/onLineAPIManual/functions/SetNodeInputNames_bn.html
http://norsys.com/onLineAPIManual/functions/SetNodeInputNames_bn.html
http://norsys.com/onLineAPIManual/functions/SwitchNodeParent_bn.html


NodeKind 187

D <- NewDiscreteNode(abnet,"D")
NodeParents(B)$A2 <- D
## But name doesn't change
stopifnot(

NodeInputNames(B)==c("","A2","")
)

##Name the inputs
NodeInputNames(B) <- paste("Input",1:3,sep="")
stopifnot(

names(NodeParents(B))[2]=="Input2"
)

## Now detaching nodes doesn't change input names.
NodeParents(B)[1] <- list(NULL)
stopifnot(

NodeKind(NodeParents(B)[[1]])=="Stub",
NodeInputNames(B)[1]=="Input1"

)

DeleteNetwork(abnet)
stopSession(sess)

NodeKind Gets or changes the kind of a node in a Netica network.

Description

Netica supports nodes of four different kinds: "Nature", "Decision", "Utility", and "Constant".
A fifth kind, "Stub" is used for a reference to a node when an edge has been detached from a node.
The function NodeKind() returns the current kind.

Usage

NodeKind(node)
NodeKind(node) <- value

Arguments

node A NeticaNode object whose kind is to be determined or manipulated.

value A character string with one of the values: "Nature", "Decision", "Utility",
or "Constant". Actually, only the first letter is matched, so this could be one of
N, D, U or C.

Details

A "Nature" node (the default when the node is created) is a random variable whose value can be
predicted using the network. Pure Bayesian networks use only "Nature" nodes.



188 NodeKind

A "Decision" node is one whose value will be chosen by some decision maker. A "Utility" node
is one whose value the decision maker is trying to optimize. A influence diagram contains decision
nodes and utilities in addition to nature nodes. The goal is implicitly to find a setting of the decision
nodes that maximizes the expected utility.

A "Constant" node is a parameter used for building a conditional probability table. Its value is
nominally fixed, but it can be changed to perform sensitivity analysis.

A "Stub" is a reference to a node created by removing a parent node from another node without
changing the table. It is assumed that a real node will later be attached in that location. This kind
can only be set internally to Netica; the expression NodeKind(node) <- "Stub" will generate an
error.

Value

A character vector of length one containing one of the values: "Nature", "Decision", "Utility",
"Constant", or "Stub".

Note

Internal to Netica, "Stub"s are called DISCONNECTED_NODEs. I changed the name to make them
start with a unique letter.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNodeKind_bn(), SetNodeKind_bn()

See Also

NeticaNode, is.discrete(), NodeParents()

Examples

sess <- NeticaSession()
startSession(sess)
knet <- CreateNetwork("kNet", session=sess)

skills <- NewContinuousNode(knet,paste("SkillAtTime",1:2,sep=""))

reward <- NewContinuousNode(knet,"RewardForSkill")
NodeKind(reward) <- "Utility"

placement <-
NewDiscreteNode(knet,"Placement",c("Tier1","Tier2","Tier3"))

NodeKind(placement) <- "Decision"

instructionCost <- NewContinuousNode(knet,"CostOfInstruction")
NodeKind(instructionCost) <- "U"

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNodeKind_bn.html
http://norsys.com/onLineAPIManual/functions/SetNodeKind_bn.html


NodeLevels 189

pretest <- NewDiscreteNode(knet,"PretestDecision",c("yes","no"))
NodeKind(pretest) <- "D"

pretestScore <- NewContinuousNode(knet,"PretestScore")
NodeKind(pretestScore) <- "Nature"

pretestCost <- NewContinuousNode(knet,"PretestCost")
NodeKind(pretestCost) <- "u"

pretestR <- NewContinuousNode(knet,"PretestReliability")
NodeKind(pretestR) <- "Constant"

stopifnot(
NodeKind(skills[[1]]) == "Nature",
NodeKind(skills[[2]]) == "Nature",
NodeKind(reward) == "Utility",
NodeKind(placement) == "Decision",
NodeKind(instructionCost) == "Utility",
NodeKind(pretest) == "Decision",
NodeKind(pretestScore) == "Nature",
NodeKind(pretestCost) == "Utility",
NodeKind(pretestR) == "Constant"
)

## To make stub node, need links
AddLink(skills[[1]],pretestScore)
NodeInputNames(pretestScore) <- "SkillTested"
## Detach node
NodeParents(pretestScore)$SkillTested <- list(NULL)
stopifnot(

NodeKind(NodeParents(pretestScore)$SkillTested) == "Stub"
)

DeleteNetwork(knet)
stopSession(sess)

NodeLevels Accesses the levels associated with a Netica node.

Description

The levels associate a numeric value with the levels of a discrete NeticaNode, or cut a discrete
node into a number ordered categories. This function fetches or retrieves the levels for node . See
description for more details.

Usage

NodeLevels(node)
NodeLevels(node) <- value



190 NodeLevels

Arguments

node A NeticaNode whose levels are to be accessed.

value A numeric vector of values. For discrete nodes, values should have length
NodeNumStates(node). For continuous nodes, it can be of any length (except
1) should be in either increasing or decreasing order.

Details

The behavior of the levels depends on whether the node is discrete (is.discrete(node)==TRUE)
or continuous (is.discrete(node)==TRUE).

Discrete. For discrete nodes, the levels are associated with the states and provide a numeric sum-
mary of the states. In particular, if NodeLevels are set, then it is meaningful to calculate an expected
value for the node. The vector returned by NodeLevels() is named with the names of the states,
making the association clear. When setting the NodeLevels, it should have length equal to the
number of states (NodeNumStates(node)).

Note that the first time the NodeLevels() are set, the entire vector must be set. After that point
individual values may be changed.

Continuous. For a continuous node, the levels are used to split the continuous range into intervals
(similar in spirit to the function cut()). The levels represent the endpoints of the intervals and
should be in either increasing or decreasing order. The values Inf and -Inf are acceptable for the
endpoints of the interval. There should be one more level than the desired number of states.

The states of a continuous node are defined by the node levels, and it is not meaningful to try to set
NodeStates(), NodeStateTitles() or NodeStateComments().

Setting NodeLevels(node)<-NULL for a continuous node will clear the levels and the states.

Value

For discrete nodes, a numeric vector of length NodeNumStates(), with names equal to the state
names. If levels have not be set, NAs will be returned.

For continuous nodes, a numeric vector of length NodeNumStates()+1 with no names, or character(0).

Note

The overloading of node levels is a "feature" of the Netica API. It is not great design, but it probably
will be maintained for backwards compatibility.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: SetNodeLevels_bn()(), GetNodeLevels_bn(),
GetNodeNumberStates_bn(), GetNodeStateName_bn(), SetNodeStateNames_bn()

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/SetNodeLevels_bn().html
http://norsys.com/onLineAPIManual/functions/GetNodeLevels_bn.html
http://norsys.com/onLineAPIManual/functions/GetNodeNumberStates_bn.html
http://norsys.com/onLineAPIManual/functions/GetNodeStateName_bn.html
http://norsys.com/onLineAPIManual/functions/SetNodeStateNames_bn.html


NodeLevels 191

See Also

NewDiscreteNode(), NeticaNode, NodeName(), is.discrete(), is.active(), NodeStateTitles(),
NodeStates(), NodeStateComments(),

Examples

sess <- NeticaSession()
startSession(sess)
lnet <- CreateNetwork("LeveledNet", session=sess)

## Discrete Node
vnode <- NewDiscreteNode(lnet,"volt_switch",c("Off","Reverse","Forwards"))
stopifnot(

length(NodeLevels(vnode))==3,
names(NodeLevels(vnode)) == NodeStates(vnode),
all(is.na(NodeLevels(vnode)))

)

## Not run:
## Don't run this until the levels for vnode have been set,
## it will generate an error.
NodeLevels(vnode)[2] <- 0

## End(Not run)

NodeLevels(vnode) <- 1:3
stopifnot(

length(NodeLevels(vnode))==3,
names(NodeLevels(vnode)) == NodeStates(vnode),
NodeLevels(vnode)[2]==2

)

NodeLevels(vnode)["Reverse"] <- -2

## Continuous Node
wnode <- NewContinuousNode(lnet,"Weight")
stopifnot(
length(NodeLevels(wnode))==0,
NodeNumStates(wnode)==0

)

NodeLevels(wnode) <- c(0, 0.1, 10, Inf)
stopifnot(
length(NodeStates(wnode))==3,
NodeNumStates(wnode)==3

)
NodeStates(wnode) <- c("Low","Medium","High")
stopifnot(
NodeStates(wnode)[3] == "High",
is.null(names(NodeLevels(wnode)))

)
## Change number of states



192 NodeLikelihood

NodeLevels(wnode) <- c(0, 0.1, 10, 100, Inf)
stopifnot(
length(NodeStates(wnode))==4,
NodeNumStates(wnode)==4,
all(nchar(NodeStates(wnode))==0)

)
## Clear levels
NodeLevels(wnode) <- c()
stopifnot(
NodeNumStates(wnode)==0,
length(NodeStates(wnode))==0

)

DeleteNetwork(lnet)
stopSession(sess)

NodeLikelihood Returns or sets the virtual evidence associated with a Netica node.

Description

The findings associated with a node can be expressed as the probability of the evidence occurring
in each of the states of the node. This is the likelihood associated with the node. This function
retrieves or sets the likelihood.

Usage

NodeLikelihood(node)
NodeLikelihood(node) <- value

Arguments

node An active NeticaNode whose evidence is to be queried or set.

value A numeric vector of length NodeNumStates(node) representing the new likeli-
hood for the node. All values must be between zero and one and there must be
at least one positive value, but the sum does not need to equal 1.

Details

This function retrieves or sets virtual evidence associated with each node. Suppose that some set of
evidence e is observed. The each of the values in the likelihood represents the conditional proba-
bility Pr(e|node == state). Note that the likelihood can be thought of as the message that a new
node child which was a child of node with no other parents would pass to node if its value was set.

As the likelihood values are conditional probabilities, they do not need to add to 1, although they
are still restricted to the range [0,1]. Also, at least one value must be non-zero (this represents an
impossible case) or Netica will generpate an error.



NodeLikelihood 193

Entering findings through NodeFinding(node) <- state sets a special likelihood. In this case, the
likelihood value corresponding to state will be one, and all others will be zero. Similarly, the ex-
pression EnterNegativeFinding(node,statelist) sets a special likelihood with 0’s corresponding
to the states in statelist and 1’s elsewhere.

Setting the likelihood calls RetractNodeFinding(), clearing any previous finding, negative finding
or likelihood.

Value

The function NodeLikelihood(node) returns a vector of likelihoods of length NodeNumStates(node).
The names of the result are the state names.

The expression NodeLikelihood(node)<-value returns the modified node invisibly.

Warning

The documentation for the Netica function MostProbableConfig_bn() states that likelihood findings
are not properly taken into account in MostProbableConfig(). Some quick tests indicate that it is
doing something sensible, but more extensive testing and/or clarification is needed.

The documentation for the Netica function FindingsProbability_bn() also provides a warning about
likelihood evidence. The function FindingsProbability(net) still gives a result, but it is the
normalization constant for the network, and not necessarily a probability.

Note

If SetNetworkAutoUpdate() has been set to TRUE, then setting the likelihood could take some time
as each finding is individually propagated. Consider wrapping multiple calls setting NodeLikelihood()
in WithoutAutoUpdate(net, ...).

Unlike the Netica function EnterNodeLikelihood_bn() the function "NodeLikelihood<-" inter-
nally calls RetractFindings. So there is no need to do this manually.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNodeLikelihood_bn(), EnterNodeLike-
lihood_bn()

See Also

NeticaBN, NodeBeliefs(), EnterNegativeFinding(), RetractNodeFinding(), NodeFinding()
JointProbability(), MostProbableConfig(), FindingsProbability()

http://norsys.com/onLineAPIManual/functions/MostProbableConfig_bn.html
http://norsys.com/onLineAPIManual/functions/FindingsProbability_bn.html
http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNodeLikelihood_bn.html
http://norsys.com/onLineAPIManual/functions/EnterNodeLikelihood_bn.html
http://norsys.com/onLineAPIManual/functions/EnterNodeLikelihood_bn.html


194 NodeLikelihood

Examples

sess <- NeticaSession()
startSession(sess)
irt5 <- ReadNetworks(file.path(library(help="RNetica")$path,

"sampleNets","IRT5.dne"), session=sess)

irt5.theta <- NetworkFindNode(irt5,"Theta")
irt5.x <- NetworkFindNode(irt5,paste("Item",1:5,sep="_"))

CompileNetwork(irt5) ## Ready to enter findings

## Simple finding
NodeFinding(irt5.x[[1]])<-"Wrong"
stopifnot(

NodeLikelihood(irt5.x[[1]]) == c(0,1)
)

## Negative finding
EnterNegativeFinding(irt5.theta,c("neg1","neg2")) ## Rule out negatives.
stopifnot(

NodeLikelihood(irt5.x[[1]]) == c(0,1),
NodeLikelihood(irt5.theta) == c(1,1,1,0,0),
NodeFinding(irt5.theta) == "@NEGATIVE FINDINGS"

)

## Clearing Findings
RetractNodeFinding(irt5.theta)
stopifnot(

NodeLikelihood(irt5.theta) == c(1,1,1,1,1)
)

##Virtual findings for X3. Assume judge has said right, but judge has
## 80% accuracy rate.
NodeLikelihood(irt5.x[[3]]) <- c(.8,.2)
stopifnot(

sum(abs(NodeLikelihood(irt5.x[[3]]) - c(.8,.2))) < 1e-6,
NodeFinding(irt5.x[[3]]) == "@LIKELIHOOD"

)

## Add in virtual likelihood from a second judge
NodeLikelihood(irt5.x[[3]]) <- NodeLikelihood(irt5.x[[3]]) * c(.75,.25)
stopifnot(

sum(abs(NodeLikelihood(irt5.x[[3]]) - c(.6,.05))) < 1e-6
)

DeleteNetwork(irt5)
stopSession(sess)



NodeName 195

NodeName Gets or set of a Netica node.

Description

Gets or sets the name of the node. Names must conform to the IDname rules.

Usage

NodeName(node, internal=FALSE)
NodeName(node)<- value

Arguments

node An active NeticaNode object that references the node.

internal A logical scalar. If true, the actual Netica object will be consulted, if false, a
cached value in the R object will be used.

value An character vector of length 1 giving the new name.

Details

Node names must conform to the IDname rules for Netica identifiers. Trying to set the node to a
name that does not conform to the rules will produce an error, as will trying to set the node name to
a name that corresponds to a different node in the network.

On a call to the setting method, if a node of the given name already exists, a warning will be issued
and the node argument will be returned unchanged.

The NodeTitle() function provides another way to name a node which is not subject to the IDname
restrictions.

Note that the name of the node is stored in two places: in the Name field of the NeticaNode object
(node$Name), and internally in the Netica object. These should be the same; however, may not be.
The internal field is used to force a check of the internal Netica object rather than the field in the
R object.

Value

The name of the node as a character vector of length 1.

The setter method returns the NeticaNode object.

Note

This paragraph is obsolete as of RNetica version 0.5, it describes the previous versions only.

NeticaNode objects are internally implemented as character vectors giving the name of the network.
If a node is renamed, then it is possible that R will hold onto an old reference that still using the old
name. In this case, NodeName(node) will give the correct name, and NetworkFindNode(net,NodeName(node))
will return a reference to a corrected object.



196 NodeName

Starting with RNetica 0.5, NeticaNode objects are cached in the NeticaBN object. The setter
method for NodeName updates the cache as well.

In versions of RNetica less than 0.5, trying to set the name of a node to a name that was already
used would generate a warning instead of an error. It now generates an error.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNodeName_bn(), SetNodeName_bn()

See Also

NewDiscreteNode(), NeticaNode, NetworkFindNode(), NodeTitle(), NeticaBN

Examples

sess <- NeticaSession()
startSession(sess)
net <- CreateNetwork("funNet", session=sess)

pnode <- NewDiscreteNode(net,"play")
nodecached <- pnode

stopifnot(NodeName(pnode)=="play")
stopifnot(NodeName(pnode,internal=TRUE)=="play")
stopifnot(net$findNode("play")==pnode)
stopifnot(net$nodes$play==pnode)

NodeName(pnode)<-"work"
stopifnot(pnode$Name=="work")
stopifnot(is.null(net$findNode("play")))
stopifnot(net$nodes$work==pnode)

stopifnot(NodeName(pnode) == NodeName(nodecached))
stopifnot(NodeName(pnode) == NodeName(nodecached,internal=TRUE))

snode <- NewContinuousNode(net,"sleep")
cat("Next statement should generate an error message.\n")
nn <- try(NodeName(snode)<- "work") ## This should raise an error
stopifnot(is(nn,"try-error"))

allNodes <- NetworkAllNodes(net)
NodeName(allNodes$work) <- "effort"
stopifnot(net$nodes$effort == pnode)

DeleteNetwork(net)
stopSession(sess)

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNodeName_bn.html
http://norsys.com/onLineAPIManual/functions/SetNodeName_bn.html


NodeNet 197

NodeNet Finds which Netica network a node comes from.

Description

Each active NeticaNode object lives inside of a NeticaBN object. This function finds the network
corresponding to a node.

Usage

NodeNet(node, internal=FALSE)

Arguments

node A NeticaNode object.

internal A logical scalar. If true, the actual Netica object will be consulted, if false, a
cached value in the R object will be used.

Details

Two nodes with the same details in different networks are not identical inside of Netica. Nodes are
always constructed inside of nets, and the Net field of a node cannot be changed. (See CopyNodes
for copying a node to a new network.)

Starting with RNetica version 0.5, a NeticaNode object can figure out its network in two different
ways. First the field node$Net has the NeticaBN object associated with this node. The second is
by going into the Netica node object, finding the corresponding network and then looking it up by
name in the NeticaSession object. With the option internal=TRUE this is what is done to check
the node.

The node must be active. If is.active(node) returns false, this function will return NULL. Note
that the expression node$Net will return the (possible inactive) NeticaBN object that the node used
to belong to.

The functions NetworkAllNodes() and NetworkFindNode() provide pseudo-inverses for this func-
tion.

Value

A NeticaBN object which contains node, or NULL if node is not active and the internal method was
selected.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNodeNet_bn()

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNodeNet_bn.html


198 NodeParents

See Also

NeticaBN, NeticaNode, is.active(), NetworkAllNodes(), NetworkFindNode()

Examples

sess <- NeticaSession()
startSession(sess)
neta <- CreateNetwork("Net_A", session=sess)
netb <- CreateNetwork("Net_B", session=sess)

nodea <- NewContinuousNode(neta,"Node")
nodeb <- NewContinuousNode(netb,"Node")

stopifnot(NodeNet(nodea)==neta)
stopifnot(NodeNet(nodeb)==netb)

stopifnot(NodeNet(nodea)==NodeNet(nodea,internal=TRUE))

## Note
stopifnot(nodea != nodeb)
## But:
stopifnot(nodea$Name == nodeb$Name)

DeleteNodes(nodeb)
stopifnot(is.null(NodeNet(nodeb)))
stopifnot(nodeb$Net==netb)

DeleteNodes(nodea)

DeleteNetwork(list(neta,netb))
stopSession(sess)

NodeParents Gets or sets the parents of a node in a Netica network.

Description

A parent of a NeticaNode is another node which has a link (created through AddLink() from that
node to child . This function returns the list of parents. It also allows the list of parents for the node
to be set, altering the topology of the network (see details).

Usage

NodeParents(child)
NodeParents(child) <- value



NodeParents 199

Arguments

child An active NeticaNode object whose parents are of interest.

value A list of NeticaNode objects (or NULLs) which will become the new parents.
Order of the nodes is important. See details.

Details

At its most basic level, NodeParents() reports on the topology of a network. Suppose we add the
links A1 --> B, A2 --> B, and A3 --> B to the network. Then NodeParents(B) should return
list(A1, A2, A3). The order of the inputs is important, because that this determines the order of
the dimensions in the conditional probability table (NodeProbs()).

The parent list can be set. This can accomplishes a number of different goals: it can replace a
parent variable, it can add additional parents, it can remove extra parents, and it can reorder parents.
Changing the parents alters the topology of the network. Note that Netica networks must always
be acyclic directed graphs. In particular, if is.NodeRelated(child,"decendent",parent) returns
true for any prospective parent, Netica will generate an error (new parents must node be descendants
of the child as that would produce a cycle).

Setting an element of the parent list to list(NULL) has special semantics. In this case, the parent
node becomes a special stub node (or DISCONNECTED_TYPE, see NodeKind()). This creates
a Bayesian network fragment which can later be connected to another Bayesian network (using
SetParents() with the new parent.

The function NodeInputNames(child), returns a list of names for the parent variables. Naming
the parent variables facilitates disconnecting the node and reconnecting it. Whenever a node is
disconnected, the corresponding input is named after the disconnected node, unless it already has
an input name.

Value

A list of NeticaNode objects representing the parents in the order that they will be used to estab-
lish dimensions for the conditional probability table. If NodeInputNames(child) has been set, the
names of the result will be the input names.

The setting variant returns the modified child object.

Note

Much of the checking for this function is done internally in the Netica API, and not in the RNet-
ica interface layer. In particular, creating directed cycles will produce errors in Netica and not in
RNetica.

This is actually an attempt to make the RNetica interface more R-like, covering the common cases of
NodeParents(child) <- value . Under the hood it is using the Netica function SwitchNodeParent_bn()
to produce the expected behavior.

The fact that if x is a list x[[2]]<-NULL deletes the second element rather than replacing it with
NULL is a serious design flaw in R. However, it is documented in the FAQ and it is unlikely to change,
so we need to workaround it. We do this by setting the element we want to delete to list(NULL).
Nominally, we would do this through x[2]<-list(NULL), which is the official workaround for the
design flaw. NodeParents<- will accept list(NULL) in place of NULL because nobody who isn’t
part of the R Core Development Team will ever remember which form they are suppose to use here.



200 NodeParents

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNodeParents_bn(), SwitchNodeParent_bn()

See Also

NeticaNode, AddLink(), NodeChildren(), NodeKind(), NodeInputNames(), is.NodeRelated()

Examples

sess <- NeticaSession()
startSession(sess)
abnet <- CreateNetwork("AB", session=sess)

anodes <- NewDiscreteNode(abnet, paste("A",1:3,sep=""))
B <- NewDiscreteNode(abnet,"B")

## Should be empty list
stopifnot(length(NodeParents(B))==0)

NodeParents(B) <- anodes
stopifnot(

length(NodeParents(B))==3,
NodeParents(B)[[2]] == anodes[[2]]

)

## Reorder nodes
NodeParents(B) <- anodes[c(2:3,1)]
stopifnot(

length(NodeParents(B))==3,
NodeName(NodeParents(B)[[2]])=="A3",
all(nchar(names(NodeParents(B)))==0)

)

## Remove a node.
NodeParents(B) <- anodes[2:1]
stopifnot(

length(NodeParents(B))==2,
NodeName(NodeParents(B)[[2]])=="A1",
all(nchar(names(NodeParents(B)))==0)

)

## Add a node
NodeParents(B) <- anodes[3:1]
stopifnot(

length(NodeParents(B))==3,
NodeName(NodeParents(B)[[3]])=="A1",
all(nchar(names(NodeParents(B)))==0)

)

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNodeParents_bn.html
http://norsys.com/onLineAPIManual/functions/SwitchNodeParent_bn.html


NodeProbs 201

##Name the inputs
NodeInputNames(B) <- paste("Input",1:3,sep="")
stopifnot(

names(NodeParents(B))[2]=="Input2"
)

## Detach the parent
NodeParents(B)$Input2 <- list(NULL)
stopifnot(

length(NodeParents(B))==3,
NodeKind(NodeParents(B)$Input2) == "Stub"

)

## Remove all parents
NodeParents(B) <- list()
stopifnot(

length(NodeParents(B))==0
)

DeleteNetwork(abnet)
stopSession(sess)

NodeProbs Gets or sets the conditional probability table associated with a Netica
node.

Description

A complete Bayesian networks defines a conditional probability distribution for a node given its
parents. If all the nodes are discrete, this comes in the form of a conditional probability table a
multidimensional array whose first several dimensions follow the parent variable and whose last
dimension follows the child variable.

Usage

NodeProbs(node)
NodeProbs(node) <- value

Arguments

node An active, discrete NeticaNode whose conditional probability table is to be ac-
cessed.

value The new conditional probability table. See details for the expected dimensions.



202 NodeProbs

Details

Let node be the node of interest and parent1 , parent2 , ..., parentp , where p is the number of
parents. Let pdim = sapply(NodeParents(node), NodeNumStates) be a vector with the
number of states for each parent. A parent configuration is defined by assigning each of the parent
values to one of its possible states. Each parent configuration defines a (conditional) probability
distribution over the possible states of node .

The result of NodeProbs(node) will be an array with dimensions c(pdim, NodeNumStates(node)).
The first p dimensions will be named according to the NodeInputNames(node) or the NodeName(parent)
if the input names are not set. The last dimension will be named according to the node itself. The
dimnames for the resulting array will correspond to the state names.

The setter form expects an array of the same dimensions as an argument, although it does not need
to have the dimnames set.

Value

A conditional probability array of class c("CPA","array"). See details.

Note

Note that the expression node[...] also accesses the partial or complete node conditional proba-
bility table. See Extract.NeticaNode.

All of this assumes that these are discrete nodes, that is is.discrete(node) will return true for
both node and all of the parents. It is unknown what Netica does is this is not right.

This doc file is still pretty lame. Probably need to redo output as a CPT class.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNodeProbs_bn(), SetNodeProbs_bn()

See Also

Extract.NeticaNode, NeticaNode, NodeParents(), NodeInputNames(), NodeStates(), CPA,
CPF, normalize()

Examples

sess <- NeticaSession()
startSession(sess)
abc <- CreateNetwork("ABC", session=sess)
A <- NewDiscreteNode(abc,"A",c("A1","A2","A3","A4"))
B <- NewDiscreteNode(abc,"B",c("B1","B2","B3"))
C <- NewDiscreteNode(abc,"C",c("C1","C2"))

AddLink(A,B)
AddLink(A,C)

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNodeProbs_bn.html
http://norsys.com/onLineAPIManual/functions/SetNodeProbs_bn.html


NodeSets 203

AddLink(B,C)

NodeProbs(A)<-c(.1,.2,.3,.4)
NodeProbs(B) <- normalize(matrix(1:12,4,3))
NodeProbs(C) <- normalize(array(1:24,c(4,3,2)))

Aprobs <- NodeProbs(A)
Bprobs <- NodeProbs(B)
Cprobs <- NodeProbs(C)
stopifnot(

is.CPA(Aprobs),
is.CPA(Bprobs),
is.CPA(Cprobs)

)

DeleteNetwork(abc)
stopSession(sess)

NodeSets Lists or changes the node sets associated with a Netica node.

Description

A node set is a character label associated with a node which provides information about its role in
the models. This function returns or sets the labels associated with a node.

Usage

NodeSets(node, incSystem = FALSE)
NodeSets(node) <- value
AddNodeToSets(node,sets)
RemoveNodeFromSets(node,sets)

Arguments

node An active NeticaNode object.

incSystem A logical flag. If TRUE then built-in Netica node sets are returned as well as the
user defined ones.

value A character vector containing the names of the node sets that node should be
associated with. These names must follow the is.IDname() rules.

sets A character vector containing the names of the node sets that node should (or
should not) be associated with. These names must follow the is.IDname()
rules.



204 NodeSets

Details

Netica node sets are a collection of string labels that can be associated with various nodes in a
network. Node sets do not have any meaning to Netica: node set membership only affect the way
the node is displayed (see NetworkNodeSetColor()). One purpose of node sets is to label a set of
nodes that play a similar role in the model. For example, "ReportingVariable" or "Observable".

The expression NodeSet(node) returns the node sets currently associated with node . If incSystem=TRUE,
then the internal Netica system node sets will be included as well. These begin with a colon (‘:’).

The expression NodeSet(node)<-value removes any node sets previously associated with node
and adds node to the node sets named in value . The elements of value need not correspond to
existing node sets, new node sets will be created for new values. (Warning: this implies that if the
name of the node set is spelled incorrectly in one of the calls, this will create a new node set. For
example, "Observable" and "Observables" would be two distinct node sets.) Setting the node
set associated with a node only affects user-defined node sets, the Netica system node sets cannot
be set using NodeSet.

The functions AddNodeToSets and RemoveNodeFromSets operate on the current node set in the
expected way.

Value

A character vector giving the names of the node sets node is associated with. The setter form,
AddNodeToSets and RemoveNodeFromSets return node .

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: AddNodeToNodeset_bn(), RemoveNode-
FromNodeset_bn(), IsNodeInNodeset_bn()

See Also

NeticaNode, NodeKind(), NetworkNodeSets(), NetworkSetPriority(), NetworkNodesInSet(),
NetworkNodeSetColor(), is.IDname()

Examples

sess <- NeticaSession()
startSession(sess)

nsnet <- CreateNetwork("NodeSetExample", session=sess)

Ability <- NewContinuousNode(nsnet,"Ability")

EssayScore <- NewDiscreteNode(nsnet,"EssayScore",paste("level",5:0,sep="_"))

Value <- NewContinuousNode(nsnet,"Value")
NodeKind(Value) <- "Utility"

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/AddNodeToNodeset_bn.html
http://norsys.com/onLineAPIManual/functions/RemoveNodeFromNodeset_bn.html
http://norsys.com/onLineAPIManual/functions/RemoveNodeFromNodeset_bn.html
http://norsys.com/onLineAPIManual/functions/IsNodeInNodeset_bn.html


NodeStates 205

Placement <- NewDiscreteNode(nsnet,"Placement",
c("Advanced","Regular","Remedial"))

NodeKind(Placement) <- "Decision"

stopifnot(
length(NodeSets(Ability)) == 0, ## Nothing set yet
setequal(NodeSets(Ability,TRUE),

c(":Continuous", ":Nature", ":TableIncomplete",
":Parentless", ":Childless", ":Node")),

!is.na(match(":Utility",NodeSets(Value,TRUE))),
!is.na(match(":Decision",NodeSets(Placement,TRUE)))

)

NodeSets(Ability) <- "ReportingVariable"
stopifnot(

NodeSets(Ability) == "ReportingVariable"
)
NodeSets(EssayScore) <- "Observable"
stopifnot(

NodeSets(EssayScore) == "Observable"
)
## Make EssayScore a reporting variable, too
NodeSets(EssayScore) <- c("ReportingVariable",NodeSets(EssayScore))
stopifnot(

setequal(NodeSets(EssayScore),c("Observable","ReportingVariable"))
)

## Clear out the node set
NodeSets(Ability) <- character()
stopifnot(

length(NodeSets(Ability)) == 0
)

NodeSets(Ability) <- c("Set1","Set2")
AddNodeToSets(Ability,c("Set2","Set3"))
stopifnot(

length(NodeSets(Ability)) == 3,
setequal(NodeSets(Ability),c("Set1","Set2","Set3"))

)
RemoveNodeFromSets(Ability,c("Set1","Set4"))
stopifnot(

length(NodeSets(Ability)) == 2,
setequal(NodeSets(Ability),c("Set2","Set3"))

)

DeleteNetwork(nsnet)
stopSession(sess)

NodeStates Accessor for states of a Netica node.



206 NodeStates

Description

This function returns a list associated with a Netica node. The function NodeNumStates() returns
the number of states, NodeStates returns or manipulates them.

Usage

NodeStates(node)
NodeNumStates(node)
NodeStates(node, resize=FALSE) <- value

Arguments

node An active NeticaNode object whose states are to be accessed.

value A character vector of length NodeNumStates(node) giving the names of the
states. State names must conform to the IDname rules.

resize A logical scalar. If true, the number of states of the node will be adjusted to the
length of value. If false (the default), an error will be raised. Note: changing
the number of states could loose information if there is a conditional probability
table or values associated with a node.

Details

States behave slightly differently for discrete and continuous nodes (see is.discrete(). For dis-
crete nodes, the random variable represented by the node can take on one of the values represented
by NodeStates(node).

Discrete. The number of states for a discrete node is determined when the node is created (through
a call to NewDiscreteNode()). By default, setting the node states will not change the number of
states in the node.

The states are important when building conditional probability tables (CPTs). In particular, the state
names are used to label the columns of the CPT. Thus, state names can be used to address arrays
in the same way that dimnames can. In particular, the state names can be used to index the vectors
returned by NodeStates(), NodeStateTitles(), NodeStateTitles(), and NodeLevels() (for
discrete nodes).

Calling NodeStates(node,resize=TRUE) <- value will adjust the number of states in the node
to match the length of value . Note that this is a somewhat dangerous operation. If there is a CPT
associated with the node, Netica will adjust it to the right size using an operation which has not
been documented, but seems like a sensible default. If there is a finding associated with the node,
Netica may raise an error if this state is deleted (RNetica simply deletes the unneeded states from
the end of the list). It is probably safe to resize the node only in early stages of development. This
is why the default is to raise an error.

Continuous. States for a continuous node are determined by the NodeLevels() of the node, which
describe a series of endpoints for intervals that cut the continuous space into the states. The function
NodeNumStates(node) should return length(NodeLevels(node))-1 unless the levels have not
been set in which case it will be zero. If NodeStates are set for a continuous node, they must have
length length(NodeLevels(node))-1.



NodeStates 207

Value

The function NodeNumStates() returns an integer giving the number of states.

The function NodeStates() returns a character vector of length NodeNumStates(node) whose
values and names are both set to the state names. The setter version of this function invisibly
returns the node object.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNodeNumberStates_bn(), GetNodeState-
Name_bn(), SetNodeStateNames_bn(), GetNodeLevels_bn() SetNodeLevels_bn(), AddNodeStates_bn(),
RemoveNodeState_bn()

See Also

NewDiscreteNode(), NeticaNode, NodeName(), is.discrete(), is.active(), NodeStateTitles(),
NodeLevels(), NodeStateComments(),

Examples

sess <- NeticaSession()
startSession(sess)
anet <- CreateNetwork("Annette", session=sess)

## Discrete Nodes
nodel2 <- NewDiscreteNode(anet,"TwoLevelNode")
stopifnot(

NodeNumStates(nodel2)==2,
NodeStates(nodel2)==c("Yes","No")

)

NodeStates(nodel2) <- c("True","False")
stopifnot(

NodeStates(nodel2)==c("True","False")
)

nodel3 <- NewDiscreteNode(anet,"ThreeLevelNode",c("High","Med","Low"))
stopifnot(

NodeNumStates(nodel3)==3,
NodeStates(nodel3)==c("High","Med","Low"),
NodeStates(nodel3)[2]=="Med"

)

NodeStates(nodel3)[2] <- "Median"
stopifnot(

NodeStates(nodel3)[2]=="Median"
)

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNodeNumberStates_bn.html
http://norsys.com/onLineAPIManual/functions/GetNodeStateName_bn.html
http://norsys.com/onLineAPIManual/functions/GetNodeStateName_bn.html
http://norsys.com/onLineAPIManual/functions/SetNodeStateNames_bn.html
http://norsys.com/onLineAPIManual/functions/GetNodeLevels_bn.html
http://norsys.com/onLineAPIManual/functions/SetNodeLevels_bn.html
http://norsys.com/onLineAPIManual/functions/AddNodeStates_bn.html
http://norsys.com/onLineAPIManual/functions/RemoveNodeState_bn.html


208 NodeStateTitles

NodeStates(nodel3)["Median"] <- "Medium"
stopifnot(

NodeStates(nodel3)[2]=="Medium"
)

## Adjusting size

## Not run:
## Don't run this it will generate an error.
NodeStates(nodel2) <- c("Low","Medium","High")

## End(Not run)

## Should work if we pass resize=TRUE
NodeStates(nodel2,resize=TRUE) <- c("Low","Med","High")
NodeStates(nodel3,resize=TRUE) <- c("Low","High")
stopifnot(

NodeNumStates(nodel2)==3,
NodeStates(nodel2)==c("Low","Med","High"),
NodeNumStates(nodel3)==2,
NodeStates(nodel3)==c("Low","High")

)

## Continuous Nodes
wnode <- NewContinuousNode(anet,"Weight")

## Not run:
## Don't run this until the levels for wnode have been set,
## it will generate an error.
NodeStates(wnode) <- c("Low","Medium","High")

## End(Not run)

## First set levels of node.
NodeLevels(wnode) <- c(0, 0.1, 10, Inf)
## Then can set States.
NodeStates(wnode) <- c("Low","Medium","High")

DeleteNetwork(anet)
stopSession(sess)

NodeStateTitles Accessors for the titles and comments associated with states of Netica
nodes.

Description

Each state of a NeticaNode can have a longer title or comments associated with it. These functions
get or set the titles or comments.



NodeStateTitles 209

Usage

NodeStateTitles(node)
NodeStateTitles(node) <- value
NodeStateComments(node)
NodeStateComments(node) <- value

Arguments

node An active NeticaNode object whose state titles or comments will be accessed.

value A character vector of length NodeNumStates(node) which provides the new
state titles or names.

Details

The titles are meant to be a more human readable version of the state names and are not subject
the the IDname restrictions. These are displayed in the Netica GUI in certain display modes. The
comments are meant to be a longer free form notes.

Both titles and comments are returned as a named character vector with names corresponding to the
state names. Therefore one can change a single state title or comment by accessing it either using
the state number or the state name.

Value

Both NodeStateTitles() and NodeStateComments() return a character vector of length NodeNumStates(node)
giving the titles or comments respectively. The names of this vector are NodeStates(node).

The setter methods return the modified NeticaNode object invisibly.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNodeStateTitle_bn(),SetNodeStateTitle_bn(),
GetNodeStateComment_bn(),SetNodeStateComment_bn()

See Also

NeticaNode, NodeStates(), NodeLevels()

Examples

sess <- NeticaSession()
startSession(sess)
cnet <- CreateNetwork("CreativeNet", session=sess)

orig <- NewDiscreteNode(cnet,"Originality", c("H","M","L"))
NodeStateTitles(orig) <- c("High","Medium","Low")
NodeStateComments(orig)[1] <- "Produces solutions unlike those typically seen."

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNodeStateTitle_bn.html
http://norsys.com/onLineAPIManual/functions/SetNodeStateTitle_bn.html
http://norsys.com/onLineAPIManual/functions/GetNodeStateComment_bn.html
http://norsys.com/onLineAPIManual/functions/SetNodeStateComment_bn.html


210 NodeTitle

stopifnot(
NodeStateTitles(orig) == c("High","Medium","Low"),
grep("solutions unlike", NodeStateComments(orig))==1,
NodeStateComments(orig)[3]==""
)

sol <- NewDiscreteNode(cnet,"Solution",
c("Typical","Unusual","VeryUnusual"))

stopifnot(
all(NodeStateTitles(sol) == ""),
all(NodeStateComments(sol) == "")
)

NodeStateTitles(sol)["VeryUnusual"] <- "Very Unusual"
NodeStateComments(sol) <- paste("Distance from typical solution",

c("<1", "1--2", ">2"))
stopifnot(

NodeStateTitles(sol)[3]=="Very Unusual",
NodeStateComments(sol)[1] == "Distance from typical solution <1"
)

DeleteNetwork(cnet)
stopSession(sess)

NodeTitle Gets the title or Description associated with a Netica node.

Description

The title is a longer name for a node which is not subject to the Netica IDname restrictions. The
description is a free form text associated with a node.

Usage

NodeTitle(node)
NodeTitle(node) <- value
NodeDescription(node)
NodeDescription(node) <- value

Arguments

node A NeticaNode object.

value A character object giving the new title or description.



NodeTitle 211

Details

The title is meant to be a human readable alternative to the name, which is not limited to the IDname
restrictions. The title also affects how the node is displayed in the Netica GUI.

The description is any text the user chooses to attach to the node. If value has length greater than 1,
the vector is collapsed into a long string with newlines separating the components.

Value

A character vector of length 1 providing the title or description.

Note

Node descriptions are called "Descriptions" in the Netica GUI, but "Comments" in the API.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNodeTitle_bn(), SetNodeTitle_bn(), GetN-
odeComments_bn(), SetNodeComments_bn()

See Also

NeticaNode, NodeName()

Examples

sess <- NeticaSession()
startSession(sess)
net2 <- CreateNetwork("secondNet", session=sess)

firstNode <- NewDiscreteNode(net2,"firstNode")

NodeTitle(firstNode) <- "My First Bayesian Network Node"
stopifnot(NodeTitle(firstNode)=="My First Bayesian Network Node")

now <- date()
NodeDescription(firstNode)<-c("Node created on",now)
stopifnot(NodeDescription(firstNode) ==

paste(c("Node created on",now),collapse="\n"))

## Print here escapes the newline, so is harder to read
cat(NodeDescription(firstNode),"\n")

DeleteNetwork(net2)
stopSession(sess)

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNodeTitle_bn.html
http://norsys.com/onLineAPIManual/functions/SetNodeTitle_bn.html
http://norsys.com/onLineAPIManual/functions/GetNodeComments_bn.html
http://norsys.com/onLineAPIManual/functions/GetNodeComments_bn.html
http://norsys.com/onLineAPIManual/functions/SetNodeComments_bn.html


212 NodeUserField

NodeUserField Gets user definable fields associated with a Netica node.

Description

Netica provides a mechanism for associating user defined values with a node as a series of key/value
pairs. The key must be a IDname and the value can be an arbitrary string. The function NodeUserField
accesses the string value associated with the key, and the function NodeUserObj accesses an R ob-
ject associated with the key.

Usage

NodeUserField(node, fieldname)
NodeUserField(node, fieldname) <- value
NodeUserObj(node, fieldname)
NodeUserObj(node, fieldname) <- value
NodeAllUserFields(node)

Arguments

node A NeticaNode object indicating the node.

fieldname A character scalar conforming to the IDname rules.

value For NodeUserField, an arbitrary character vector containing the new value.
Only the first element is used. For NodeUserObj, an arbitrary object which
is serialized with dputToString and then saved.

Details

Netica contains a mechanism for associating user data with nodes. In the Netica documentation,
they note that only strings are really supported as only strings are portable across implementa-
tions.The function NodeUserField provides direct access for storing strings.

The function NodeUserObj wraps the call to NodeUserField with a call to dputToString or
dgetFromString to allow the serialization of arbitrary objects.

Value

The function NodeUserField returns a character scalar with the value stored in the field fieldname ,
or NA if no such field exists.

The function NodeUserObj returns an arbitrary object created by calling dgetFromString on the
value stored in the field fieldname , or NULL if no such field exists. If the string cannot be interpreted
as an R object, it generates an error.

The function NodeAllUserFields returns a character vector containing all user data stored with
the node (this will be the serialized versions of the objects, not the objects themselves). The names
of the result are the names of the fields.



NodeUserField 213

Note

In his book Extending R John Chambers suggest serializing R objects through XML or JSON mech-
anisms rather than the older dump protocol. I may move to that later, although it will likely cause
backwards compatability issues.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html GetNodeUserField_bn(), SetNodeUserField_bn(),
GetNodeNthUserField_bn()

See Also

NeticaNode, NodeDescription() NetworkUserField, dputToString()

Examples

sess <- NeticaSession()
startSession(sess)
usedNet <- CreateNetwork("UsedNet", session=sess)

userNode <- NewContinuousNode(usedNet, "UserNode")
NodeUserField(userNode,"Author") <- "Russell Almond"
NodeUserField(userNode,"Status") <- "In Progress"

stopifnot(NodeUserField(userNode,"Author")=="Russell Almond")
stopifnot(NodeUserField(userNode,"Status")=="In Progress")

fields <- NodeAllUserFields(userNode)
stopifnot(length(fields)==2)
stopifnot(all(!is.na(match(c("Russell Almond","In Progress"),fields))))
stopifnot(all(!is.na(match(c("Author","Status"),names(fields)))))

stopifnot(is.na(NodeUserField(userNode,"gender")))
stopifnot(is.null(NodeUserObj(userNode,"gender")))

x <- sample(1L:10L)
NodeUserObj(userNode,"x") <- x
x1 <- NodeUserObj(userNode,"x")
stopifnot(all(x==x1))

DeleteNetwork(usedNet)
stopSession(sess)

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNodeUserField_bn.html
http://norsys.com/onLineAPIManual/functions/SetNodeUserField_bn.html
http://norsys.com/onLineAPIManual/functions/GetNodeNthUserField_bn.html


214 NodeValue

NodeValue Sets the numeric value of a continuous node

Description

This enters a numeric value (finding) for a continuous node or a discrete node which has numeric
values assigned to the states.

Usage

NodeValue(node)
NodeValue(node) <- value

Arguments

node An active NeticaNode object that references the node. The node should be con-
tinuous or have a numeric value associated with each level (see NodeLevels).

value A real value for the node.

Details

The behavior of the levels depends on whether the node is discrete (is.discrete(node)==TRUE)
or continuous (is.discrete(node)==FALSE).

Discrete. For if node is a discrete node, then the states of node must have been assigned numeric
values with NodeLevels(node) in order for NodeValue() to make sense. If all states have not been
assigned values, NodeValue() will generate an error.

If the value of the node is determined, either because the value of the node has been set with
NodeFinding() or because the value can be determined exactly from the value of other nodes in
the network (through logical probability distributions or formulae), then NodeValue(node) will
return the value associated with the state of the node. Otherwise, it will return NA.

The expression NodeValue(node)<-value , can be used to set the value of node to the state associate
with the numerical value . If value does not correspond to one of the node levels, this will generate
an error.

Continuous. For continuous nodes, NodeFinding(node) returns the value associated with the
node, either set with a previous call to NodeValue(node)<-value , or which can be determined
through formulae.

The expression NodeValue(node) <- value will set the value (the equivalent of a finding for a
discrete node) to value . If node has been associated with cut scores through a previous call to
NodeLevels(node), then this will also associate a finding with the node.

Value

The function NodeValue(node) returns the value of node if that can be determined (see Details) or
NA if it cannot. It may generate an error if node is discrete and has not had numeric values associated
with its states.

The expression NodeValue(node) <- value returns node .



NodeValue 215

Note

Netica manual is not particularly clear on how continuous nodes are handled.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNodeValueEntered_bn(), EnterNode-
Value_bn()

See Also

NodeFinding(), NodeLevels(), EnterNegativeFinding(), EnterFindings(), RetractNodeFinding(),
NodeStates(), NodeEquation(),is.continuous(), NodeExpectedValue(), NodeBeliefs()

Examples

sess <- NeticaSession()
startSession(sess)

aNet <- CreateNetwork("aNet", session=sess)

dTheta <- NewDiscreteNode(aNet, "ThetaD",
c("neg2","neg1","zero","pos1","pos2"))

NodeLevels(dTheta) <- c(-2,-1,0,1,2)

NodeFinding(dTheta) <- "pos1"
stopifnot(NodeValue(dTheta)==1)
NodeValue(dTheta) <- 0
stopifnot(NodeFinding(dTheta)=="zero")
## Not run:
## The error handling seems broken under Windows.
cat("This next statement generates an error as 1/2 is not a legal value.")
stopifnot(class(try(NodeValue(dTheta) <- 1/2)) == "try-error")

## End(Not run)

cTheta <- NewContinuousNode(aNet, "ThetaC")
NodeLevels(cTheta) <- qnorm(c(.001,1/5,2/5,2/5,4/5,.999))
## Netica doesn't allow - sign or decimal point in state name, need to
## jump through a few hoops here.
midpoints <- round(qnorm((1:5)/5-.1),2)
NodeStates(cTheta) <- sub(".","o",

paste(ifelse(midpoints<0,"n","p"),abs(midpoints),sep=""),
fixed=TRUE)

NodeValue(cTheta) <- -1
stopifnot(NodeFinding(cTheta)=="n1o28")
NodeFinding(cTheta) <- "p0"
## No value associated with this finding.

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNodeValueEntered_bn.html
http://norsys.com/onLineAPIManual/functions/EnterNodeValue_bn.html
http://norsys.com/onLineAPIManual/functions/EnterNodeValue_bn.html


216 NodeVisPos

stopifnot(is.na(NodeValue(cTheta)))

DeleteNetwork(aNet)
stopSession(sess)

NodeVisPos Gets, sets the visual position of the node on the Netica display.

Description

When displayed in the GUI, Netica nodes have a position. The NodeVisPos() attribute controls
where the node will be displayed.

Usage

NodeVisPos(node)
NodeVisPos(node) <- value

Arguments

node A NeticaNode object whose position is to be determined.

value A numeric vector of length 2 giving the x and y coordinates.

Details

The visual position of the node doesn’t make much different in RNetica, as R does not display the
node. However, it will control the appearance when the net is loaded into the Netica GUI.

Value

A numeric vector of length 2 with names "x" and "y".

Note

The minimum possible node position appears to be (0,0) and the maximum is never stated. Netica
appears to round positions to the nearest integer. Also, if the position appears too close to the
boarder (Netica positions the center of the node), Netica will move it away from the edge.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNodeVisPosition_bn(), SetNodeVisPo-
sition_bn(),

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNodeVisPosition_bn.html
http://norsys.com/onLineAPIManual/functions/SetNodeVisPosition_bn.html
http://norsys.com/onLineAPIManual/functions/SetNodeVisPosition_bn.html


NodeVisStyle 217

See Also

NeticaNode, NodeVisPos()

Examples

sess <- NeticaSession()
startSession(sess)
pnet <- CreateNetwork("PositionNet", session=sess)

pnode <- NewDiscreteNode(pnet,"PlaceMe")

NodeVisPos(pnode) <- c(100,300)
pos <- NodeVisPos(pnode)
stopifnot(

pos["x"] ==100,
pos["y"] ==300

)

## Netica rounds noninteger positions.
NodeVisPos(pnode) <- c(74.3,88.8)
pos <- NodeVisPos(pnode)
stopifnot(

pos["x"] ==74,
pos["y"] ==88

)

## Warning, setting a node too close to the edge can cause Netica to
## reposition the node
NodeVisPos(pnode) <- c(1,1)
pos <- NodeVisPos(pnode)
stopifnot(

pos["x"] >1,
pos["y"] >1

)

DeleteNetwork(pnet)
stopSession(sess)

NodeVisStyle Gets/sets the nodes visual appearance in Netica.

Description

Netica internally has a number of styles it can use to draw a node, these including, "Default", "Ab-
sent", "Shape", "LabeledBox", "BeliefBars", "BeliefLine", and "Meter". The function NodeVisStyle()
returns how the node will be displayed, or sets how it will be displayed.



218 NodeVisStyle

Usage

NodeVisStyle(node)
NodeVisStyle(node) <- value

Arguments

node A NeticaNode object whose style is to be determined.

value A character string giving the new style. Must be one of "Default", "Absent",
"Shape", "LabeledBox", "BeliefBars", "BeliefLine", or "Meter".

Details

The visual style of the node doesn’t make much different in RNetica, as R does not display the
node. However, it will control the appearance when the node is loaded into the Netica GUI.

Value

A character string which is one of the values "Default", "Absent", "Shape", "LabeledBox", "Belief-
Bars", "BeliefLine", or "Meter", or NA if an error occurred.

The setter method returns the modified node object.

Note

The Netica documentation indicates that in the future additional parameters can be added to the
style, for example: "LabeledBox,CornerRoundingRadius=3,LineThickness=2"

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNodeVisStyle_bn(), SetNodeVisStyle_bn(),

See Also

NeticaNode, NodeVisPos()

Examples

sess <- NeticaSession()
startSession(sess)
snet <- CreateNetwork("StylishNet", session=sess)

snode <- NewDiscreteNode(snet,"StyleMe")
stopifnot(NodeVisStyle(snode)=="Default")

NodeVisStyle(snode) <- "Meter"
stopifnot(NodeVisStyle(snode)=="Meter")

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNodeVisStyle_bn.html
http://norsys.com/onLineAPIManual/functions/SetNodeVisStyle_bn.html


normalize 219

DeleteNetwork(snet)
stopSession(sess)

normalize Normalizes a conditional probability table.

Description

A conditional probability table (CPT) represents a collection of probability distribution, one for
each configuration of the parent variables. This function normalizes the CPT, insuring that the
probabilities in each conditional distribution sum to 1.

Usage

normalize(cpt)
## S3 method for class 'CPF'
normalize(cpt)
## S3 method for class 'data.frame'
normalize(cpt)
## S3 method for class 'CPA'
normalize(cpt)
## S3 method for class 'array'
normalize(cpt)
## S3 method for class 'matrix'
normalize(cpt)
## Default S3 method:
normalize(cpt)

Arguments

cpt A conditional probability table stored in either array (CPA format) or data frame
(CPF format). A general data vector is treated like an unconditional probability
vector.

Details

The normalize function is a generic function which attempts to normalize a conditional probability
distribution.

A conditional probability table in RNetica is represented in one of two ways. In the conditional
probability array (CPA) the table is represented as a p+ 1 dimensional array. The first p dimensions
correspond to configurations of the parent variables and the last dimension the child value. The
normalize.CPA method adjusts the data value so that the sum across all of the child states is 1.
Thus, apply(result,1:p,sum) should result in a matrix of 1’s. The method normalize.array
first coerces its argument into a CPA and then applies the normalize.CPA method.

The second way to represent a conditional probability table in RNetica is to use a data frame (CPF).
Here the factor variables correspond to a configuration of the parent states, and the numeric columns



220 normalize

correspond to states of the child variable. Each row corresponds to a particular configuration of
parent variables and the numeric values should sum to one. The normalize.CPF function makes
sure this constraint holds. The method normalize.data.frame first applies as.CPF() to make the
data frame into a CPF.

The method normalize.matrix ensures that the row sums are 1. It does not change the class.

The default method only works for numeric objects. It ensures that the total sum is 1.

NA’s are not allowed and will produce a result that is all NAs.

Value

An object with similar properties to cpt, but adjusted so that probabilities sum to one.

For normalize.CPA and normalize.array an normalized CPA array.

For normalize.CPF and normalize.data.fram an normalized CPF data frame.

For normalize.matrix an matrix whose row sums are 1.

For normalize.default a numeric vector whose values sum to 1.

Note

May be other functions for CPTs later.

Author(s)

Russell Almond

See Also

NodeProbs()

Examples

n14 <- normalize(1:4)
stopifnot (abs(sum(n14)-1.0) <.0001)

normalize(matrix(1:6,2,3))
normalize(array(1:24,c(4,3,2)))
arr <- array(1:24,c(4,3,2),

list(a=c("A1","A2","A3","A4"),
b=c("B1","B2","B3"),
c=c("C1","C2")))

arr <- as.CPA(arr)
narr <- normalize(arr)
stopifnot(

is(narr,"CPA"), is(narr,"array"),
all(abs(apply(narr,1:2,sum)-1) <.0001)

)

arf <- as.CPF(arr)
narf <- normalize(arf)
stopifnot(



ParentStates 221

is(narf,"CPF"), is(narf,"data.frame"),
all(abs(apply(narf[sapply(narf,is.numeric)],1,sum)-1) <.0001)

)

df2 <- data.frame(parentval=c("a","b"),
prob.true=c(1,1),prob.false=c(1,1))

ndf2 <- normalize(df2)
stopifnot(

is(ndf2,"CPF"), is(ndf2,"data.frame"),
all(abs(apply(ndf2[2:3],1,sum)-1) <.0001)

)

ParentStates Returns a list of the names of the states of the parents of a Netica node.

Description

This function returns a list each of whose elements is a character vector giving the states of the par-
ent variables (i.e., the result of calling NodeStates) on each of the elements of NodeParents(node)).
The names of this list are the names assigned to the edges through NodeInputNames(node), or the
names of the parent variables if edge names were not supplied.

Usage

ParentStates(node)
ParentNames(node)

Arguments

node An active NeticaNode object whose parent states are to be determined.

Value

For ParentStates(node), named list where each element corresponds to the states of a parent
variable. If node has no parents, it returns a list of length 0.

The function ParentNames(node) returns names(ParentNames(node), only is faster.

Note

This is a slightly more sophisticated version of lapply(NodeParents(node), NodeStates). It
does minimal checking so that it can be fast.

Author(s)

Russell Almond



222 ReadFindings

See Also

NodeStates(), NodeParents(), NodeInputNames()

Examples

sess <- NeticaSession()
startSession(sess)
abc1 <- CreateNetwork("ABC1", session=sess)
A <- NewDiscreteNode(abc1,"A",c("A1","A2","A3","A4"))
B <- NewDiscreteNode(abc1,"B",c("B1","B2","B3"))
C <- NewDiscreteNode(abc1,"C",c("C1","C2"))

stopifnot(
length(ParentStates(A)) == 0

)

AddLink(A,B)

Bpars <- ParentStates(B)
stopifnot(

length(Bpars) == 1,
names(Bpars) == "A",
Bpars$A==NodeStates(A)

)

AddLink(A,C)
AddLink(B,C)

NodeInputNames(C) <- c("A_type","B_type")

Cpars <- ParentStates(C)
stopifnot(

length(Cpars) == 2,
names(Cpars) == c("A_type","B_type"),
Cpars[[1]]==NodeStates(A),
Cpars$B_type==NodeStates(B)

)

DeleteNetwork(abc1)
stopSession(sess)

ReadFindings Retrieves a record from a Netica Case Stream

Description

This function reads a row from a Netica case stream and instantiates the values of the listed nodes
to the values found in that row of the case stream.



ReadFindings 223

Usage

ReadFindings(nodes, stream, pos = "NEXT", add = FALSE)

Arguments

nodes The a list of active NeticaNode objects to be read. The findings of these nodes
will be modified by this call.

stream A CaseStream object which references the file or string object to be read from.

pos A character or integer scalar. This should almost certainly be one of the two
string values “FIRST” or “NEXT”. It also can be an integer giving the position
(in characters) where to start the machine. This is likely to produce surprising re-
sults unless the integer value is a value obtained from calling getCaseStreamPos
on this stream earlier after a call to either ReadFindings or WriteFindings.

add A logical scalar. If true, the findings from the case stream are added to the
existing node. If false, they are ignored.

Details

A case file is a table where the rows represent cases, and the columns represent variables. ReadFindings
reads a row out the table and instantiates (NodeFinding) the nodes in nodeset to those values. If a
the value corresponding a node is the value of CaseFileMissingCode(), then it is not instantiated.
The values in the columns are separated by the value of CaseFileDelimiter().

If add is false, it will first retract any findings associated with the nodes in nodeset. If a finding is
associated with a node, the the case file would cause it to be set to an inconsistent value, then an
error will be generated.

The argument pos determines which record will be read next. If the value is "NEXT" the next code
will be read. If the value is "FIRST" the first code will be read. If the value is a positive integer,
then the record which starts at that character will be read. On completion of the read, the value of
getCaseStreamPos(stream) is set to the starting position of the last read stream. This is also true
when WriteFindings is called. It is almost certainly an error to set the pos argument to anything
but either one of the special string constants or a value which was previously cached after calling
getCaseStreamPos. If the case stream is at the end, then getCaseStreamPos(stream) will be set
to NA.

There are two special columns in the file. The column “IDnum” contains ID numbers for the cases.
The value of getCaseStreamLastId(stream) is set to the value of this column if it is present in the
case stream, otherwise it will be set to -1. The value of the column “NumCases” contains a weight
to give to the current row. The value of getCaseStreamLastFreq(stream) is set to this value, if it
is present. The returned stream object will have these updated properties, otherwise it will be set to
-1.

Value

Returns the caseOrStream argument invisibly. Note that the values of getCaseStreamPos(stream)
will return the position of the next record or NA if there are no records left in the stream. The val-
ues of getCaseStreamLastId(stream), and getCaseStreamLastFreq(stream) will be updated
to reflect the values from the last read record, or will be -1 if these values are not provided in the
stream.



224 ReadFindings

Note

The first time that ReadFindings is called on a stream it must be called with pos="FIRST". Failing
to do so produces a fatal error in Netica.

The value of case_posn returned by the Netica ReadNetFindings2_bn function (which is the value
to which getCaseStreamPos(stream)) is undocumented. I confirmed with Brent that this is in fact
the position in characters from the start of the stream to the record. It is not recommended, however,
that program rely on that fact.

The fact that the case positions are difficult to compute makes random access difficult. If it is
needed, programmers will need to save the values of getCaseStreamPos on previous calls to
ReadFindings or WriteFindings. Fetching cases by the ID requires scanning through the case
file (see WithOpenCaseStream for an example).

Author(s)

Russell G. Almond

References

http://norsys.com/onLineAPIManual/index.html: ReadNetFindings2_bn()

See Also

CaseFileDelimiter, CaseFileMissingCode, NodeFinding, RetractNetFindings ReadFindings,
CaseStream, WithOpenCaseStream

Examples

sess <- NeticaSession()
startSession(sess)

abc <- CreateNetwork("ABC", session=sess)
A <- NewDiscreteNode(abc,"A",c("A1","A2","A3","A4"))
B <- NewDiscreteNode(abc,"B",c("B1","B2","B3"))
C <- NewDiscreteNode(abc,"C",c("C1","C2"))

AddLink(A,B)
AddLink(A,C)
AddLink(B,C)

## Input filename
## Note, this is a cached copy of the file written in the WriteFindings
## documentation.
casefile <- file.path(library(help="RNetica")$path,

"testData","abctestcases.cas")
filestream <- CaseFileStream(casefile, session=sess)
## Case 1
filestream <- ReadFindings(list(A,B,C),filestream,"FIRST")
stopifnot( NodeFinding(A) == "A1",

NodeFinding(B) == "B1",
NodeFinding(C) == "C1",

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/ReadNetFindings2_bn.html


ReadFindings 225

getCaseStreamLastId(filestream)==1001,
abs(getCaseStreamLastFreq(filestream)-1.0) < .0001)

pos1 <- getCaseStreamPos(filestream)

## Case 2
filestream <- ReadFindings(list(A,B,C),filestream,"NEXT")
stopifnot( NodeFinding(A) == "A2",

NodeFinding(B) == "B2",
NodeFinding(C) == "C2",
getCaseStreamLastId(filestream)==1002,
abs(getCaseStreamLastFreq(filestream)-2.0) < .0001)

## Case 3
filestream <- ReadFindings(list(A,B,C),filestream,"NEXT")
stopifnot( NodeFinding(A) == "A3",

NodeFinding(B) == "B3",
NodeFinding(C) == "@NO FINDING",
getCaseStreamLastId(filestream)==1003,
abs(getCaseStreamLastFreq(filestream)-1.0) < .0001)

## At end of file
filestream <- ReadFindings(list(A,B,C),filestream,"NEXT")
stopifnot(is.na(getCaseStreamPos(filestream)))

## Restart from Case 1
filestream <- ReadFindings(list(A,B,C),filestream,"FIRST")
stopifnot( NodeFinding(A) == "A1",

NodeFinding(B) == "B1",
NodeFinding(C) == "C1",
getCaseStreamLastId(filestream)==1001,
abs(getCaseStreamLastFreq(filestream)-1.0) < .0001,
pos1 == getCaseStreamPos(filestream))

## Test with memory stream
cases <- read.CaseFile(casefile, session=sess)
abcstream <- CaseMemoryStream(cases, session=sess)
MemoryStreamContents(abcstream)

abcstream <- ReadFindings(list(A,B,C),abcstream,"FIRST")
stopifnot( NodeFinding(A) == "A1",

NodeFinding(B) == "B1",
NodeFinding(C) == "C1",
getCaseStreamLastId(abcstream)==1001,
abs(getCaseStreamLastFreq(abcstream)-1.0) < .0001)

##Clean Up
CloseCaseStream(filestream)
CloseCaseStream(abcstream)
DeleteNetwork(abc)



226 RetractNodeFinding

stopSession(sess)

RetractNodeFinding Clears any findings for a Netica node or network.

Description

The function RetractNodeFinding(node) clears any findings or virtual findings set with NodeFinding(),
EnterNegativeFinding() or NodeLikelihood() and associated with node . The function RetractNetFindings(net)
clears any findings associated with any node in the network.

Usage

RetractNodeFinding(node)
RetractNetFindings(net)

Arguments

node An active NeticaNode whose findings are to be retracted.

net An active NeticaBN whose findings are to be retracted.

Details

This is an undo function for NodeFinding(), EnterNegativeFinding() or NodeLikelihood().
In particular, it allows for entering hypothesized findings for various calculations.

Value

Returns its argument invisibly.

Note

If SetNetworkAutoUpdate() has been set to TRUE, then this function could take some time as each
finding is individually propagated. Consider wrapping multiple calls setting NodeFinding() in
WithoutAutoUpdate(net, ...).

The Netica functions for setting node findings require the programmer to call RetractNodeFindings_bn()
before setting values to clear out old findings. The RNetica functions do this internally, so the user
does not need to worry about this.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: RetractNetFindings_bn(), RetractNodeFind-
ings_bn()

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/RetractNetFindings_bn.html
http://norsys.com/onLineAPIManual/functions/RetractNodeFindings_bn.html
http://norsys.com/onLineAPIManual/functions/RetractNodeFindings_bn.html


ReverseLink 227

See Also

NeticaBN, NeticaNode, NodeBeliefs(), EnterNegativeFinding(), EnterGaussianFinding(),
EnterIntervalFinding(), NodeFinding(), NodeLikelihood()

Examples

sess <- NeticaSession()
startSession(sess)
irt5 <- ReadNetworks(file.path(library(help="RNetica")$path,

"sampleNets","IRT5.dne"), session=sess)

irt5.theta <- NetworkFindNode(irt5,"Theta")
irt5.x <- NetworkFindNode(irt5,paste("Item",1:5,sep="_"))

CompileNetwork(irt5) ## Ready to enter findings

stopifnot(NodeFinding(irt5.x[[1]]) == "@NO FINDING")

NodeFinding(irt5.x[[1]]) <- "Right"
stopifnot(NodeFinding(irt5.x[[1]]) == "Right")

RetractNodeFinding(irt5.x[[1]])
stopifnot(NodeFinding(irt5.x[[1]]) == "@NO FINDING")

NodeFinding(irt5.x[[1]]) <- "Wrong"
NodeFinding(irt5.x[[2]]) <- 1
NodeFinding(irt5.x[[3]]) <- 2
stopifnot(

NodeFinding(irt5.x[[1]]) == "Wrong",
NodeFinding(irt5.x[[2]]) == "Right",
NodeFinding(irt5.x[[3]]) == "Wrong",
NodeFinding(irt5.x[[4]]) == "@NO FINDING",
NodeFinding(irt5.x[[5]]) == "@NO FINDING"

)

RetractNetFindings(irt5)
stopifnot(

NodeFinding(irt5.x[[1]]) == "@NO FINDING",
NodeFinding(irt5.x[[2]]) == "@NO FINDING",
NodeFinding(irt5.x[[3]]) == "@NO FINDING",
NodeFinding(irt5.x[[4]]) == "@NO FINDING",
NodeFinding(irt5.x[[5]]) == "@NO FINDING"

)

DeleteNetwork(irt5)
stopSession(sess)

ReverseLink Reverses a link in a Netica network.



228 ReverseLink

Description

This reverses the link between parent and child so that it now points from child to parent . If
child has additional parents, they are connected to parent and the conditional probability tables are
adjusted so that the joint probability distribution across all nodes in the network remains the same.

Usage

ReverseLink(parent, child)

Arguments

parent An active NeticaNode which is currently a parent of child and which will be
the child after the transformation.

child An active NeticaNode which is currently a child of parent and which will be
the parent after the transformation.

Details

This is not just a simple reversal of a single edge, but rather the influence diagram operation of arc
reversal. Netica will add additional links to enforce any conditional probability relationship. For
example, Consider a net where A and B are both parents of C, but A is not directly connected to
C. After reversing the arc between B and C, A will also become a parent of B to maintain the joint
distribution.

Value

Returns NULL if successful and NA if there was a problem.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: ReverseLink_bn()

Shachter, R. D. (1986) "Evaluating Influence Diagrams." Operations Research, 34, 871–82.

See Also

NeticaNode, AddLink(), NodeChildren(), NodeParents(), AbsorbNodes(), is.NodeRelated()

Examples

sess <- NeticaSession()
startSession(sess)

abcnet <- CreateNetwork("ABC", session=sess)

A <- NewDiscreteNode(abcnet,"A")
B <- NewDiscreteNode(abcnet,"B")

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/ReverseLink_bn.html


StartNetica 229

C <- NewDiscreteNode(abcnet,"C")

AddLink(A,C)
AddLink(B,C)
stopifnot(

is.NodeRelated(A,C,"parent"),
is.NodeRelated(C,B,"child"),
!is.NodeRelated(A,B,"parent")

)

ReverseLink(B,C)
stopifnot(

is.NodeRelated(A,C,"parent"),
is.NodeRelated(C,B,"parent"),
is.NodeRelated(A,B,"parent")

)

DeleteNetwork(abcnet)
stopSession(sess)

StartNetica Starting and stopping the Netica shared library.

Description

This function creates (or destroys) a Netica environment. The StartNetica function also allows
you to set various parameters associated with the Netica environment.

Usage

startSession(session)
stopSession(session)
restartSession(session)
StartNetica(license = LicenseKey, checking = NULL, maxmem = NULL,

session=NeticaSession(LicenseKey=license, checking=checking,
maxmem=maxmem))

StopNetica(session=getDefaultSession())

Arguments

session An object of class NeticaSession which encapsulates the connection to Netica.

license A string containing a license key from Norsys. If this is NULL the limited stu-
dent/demonstration version of Netica is used rather than the full version. If the
variable NeticaLicenseKey is set before RNetica is loaded, then the value of
that variable at the time the package is loaded will become the default for li-
cense .



230 StartNetica

checking A character string containing one of the keywords: "NO_CHECK", "QUICK_CHECK",
"REGULAR_CHECK", "COMPLETE_CHECK", or "QUERY_CHECK", which controls how
rigorous Netica is about checking errors. A value of NULL uses the Netica default
which is "REGULAR_CHECK".

maxmem An integer containing the maximum amount of memory to be used by the Netica
shared library in bytes. If supplied, this should be at least 200,000.

Details

The generic functions startSession and stopSession start and stop the connection to Netica.
Note that the session is active (is.active) if the session has been started, and inactive if it was
stopped (or not yet started). The generic function restartSession stops the session and starts it
again.

The functions StartNetica and StopNetica are depricated, but still included for backwards com-
patability. The function StartNetica will now create a new object of class NeticaSession passing
its arguments to the constructor. It will also set a variable DefaultNeticaSession in the global
environment to the new session. As this is the value returned by getDefaultSession() this will
cause RNetica to behave like the previous versions where the session pointer was stored internally
to the C code. The function StopNetica operates on the default session if no explicit argument is
given.

Netica is commercial software. The RNetica package downloads and installs the demonstration
version of Netica which is limited in its functionality (particularly in the size of the networks it
handles). Unlocking the full version of Netica requires a license key which can be purchased from
Norsys (http://www.Norsys.com/). They will send a license key which unlocks the full capabil-
ities of the shared library. This can be passed as the first argument to StartNetica(). If the value
of the first argument is NULL then the demonstration version is used instead of the licensed version
(could be useful for testing).

Prior to RNetica version 0.5, RNetica looked for a variable called NeticaLicenseKey in the global
workspace when RNetica is loaded. This then becomes the default value for both StartNetica and
getDefaultSession(). If no value is set for NeticaLicenseKey, the default value for license is
set to NULL, which loads the demo version of Netica.

In version 0.5 and later of RNetica, the recommended way to store the license is to create a default
session and store it in the variable DefaultNeticaSession in the global environment. This session
object then contains the license key.

The checking argument, if supplied, is used to call the Netica function ArgumentChecking_ns().
See the documentation of that function for the meaning of the codes. The default value, "REGULAR_CHECK"
is appropriate for most development situations.

The maxmem argument, if supplied, is used to limit the amount of memory used by Netica. This is
passed in a call to the Netica function LimitMemoryUsage_ns(). Netica will complain if this value
is less than 200,000. Leaving this as NULL will not place limits on the size of Netica’s memory for
tables and things.

The function StopNetica() calls the Netica function CloseNetica_bn(). It is mainly used when
one wants to stop Netica and restart it with other parameters.

As of RNetica 0.5, the function StartNetica is no longer called when the package is attached (in
the .onAttach() function). Instead, users should start Netica scripts with startSession(DefaultNeticaSession).

http://www.Norsys.com/


StartNetica 231

Note that the pathnames of recently loaded networks are stored in the session object, so that net-
works can be quickly re-read from a saved session.

Value

These functions now all return an object of class NeticaSession. Note that StartNetica sets the
value of DefaultNeticaSession in the global environment to the value of the session argument.

License

The Netica API is not free-as-in-speech software, the use of the Netica shared library makes you
subject to the Netica License agreement (which can be found in the RNetica folder in your R library.
If you do not agree to the terms of that license, please uninstall RNetica.

The Netica API is also not free-as-in-beer software. The demonstration version of the Netica API,
however, is. In order for you to make full use of the RNetica API, you must purchase a Netica API
license from Norsys (http://norsys.com/).

RNetica itself (the glue layers between R and Netica) is free (in both the speech and beer senses)
software. Suggestions for improvements and bug fixes are welcome.

Implementation Notes

Starting with RNetica 0.5, the Netica environment pointer, which is used by the Netica shared
library is stored inside of the NeticaSession object instead of as a global object in the C code. The
function is.active() checks to see whether that pointer is set (active) or null (inactive). Note that
when a session object is saved, the session pointer is not saved and should be set to null.

The pre verison 0.5 method used a variable NeticaLicenseKey in the global environment to store
the license key. The post 0.5 method uses a variable DefaultNeticaSession to store a session
object instead, but for backwards compatability, it will try to create a session using the value of
NeticaLicenseKey if no default session exists.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: NewNeticaEnviron_ns(), InitNetica2_bn(),
CloseNetica_bn(), LimitMemoryUsage_ns(), ArgumentChecking_ns()

See Also

NeticaSession, NeticaSession(), NeticaVersion(), CreateNetwork()

Examples

## Not run:
## Recommended way of doing things
DefaultNeticaSession <- NeticaSession(LicenseKey="Code from Norsys")
startSession(DefaultNeticaSession)

http://norsys.com/
http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/NewNeticaEnviron_ns.html
http://norsys.com/onLineAPIManual/functions/InitNetica2_bn.html
http://norsys.com/onLineAPIManual/functions/CloseNetica_bn.html
http://norsys.com/onLineAPIManual/functions/LimitMemoryUsage_ns.html
http://norsys.com/onLineAPIManual/functions/ArgumentChecking_ns.html


232 WithOpenCaseStream

## If DefaultNeticaSession was created in a previous R session
## Re-read the networks.
for (netname in DefaultNeticaSession$listNets()) {

net <- DefaultNeticaSession$findNet(netname)
ReadNetworks(GetNetworkFileName(net),DefaultNeticaSession)

}

restartSession(DefaultNeticaSession)
stopSession(DefaultNeticaSession)

## Depricated methods
StartNetica("License key from Norsys")
StopNetica()
## Get the version of Netica.

## End(Not run)

WithOpenCaseStream Evaluate an expression and then close the Netica Case Stream.

Description

This function evaluates expr in a context where the CaseStream is open. The stream is closed when
the evaluation is complete. The evaluation of expr is surrounded with a tryCatch so that the stream
is closed whether or not the expression is successfully executed.

Usage

WithOpenCaseStream(stream, expr)

Arguments

stream A CaseStream object. This can be open or closed. If closed it is reopened.

expr An arbitrary R expression to be executed.

Value

Either the result of evaluating expr unless executing expr results in an error in which case it returns
a try-error.

Author(s)

Russell Almond

See Also

CaseStream,ReadFindings



WithOpenCaseStream 233

Examples

## This function reads findings from a stream until it finds one
## matching a certain case ID.
ReadCase <- function (stream,nodes,caseID) {

WithOpenCaseStream(stream,
{stream <- ReadFindings(nodes,stream,"FIRST")
while(!is.na(getCaseStreamPos(stream)) &&

getCaseStreamLastId(stream) != caseID) {
ReadFindings(nodes,stream,"NEXT")

}
if (is.na(getCaseStreamPos(stream))) {

warning("Case ID:",caseID," not found in stream.")
}
stream

})
}

sess <- NeticaSession()
startSession(sess)

## Test it.
abc <- CreateNetwork("ABC", session=sess)
A <- NewDiscreteNode(abc,"A",c("A1","A2","A3","A4"))
B <- NewDiscreteNode(abc,"B",c("B1","B2","B3"))
C <- NewDiscreteNode(abc,"C",c("C1","C2"))

AddLink(A,B)
AddLink(A,C)
AddLink(B,C)

## Input filename
## Note, this is a cached copy of the file written in the WriteFindings
## documentation.
casefile <- file.path(library(help="RNetica")$path,

"testData","abctestcases.cas")

filestream <- ReadCase(CaseFileStream(casefile, session=sess),list(A,B,C),1002)
stopifnot( !isCaseStreamOpen(filestream),

NodeFinding(A) == "A2",
NodeFinding(B) == "B2",
NodeFinding(C) == "C2",
getCaseStreamLastId(filestream)==1002,
abs(getCaseStreamLastFreq(filestream)-2.0) < .0001)

##Clean Up
DeleteNetwork(abc)
stopSession(sess)



234 woe

woe Calculates the weight of evidence for a hypothesis

Description

Calculates the weight of evidence provided by the current findings for the specified hypothesis. A
hypothesis consists of a statement that a particular set of nodes (hnodes) will fall in a specified set
of states (hstatelists).

Usage

woe(enodes, estates, hnodes, hstatelists)

Arguments

enodes A list of NeticaNodes which are providing evidence. As a special case, a single
NeticaNode is treated as a list of length one.

estates A list of character vectors the same length as enodes corresponding to the ob-
served or hypothesized state of the evidence nodes and representing states of the
corresponding node. As a special case, a character vector is turned into a list of
length one.

hnodes A list of NeticaNodes whose values are of interest. As a special case, a single
NeticaNode is treated as a list of length one.

hstatelists A list of character vectors the same length as hnodes corresponding to the hy-
pothesized state of the nodes and representing states of the corresponding node.
As a special case, a character vector is turned into a list of length one.

Details

Good (1985) defines the weight of evidence E for a hypothesis H as

W (H : E) = log
P (E|H)

P (E| 6 H)
= log

P (H|E)

P ( 6 H|E)
− log

P (H)

P (6 H)
.

Author(s)

Russell Almond

Examples

##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.

## The function is currently defined as
function (hnodes, hstatelists)
{

if (!is.list(hnodes))



write.CaseFile 235

hnodes <- list(hnodes)
if (!is.list(hstatelistss))

hstatelists <- list(hstatelists)
if (!all(sapply(hnodes, is.NeticaNode))) {

stop("Expected a list of Netica nodes, got ", hnodes)
}
if (length(hstatelists) > length(hnodes)) {

stop("More statelists than nodes.")
}
net <- NodeNetwork(hnodes[[1]])
hlikes <- mapply(function(hnode, hstatelist) {

stnames <- NodeStateNames(hnode)
hlike <- rep(0, length(stnames))
names(hlike) <- stnames
hlike[hstatelist] <- 1
hlike

}, hnodes, hstatelists, SIMPLIFY = FALSE)
tryCatch({

for (i in 1:length(hnodes)) {
RetractNodeFinding(hnodes[[i]])
NodeLikelihood(hnodes[[i]]) <- hlike[[i]]

}
p_Htrue <- FindingsProbability(net)
for (i in 1:length(hnodes)) {

RetractNodeFinding(hnodes[[i]])
NodeLikelihood(hnodes[[i]]) <- 1 - hlike[[i]]

}
p_Hfalse <- FindingsProbability(net)
100 * log10(p_Htrue/p_Hfalse)

}, finally = sapply(hnodes, RetractNodeFinding))
}

write.CaseFile Read or write data frame in Netica Case File format.

Description

These functions our wrapper around read.table and write.table to format the file in the ex-
pected Netica case file format.

Usage

write.CaseFile(x, file, ..., session=getDefaultSession())
read.CaseFile(file, ..., session=getDefaultSession())

Arguments

x A data frame to be written to the file. See details.

file A file name or a connection object. By convention, Netica expects case files to
end in the “.cas” suffix.



236 write.CaseFile

... Other arguments to read.table or write.table

session An object of class NeticaSession which encapsulates the connection to Netica.
Used to find the current delimiters.

Details

A Netica case file has a format that very much resembles the output of write.table. The first row
is a header row, which contains the names of the variables, the second and subsequent rows contain
a set of findings: an assignment of values to the nodes indicated in the columns. There are no row
numbers, and the separator and missing value codes are the values of CaseFileDelimiter(), and
CaseFileMissingCode() respectively.

In addition to columns representing variables, two special columns are allowed. The column named
“IDnum”, if present should contain integers which correspond to ID numbers for the cases (this
correspond to the id argument of WriteFindings). The column named “NumCases” should con-
tain number values and this allows rows to be differentially weighted (this correspond to the freq
argument of WriteFindings). If these special arguments are present, write.table permutes the
columns if necessary to make them first in the order (as Netica does in WriteFindings).

The function read.CaseFile overrides following arguments of read.table: header = TRUE,
sep = CaseFileDelimiter(), and na.strings = CaseFileMissingCode(). The func-
tion write.CaseFile overrides following arguments of write.table: col.name = TRUE,
row.names = FALSE, quote = FALSE, sep = CaseFileDelimiter(), and na = CaseFileMissingCode().

Value

The function read.CaseFile returns a data frame containing the information in the case file. The
function write.CaseFile returns the output of the write.table call (which is undocumented).

Author(s)

Russell Almond

See Also

CaseFileDelimiter, CaseFileMissingCode, WriteFindings, ReadFindings, CaseMemoryStream,CaseFileStream,
MemoryStreamContents, read.table,write.table

Examples

sess <- NeticaSession()
startSession(sess)

casefile <- file.path(library(help="RNetica")$path,
"testData","abctestcases.cas")

CaseFileDelimiter("\t", session=sess)
CaseFileMissingCode("*", session=sess)
cases <- read.CaseFile(casefile, session=sess)

outfile <- tempfile("testcase",fileext=".cas")
write.CaseFile(cases,outfile, session=sess)



WriteFindings 237

stopSession(sess)

WriteFindings Appends the current findings to a Netica case file.

Description

This function writes the current findings for a network as a row in a Netica case file. If filename
already exists, the new row is appended on the end of the file. Variables that are not instantiated are
written out using the missing code.

Usage

WriteFindings(nodes, pathOrStream, id = -1L, freq = -1.0)

Arguments

nodes The a list of active NeticaNode objects to be written out.

pathOrStream Either a character scalar giving the path name of the file to which the results
are to be written, or a CaseStream object. It is recommended that it have the
extension “.cas”.

id An integer scalar giving the case ID. The default value of -1 suppresses the
writing of cases. If an ID is supplied for the first case, it should be supplied for
all cases.

freq An integer scalar giving the number of cases with the currently instantiated set of
findings. The default value -1 suppresses writing the cases, implicitly assuming
that all cases have weight 1. If supplied for the first row, this should be supplied
for all rows.

Details

A case file is a table where the rows represent cases, and the columns represent variables. WriteFindings
writes out the currently instantiated value of the nodes in nodeset . If a node in nodeset does not
currently have a finding attached, then the value of CaseFileMissingCode() is printed out instead.
The values in the columns are separated by the value of CaseFileDelimiter().

There are two special columns in the file. The column “IDnum” is set to the value id, which should
contain an integer case number. The column “NumCases” is set to the value of freq which should
give a weight to assign to the case (in various algorithms when freq is supplied, it is treated as
if that case was repeated weight times). Assigning either of these fields a value of -1 means the
corresponding column is appended to the output.

The function WriteFindings will create a new file associated with filename if it does not exist.
In that case it will write out a header row containing the variable names followed by the current
findings as the first case row. Subsequent calls to WriteFindings with the same filename append
additional rows to the end of the file. In such cases, the nodelist should be the same, and if id or
freq was -1, it should be in the following calls as well.



238 WriteFindings

Value

Returns the caseOrStream argument invisibly. Note that the values of getCaseStreamPos(stream),
getCaseStreamLastId(stream), and getCaseStreamLastFreq(stream) will be updated to reflect
the values from the last read record.

Author(s)

Russell G. Almond

References

http://norsys.com/onLineAPIManual/index.html: WriteNetFindings_bn()

See Also

CaseFileDelimiter, CaseFileMissingCode, NodeFinding, RetractNetFindings ReadFindings,
CaseStream

Examples

sess <- NeticaSession()
startSession(sess)

abc <- CreateNetwork("ABC", session=sess)
A <- NewDiscreteNode(abc,"A",c("A1","A2","A3","A4"))
B <- NewDiscreteNode(abc,"B",c("B1","B2","B3"))
C <- NewDiscreteNode(abc,"C",c("C1","C2"))

AddLink(A,B)
AddLink(A,C)
AddLink(B,C)

## Outputfilename
casefile <- tempfile("testcase",fileext=".cas")
filestream <- CaseFileStream(casefile, session=sess)
stopifnot(is.CaseFileStream(filestream),

isCaseStreamOpen(filestream))

## Case 1
NodeFinding(A) <- "A1"
NodeFinding(B) <- "B1"
NodeFinding(C) <- "C1"
WriteFindings(list(A,B,C),casefile,1)
RetractNetFindings(abc)

## Case 2
NodeFinding(A) <- "A2"
NodeFinding(B) <- "B2"
NodeFinding(C) <- "C2"
WriteFindings(list(A,B,C),casefile,2)
RetractNetFindings(abc)

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/WriteNetFindings_bn.html


WriteNetworks 239

## Case 3
NodeFinding(A) <- "A3"
NodeFinding(B) <- "B3"
## C will be missing
WriteFindings(list(A,B,C),casefile,3)
RetractNetFindings(abc)

DeleteNetwork(abc)
stopSession(sess)

WriteNetworks Reads or writes a Netica network from a file.

Description

This function writes a Netica network to a .neta or .dne file or reads a network written by such a
file. This allows networks created with RNetica to be shared with other Netica users.

Usage

WriteNetworks(nets, paths)
ReadNetworks(paths, session)
GetNetworkFileName(net, internal=FALSE)

Arguments

nets A single NeticaBN object or a list of such objects.

net A single NeticaBN object.

paths A character vector of pathnames to .neta files. For ReadNetworks(), the
pathnames must exist. For WriteNetworks(), the length(paths) must equal
length(nets). For WriteNetworks() if paths are missing, then GetNetworkFileName()
will be called to try and determine any path associated with the node.

session An object of type NeticaSession which defines the reference to the Netica
workspace. Read networks will be created in this session.

internal A logical scalar. If true, the actual Netica object will be consulted, if false, a
cached value in the R object will be used.

Details

This method invokes the native Netica open and save functions to read and write networks to .neta
or .dne files. The .neta format is binary and more compact, while the .dne format is ASCII and
may be safer in some circumstances (such as when used with a source control system). Netica
figures out which format to use based on the extension of the file, elements of paths should end
with .neta or .dne.



240 WriteNetworks

The function GetNetworkFileName() returns the name of the last file this network was saved to or
read from. It cannot be set other than through the WriteNetworks() or ReadNetworks() functions.
Note that the filename is saved in both the R object and the Netica object. If internal=TRUE, then
the Netica object will be consulted. This will raise an error if the net is not currently active.

To facilitate saving and restoring files across R sessions, both ReadNetworks() and WriteNetworks()
attach a "Filename" attribute to the object, which records the file just read or written. GetNetworkFileName(net,internal=TRUE)
will not work after quitting and restarting Netica, but net$PathnameName should contain the same
pathname. If ReadNetworks() is passed a NeticaBN object (or a list of such objects), it will attempt
to read from the file referenced by the "Filename" attribute. Thus, calling net <- WriteNetworks(net,path)
right before shutting down R and net <- ReadNetworks(net,session) right after the call to
startSession() should restore the network.

Value

Both ReadNetworks() and WriteNetworks() return a list of NeticaBN objects corresponding to
the new networks. In the case of a problem with one of the networks, the corresponding entry will
be set to NULL. If the return list has length 1, a single NeticaBN object will be returned instead of a
list.

A "PathnameName" field is added to the NeticaBN object that is returned. This can be used to
restore NeticaBN objects after an R session is restarted.

Note

The demonstration version of Netica is limited to the size of the networks it will write (the limit is
somewhere around 10 nodes). If you are running across errors saving large networks, you need to
purchase a Netica API license from Norsys (http://norsys.com/).

ReadNetworks() and WriteNetworks() are vectorized, and can take either scalars or vectors as
arguments (thus, a whole collection of networks can be read or written at once). When the argument
is a scalar, a scalar is returned. This is probably the 80% case, but may produce unexpected behavior
in certain coding circumstances.

Netica does not seem to expand the character ’~’ to your home directory (unlike R which follows
the Unix convention in this regard).

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: WriteNet_bn(), ReadNet_bn()

See Also

NeticaBN, CreateNetwork(), NetworkFindNode() (for recreating links to nodes after restoring a
net)

http://norsys.com/
http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/WriteNet_bn.html
http://norsys.com/onLineAPIManual/functions/ReadNet_bn.html


WriteNetworks 241

Examples

sess <- NeticaSession()
startSession(sess)

peanut <- CreateNetwork("peanut", session=sess)
NetworkTitle(peanut) <- "The Peanut Network"
peanutFile <- tempfile("peanut",fileext=".dne")
WriteNetworks(peanut,peanutFile)
stopifnot(GetNetworkFileName(peanut)==peanutFile)

pecan <- CreateNetwork("pecan", session=sess)
NetworkTitle(pecan) <- "The Pecan Network"
pecanFile <- tempfile("pecan",fileext=".dne")
almond <- CreateNetwork("almond", session=sess)
NetworkTitle(almond) <- "The Almond Network"
almondFile <- tempfile("almond",fileext=".neta")
WriteNetworks(list(pecan,almond),c(pecanFile,almondFile))
stopifnot(GetNetworkFileName(pecan)==pecanFile,

GetNetworkFileName(almond)==almondFile)

DeleteNetwork(peanut)
DeleteNetwork(pecan)
DeleteNetwork(almond)
stopifnot(!is.active(almond))

peanut <- ReadNetworks(peanutFile, session=sess)
stopifnot(is.active(peanut))
stopifnot(NetworkTitle(peanut)=="The Peanut Network")
stopifnot(GetNetworkFileName(peanut)==peanutFile)

nets <- ReadNetworks(c(pecanFile,almondFile), session=sess)
stopifnot(length(nets)==2)
stopifnot(all(sapply(nets,is.active)))
stopifnot(NetworkTitle(nets[[1]])=="The Pecan Network")
almond <- GetNamedNetworks("almond", session=sess)
stopifnot(is.NeticaBN(almond),is.active(almond))
stopifnot(GetNetworkFileName(pecan)==pecanFile,

GetNetworkFileName(almond)==almondFile)

DeleteNetwork(peanut)
DeleteNetwork(nets[[1]])
DeleteNetwork(almond)
stopSession(sess)

## Not run:
## Safe way to preserve node and network objects across R sessions.
tnet <- WriteNetworks(tnet,"Tnet.neta")
q(save="yes")
# R
library(RNetica)
sess <- startSession(getDefaultSession())
tnet <- ReadNetworks(tnet, session=sess)



242 WriteNetworks

nodes <- NetworkFindNodes(tnet,tnet$listNodes())

## End(Not run)



Index

∗Topic IO
CaseFileDelimiter, 20
CaseFileStream, 22
CaseMemorytream, 24
CaseStream-class, 27
FileCaseStream-class, 74
MemoryCaseStream-class, 113
MemoryStreamContents, 117
NeticaCaseStream, 128
WithOpenCaseStream, 232
write.CaseFile, 235
WriteFindings, 237
WriteNetworks, 239

∗Topic Interface
NodeEquation, 174

∗Topic \textasciitildekwd1
woe, 234

∗Topic \textasciitildekwd2
woe, 234

∗Topic array
CPA, 41
CPF, 43
Extract.NeticaNode, 57
normalize, 219

∗Topic attributes
NetworkNodeSetColor, 154
NetworkNodeSets, 156
NodeSets, 203

∗Topic attribute
GetNetworkAutoUpdate, 83
NetworkName, 152
NetworkNodesInSet, 158
NetworkSetPriority, 161
NetworkTitle, 164
NetworkUserField, 166
NodeInputNames, 185
NodeKind, 187
NodeLevels, 189
NodeName, 195

NodeStateTitles, 208
NodeTitle, 210
NodeUserField, 212
NodeVisPos, 216
NodeVisStyle, 217

∗Topic classes
CaseStream-class, 27
CliqueNode-class, 33
CPA, 41
CPF, 43
FileCaseStream-class, 74
MemoryCaseStream-class, 113
NeticaBN, 124
NeticaBN-class, 126
NeticaNode, 132
NeticaNode-class, 134
NeticaRNG-class, 139
NeticaSession, 141
NeticaSession-class, 144

∗Topic datagen
GenerateRandomCase, 78
NeticaRNG, 137
NeticaRNG-class, 139
NetworkSetRNG, 162

∗Topic environment
NeticaVersion, 148
StartNetica, 229

∗Topic graphs
AbsorbNodes, 11
AddLink, 13
is.NodeRelated, 92
NeticaBN, 124
NeticaBN-class, 126
NeticaNode, 132
NetworkFindNode, 149
NewDiscreteNode, 168
NodeChildren, 173
NodeNet, 197
NodeParents, 198

243



244 INDEX

NodeStates, 205
ReverseLink, 227

∗Topic interfaces
StartNetica, 229

∗Topic interface
AbsorbNodes, 11
AddLink, 13
AdjoinNetwork, 14
CalcNodeState, 18
CaseFileDelimiter, 20
CaseFileStream, 22
CaseMemorytream, 24
CaseStream-class, 27
CliqueNode-class, 33
CompileNetwork, 35
CopyNetworks, 37
CopyNodes, 38
CreateNetwork, 45
DeleteNodeTable, 47
EliminationOrder, 49
EnterFindings, 51
EnterGaussianFinding, 53
EnterIntervalFinding, 54
EnterNegativeFinding, 56
Extract.NeticaNode, 57
FadeCPT, 72
FileCaseStream-class, 74
FindingsProbability, 77
GenerateRandomCase, 78
GetNamedNetworks, 81
GetNetworkAutoUpdate, 83
GetNthNetwork, 84
HasNodeTable, 86
IDname, 87
is.active, 89
is.discrete, 91
is.NodeRelated, 92
IsNodeDeterministic, 95
JointProbability, 96
JunctionTreeReport, 98
LearnCases, 99
LearnCPTs, 102
LearnFindings, 108
MakeCliqueNode, 111
MemoryCaseStream-class, 113
MemoryStreamContents, 117
MostProbableConfig, 120
MutualInfo, 122

NeticaBN, 124
NeticaBN-class, 126
NeticaCaseStream, 128
NeticaNode, 132
NeticaRNG, 137
NeticaRNG-class, 139
NeticaSession, 141
NeticaSession-class, 144
NeticaVersion, 148
NetworkFindNode, 149
NetworkFootprint, 151
NetworkName, 152
NetworkNodeSetColor, 154
NetworkNodeSets, 156
NetworkNodesInSet, 158
NetworkSetPriority, 161
NetworkSetRNG, 162
NetworkTitle, 164
NetworkUndo, 165
NetworkUserField, 166
NewDiscreteNode, 168
NodeBeliefs, 171
NodeChildren, 173
NodeExpectedUtils, 177
NodeExpectedValue, 179
NodeExperience, 180
NodeFinding, 182
NodeInputNames, 185
NodeKind, 187
NodeLevels, 189
NodeLikelihood, 192
NodeName, 195
NodeNet, 197
NodeParents, 198
NodeProbs, 201
NodeSets, 203
NodeStates, 205
NodeStateTitles, 208
NodeTitle, 210
NodeUserField, 212
NodeValue, 214
NodeVisPos, 216
NodeVisStyle, 217
ParentStates, 221
ReadFindings, 222
RetractNodeFinding, 226
ReverseLink, 227
RNetica-package, 4



INDEX 245

WithOpenCaseStream, 232
write.CaseFile, 235
WriteFindings, 237
WriteNetworks, 239

∗Topic io
ReadFindings, 222

∗Topic logic
HasNodeTable, 86
is.discrete, 91
is.NodeRelated, 92
IsNodeDeterministic, 95

∗Topic manip
AbsorbNodes, 11
AddLink, 13
AdjoinNetwork, 14
CalcNodeState, 18
cc, 31
CopyNodes, 38
DeleteNodeTable, 47
dgetFromString, 48
EnterFindings, 51
EnterGaussianFinding, 53
EnterIntervalFinding, 54
EnterNegativeFinding, 56
FindingsProbability, 77
JointProbability, 96
MostProbableConfig, 120
MutualInfo, 122
NetworkFootprint, 151
NodeBeliefs, 171
NodeEquation, 174
NodeExpectedUtils, 177
NodeExpectedValue, 179
NodeFinding, 182
NodeLikelihood, 192
normalize, 219
RetractNodeFinding, 226

∗Topic methods
cc, 31

∗Topic misc
CliqueNode-class, 33
JunctionTreeReport, 98
MakeCliqueNode, 111

∗Topic model
CompileNetwork, 35
FadeCPT, 72
LearnCases, 99
LearnCPTs, 102

LearnFindings, 108
NodeExperience, 180
NodeProbs, 201

∗Topic package
RNetica-package, 4

∗Topic programming
GetNetworkAutoUpdate, 83

∗Topic utilities
CopyNetworks, 37
CreateNetwork, 45
GetNamedNetworks, 81
GetNetworkAutoUpdate, 83
GetNthNetwork, 84
IDname, 87
NetworkFindNode, 149
NetworkUndo, 165

∗Topic utility
EliminationOrder, 49
is.active, 89
ParentStates, 221

[,NeticaNode-method
(Extract.NeticaNode), 57

[<-,NeticaNode-method
(Extract.NeticaNode), 57

[[,NeticaNode-method
(Extract.NeticaNode), 57

AbsorbNodes, 8, 11, 15, 16, 39, 120, 228
AddLink, 7, 12, 13, 34, 94, 97, 112, 174, 186,

198, 200, 228
AddNodeToSets (NodeSets), 203
AdjoinNetwork, 14, 151, 152
array, 41, 42
as.character,CaseStream-method

(CaseStream-class), 27
as.character,NeticaBN-method

(NeticaBN-class), 126
as.character,NeticaNode-method

(NeticaNode-class), 134
as.character,NeticaRNG-method

(NeticaRNG-class), 139
as.character,NeticaSession-method

(NeticaSession-class), 144
as.CPA (CPA), 41
as.CPF, 42
as.CPF (CPF), 43
as.IDname (IDname), 87

basename, 74



246 INDEX

c, 31, 124, 127, 133, 146
c.NeticaBN (cc), 31
c.NeticaNode (cc), 31
CalcNodeState, 17, 18
CalcNodeValue, 18, 172, 180
CalcNodeValue (CalcNodeState), 18
CaseFileDelimiter, 6, 20, 22, 23, 25, 26, 29,

75, 113, 116, 118, 130, 142, 144,
147, 223, 224, 236–238

CaseFileMissingCode, 6, 22, 23, 25, 26, 29,
75, 113, 116, 118, 130, 142, 144,
147, 223, 224, 236–238

CaseFileMissingCode
(CaseFileDelimiter), 20

CaseFileStream, 6, 22, 25, 26, 28, 29, 74, 75,
100, 103, 114, 115, 129, 130, 142,
144, 147, 236

CaseMemoryStream, 6, 23, 26, 28, 29,
113–116, 129, 130, 142, 144, 147,
236

CaseMemoryStream (CaseMemorytream), 24
CaseMemorytream, 24
CaseStream, 5, 21–26, 74, 75, 80, 89, 90, 99,

100, 102, 113–116, 118, 128–130,
223, 224, 232, 237, 238

CaseStream-class, 27
cc, 31, 124, 125, 133, 134
CheckNamedNetworks (GetNamedNetworks),

81
ClearAllErrors, 6
CliqueNode, 111, 112
CliqueNode-class, 33
CloseCaseStream, 22, 28, 29
CloseCaseStream (NeticaCaseStream), 128
col2rgb, 155
colors, 155
Compare,NeticaBN,NeticaBN-method

(NeticaBN-class), 126
Compare,NeticaNode,ANY-method

(NeticaNode-class), 134
CompileNetwork, 8, 35, 50, 98, 99, 111, 171
CopyNetworks, 6, 15, 37, 39, 47
CopyNodes, 16, 38, 151, 152, 197
CPA, 41, 44, 45, 58, 62, 181, 202, 219
CPF, 42, 43, 43, 58, 59, 61, 62, 202, 219
CPTtools-package, 176
CreateNetwork, 6, 7, 45, 82, 85, 89, 125, 126,

128, 142–144, 147, 154, 166, 170,

231, 240
cut, 190

data.frame, 24, 43, 44, 113, 117
DeleteLink (AddLink), 13
DeleteNetwork, 38, 89, 90, 125, 126, 128, 144
DeleteNetwork (CreateNetwork), 45
DeleteNodes, 39, 89, 90, 134, 136
DeleteNodes (NewDiscreteNode), 168
DeleteNodeTable, 47, 87, 100, 101
dget, 48
dgetFromString, 48, 167, 212
dimnames, 206
dput, 48
dputToString, 167, 212, 213
dputToString (dgetFromString), 48

EliminationOrder, 35, 36, 49, 99
EliminationOrder<- (EliminationOrder),

49
EnterFindings, 51, 54, 55, 184, 215
EnterGaussianFinding, 52, 53, 55, 184, 227
EnterIntervalFinding, 52, 54, 54, 184, 227
EnterNegativeFinding, 52, 54, 55, 56, 78,

121, 183, 184, 193, 215, 226, 227
environment, 82, 135, 144
envRefClass, 5, 28, 33, 74, 114, 126, 135,

140, 145
EquationToTable (NodeEquation), 174
EVERY_STATE (Extract.NeticaNode), 57
expand.grid, 44, 60
Extract.NeticaNode, 7, 43, 45, 57, 135, 136,

176, 202

FadeCPT, 72, 101, 104, 109
FileCaseStream, 5, 22, 23, 26–29, 75, 90,

114–116, 128–130
FileCaseStream-class, 74
FindingsProbability, 8, 36, 52, 77, 121,

172, 184, 193
FreeNeticaRNG, 139, 140
FreeNeticaRNG (NeticaRNG), 137

GenerateRandomCase, 78, 138, 139, 141, 163
getCaseStreamDataFrameName

(CaseMemorytream), 24
getCaseStreamLastFreq, 28, 223, 238
getCaseStreamLastFreq

(NeticaCaseStream), 128



INDEX 247

getCaseStreamLastId, 28, 223, 238
getCaseStreamLastId (NeticaCaseStream),

128
getCaseStreamPath (CaseFileStream), 22
getCaseStreamPos, 28, 223, 224, 238
getCaseStreamPos (NeticaCaseStream), 128
GetClique (MakeCliqueNode), 111
getDefaultSession, 5, 85, 146, 230
getDefaultSession (NeticaSession), 141
GetNamedNetworks, 6, 81, 85, 125, 128,

142–144, 147, 154
GetNetworkAutoUpdate, 83
GetNetworkFileName, 125, 128
GetNetworkFileName (WriteNetworks), 239
GetNthNetwork, 6, 82, 84, 142–144, 147
GetRelatedNodes, 173, 174
GetRelatedNodes (is.NodeRelated), 92

HasNodeTable, 36, 48, 86

IDname, 7, 15, 33, 46, 87, 127, 135, 149, 152,
153, 164, 166–168, 185, 195, 206,
209–212

interactive, 143
is.active, 5, 46, 47, 81, 89, 124, 125, 128,

132–134, 136, 144, 169, 170, 191,
197, 198, 207, 230, 231

is.active,CaseStream-method
(is.active), 89

is.active,list-method (is.active), 89
is.active,NeticaBN-method (is.active),

89
is.active,NeticaNode-method

(is.active), 89
is.active,NeticaRNG-method (is.active),

89
is.active,NeticaSession-method

(is.active), 89
is.CaseFileStream (CaseFileStream), 22
is.CliqueNode (MakeCliqueNode), 111
is.continuous, 19, 61, 122, 123, 180, 215
is.continuous (is.discrete), 91
is.CPA (CPA), 41
is.CPF (CPF), 43
is.discrete, 91, 133–136, 170, 188, 190,

191, 202, 207, 214
is.element, 135
is.element,NeticaBN,list-method

(NeticaBN-class), 126

is.element,NeticaNode,list-method
(NeticaNode-class), 134

is.IDname, 203, 204
is.IDname (IDname), 87
is.MemoryCaseStream (CaseMemorytream),

24
is.NeticaBN (NeticaBN), 124
is.NeticaCaseStream (NeticaCaseStream),

128
is.NeticaNode (NeticaNode), 132
is.NeticaRNG (NeticaRNG), 137
is.NetworkCompiled (CompileNetwork), 35
is.NodeRelated, 11–14, 92, 199, 200, 228
IsBeliefUpdated (NodeBeliefs), 171
isCaseStreamOpen, 22, 28, 29
isCaseStreamOpen (NeticaCaseStream), 128
isNeticaRNGActive (NeticaRNG), 137
IsNodeDeterministic, 19, 95

JointProbability, 8, 16, 34, 36, 52, 96, 111,
112, 120, 121, 172, 184, 193

JunctionTreeReport, 8, 34–36, 50, 97, 98,
111, 112

LearnCases, 26, 99, 100, 102–104, 109, 114,
130

LearnCPTs, 26, 100, 101, 102, 103, 109, 114,
130

LearnFindings, 73, 100, 101, 104, 108
LicenseKey (StartNetica), 229

MakeCliqueNode, 34, 97, 111, 151, 152
match, 135
MemoryCaseStream, 5, 27–29, 75, 90, 100,

102, 117, 118, 128–130
MemoryCaseStream-class, 113
MemoryStreamContents, 24–26, 113, 114,

116, 117, 236
MemoryStreamContents<-

(MemoryStreamContents), 117
MostProbableConfig, 8, 36, 52, 97, 120, 172,

184, 193
MutualInfo, 122

NeticaBN, 5, 6, 9, 15, 31–33, 35–39, 45–50,
52, 57, 77, 78, 81–85, 89, 90, 98, 99,
120, 121, 124, 124, 132, 134–136,
144–147, 149–151, 153–155, 157,
159, 161, 163–169, 172, 184, 193,
196–198, 226, 227, 239, 240



248 INDEX

NeticaBN-class, 126
NeticaCaseStream, 128
NeticaNode, 5, 6, 9, 11–14, 16, 18, 31–34, 38,

39, 44, 47, 48, 53, 54, 56, 58, 62, 72,
78, 79, 86, 87, 89–97, 100, 102, 108,
111, 112, 122, 126–128, 132, 132,
144–146, 149, 150, 152, 155, 157,
159, 162, 169–175, 178–181, 183,
185–192, 195–204, 206–214,
216–218, 221, 223, 226–228, 234,
237

NeticaNode-class, 134
NeticaRNG, 5, 79, 80, 89, 90, 137, 137, 138,

139, 163
NeticaRNG-class, 139
NeticaSession, 4–6, 20, 22, 25, 28, 46, 81,

82, 85, 89, 90, 126–128, 137, 140,
141, 141, 142, 143, 148, 153, 197,
229–231, 236, 239

NeticaSession-class, 144
NeticaVersion, 6, 148, 231
NetworkAllNodes, 6, 50, 120, 125–128, 135,

136, 197, 198
NetworkAllNodes (NetworkFindNode), 149
NetworkAllUserFields

(NetworkUserField), 166
NetworkComment, 167
NetworkComment (NetworkTitle), 164
NetworkComment<- (NetworkTitle), 164
NetworkCompiledSize, 35, 36
NetworkCompiledSize

(JunctionTreeReport), 98
NetworkFindNode, 6, 126, 133–136, 149,

196–198, 240
NetworkFootprint, 16, 151
NetworkName, 125, 127, 128, 144, 152, 164
NetworkName<- (NetworkName), 152
NetworkNodeSetColor, 8, 154, 157, 159, 161,

162, 204
NetworkNodeSets, 155, 156, 162, 204
NetworkNodesInSet, 6, 9, 149, 150, 155, 157,

158, 159, 162, 204
NetworkNodesInSet<-

(NetworkNodesInSet), 158
NetworkRedo (NetworkUndo), 165
NetworkSetPriority, 154, 155, 157, 159,

161, 204
NetworkSetRNG, 79, 80, 138–141, 162

NetworkTitle, 153, 154, 164
NetworkTitle<- (NetworkTitle), 164
NetworkUndo, 165
NetworkUserField, 166, 213
NetworkUserField<- (NetworkUserField),

166
NetworkUserObj, 48, 49
NetworkUserObj (NetworkUserField), 166
NetworkUserObj<- (NetworkUserField), 166
NewContinuousNode, 6, 7, 91, 92, 134–136,

149
NewContinuousNode (NewDiscreteNode), 168
NewDiscreteNode, 6, 7, 89, 91, 92, 134–136,

149, 168, 191, 196, 206, 207
NewNeticaRNG, 141, 142, 144, 147, 163
NewNeticaRNG (NeticaRNG), 137
NodeAllUserFields (NodeUserField), 212
NodeBeliefs, 8, 36, 52, 57, 78, 84, 97, 120,

121, 171, 180, 184, 193, 215, 227
NodeChildren, 12–14, 94, 173, 200, 228
NodeDescription, 213
NodeDescription (NodeTitle), 210
NodeDescription<- (NodeTitle), 210
NodeEquation, 18, 19, 174, 215
NodeEquation<- (NodeEquation), 174
NodeExpectedUtils, 177
NodeExpectedValue, 8, 19, 123, 172, 178,

179, 215
NodeExperience, 73, 100–104, 109, 180
NodeExperience<- (NodeExperience), 180
NodeFinding, 8, 18, 19, 36, 52, 54–57, 61, 62,

77, 80, 84, 101, 104, 108, 109, 121,
172, 182, 193, 214, 215, 223, 224,
226, 227, 238

NodeFinding<- (NodeFinding), 182
NodeInputNames, 15, 42, 48, 60, 62, 87, 89,

96, 151, 152, 185, 199, 200, 202,
221, 222

NodeInputNames<- (NodeInputNames), 185
NodeKind, 15, 169, 170, 176, 178, 187, 199,

200, 204
NodeKind<- (NodeKind), 187
NodeLevels, 8, 18, 19, 53, 55, 91, 92, 122,

123, 133–136, 169, 170, 179, 180,
189, 206, 207, 209, 214, 215

NodeLevels<- (NodeLevels), 189
NodeLikelihood, 8, 34, 52, 54–57, 77, 78,

112, 121, 183, 184, 192, 226, 227



INDEX 249

NodeLikelihood<- (NodeLikelihood), 192
NodeName, 89, 134–136, 149, 170, 191, 195,

202, 207, 211
NodeName<- (NodeName), 195
NodeNet, 82, 150, 169, 197
NodeNumStates, 56, 58, 172, 178, 183, 190,

192, 193, 202, 209
NodeNumStates (NodeStates), 205
NodeParents, 7, 12–15, 39, 42, 48, 60, 62, 87,

94, 96, 149, 151, 152, 174, 181, 185,
186, 188, 198, 202, 221, 222, 228

NodeParents<- (NodeParents), 198
NodeProbs, 7, 13, 39, 42, 43, 45, 58, 73, 86,

101, 102, 104, 109, 172, 176, 181,
199, 201, 220

NodeProbs<- (NodeProbs), 201
NodeSets, 8, 15, 16, 39, 155, 157, 159, 162,

203
NodeSets<- (NodeSets), 203
NodeStateComments, 190, 191, 207
NodeStateComments (NodeStateTitles), 208
NodeStateComments<- (NodeStateTitles),

208
NodeStates, 42, 56, 62, 89, 92, 96, 97,

133–136, 169, 170, 183, 191, 202,
205, 206, 209, 215, 221, 222

NodeStates<- (NodeStates), 205
NodeStateTitles, 190, 191, 206, 207, 208
NodeStateTitles<- (NodeStateTitles), 208
NodeTitle, 195, 196, 210
NodeTitle<- (NodeTitle), 210
NodeUserField, 167, 212
NodeUserField<- (NodeUserField), 212
NodeUserObj, 48, 49
NodeUserObj (NodeUserField), 212
NodeUserObj<- (NodeUserField), 212
NodeValue, 18, 19, 52–55, 172, 176, 178, 180,

184, 214
NodeValue<- (NodeValue), 214
NodeVisPos, 216, 217, 218
NodeVisPos<- (NodeVisPos), 216
NodeVisStyle, 217
NodeVisStyle<- (NodeVisStyle), 217
normalize, 43, 45, 202, 219

objects, 127
OpenCaseStream, 22, 28, 29, 75, 142, 144, 147
OpenCaseStream (NeticaCaseStream), 128

palette, 155
ParentNames, 60
ParentNames (ParentStates), 221
ParentStates, 60, 62, 180, 181, 221
print,CaseStream-method

(CaseStream-class), 27
print,NeticaBN-method (NeticaBN-class),

126
print,NeticaNode-method

(NeticaNode-class), 134
print,NeticaRNG-method

(NeticaRNG-class), 139
print,NeticaSession-method

(NeticaSession-class), 144

read.CaseFile, 21
read.CaseFile (write.CaseFile), 235
read.table, 235, 236
ReadFindings, 22, 23, 26, 28, 29, 74, 75, 80,

116, 118, 128–130, 222, 224, 232,
236, 238

ReadNetworks, 6, 29, 82, 125, 126, 130, 133,
135, 136, 142–144, 147, 149

ReadNetworks (WriteNetworks), 239
RemoveNodeFromSets (NodeSets), 203
ReportErrors, 6, 36
restartSession (StartNetica), 229
RetractNetFindings, 79, 80, 104, 109, 224,

238
RetractNetFindings

(RetractNodeFinding), 226
RetractNodeFinding, 52, 54–57, 78, 79, 121,

183, 184, 193, 215, 226
ReverseLink, 12, 227
rgb, 155
RNetica (RNetica-package), 4
RNetica-package, 4

SetNetworkAutoUpdate, 8, 56, 171, 183, 193,
226

SetNetworkAutoUpdate
(GetNetworkAutoUpdate), 83

StartNetica, 4–6, 142, 148, 229
startSession, 5, 6, 142, 143, 240
startSession (StartNetica), 229
startSession,NeticaSession-method

(NeticaSession-class), 144
StopNetica, 6, 90, 136
StopNetica (StartNetica), 229



250 INDEX

stopSession, 5, 6, 143
stopSession (StartNetica), 229
stopSession,NeticaSession-method

(NeticaSession-class), 144

toString,CaseStream-method
(CaseStream-class), 27

toString,CliqueNode-method
(CliqueNode-class), 33

toString,NeticaBN-method
(NeticaBN-class), 126

toString,NeticaNode-method
(NeticaNode-class), 134

toString,NeticaRNG-method
(NeticaRNG-class), 139

toString,NeticaSession-method
(NeticaSession-class), 144

tryCatch, 232

UncompileNetwork, 8
UncompileNetwork (CompileNetwork), 35

VarianceOfReal (MutualInfo), 122

WithOpenCaseStream, 28, 29, 75, 129, 130,
224, 232

WithoutAutoUpdate, 8, 52
WithoutAutoUpdate

(GetNetworkAutoUpdate), 83
WithRNG (NeticaRNG), 137
woe, 234
write.CaseFile, 26, 100, 103, 114, 235
write.table, 25, 113, 235, 236
WriteFindings, 21–23, 25, 26, 28, 29, 74, 75,

114, 116–118, 128–130, 223, 224,
236, 237

WriteNetworks, 6, 8, 29, 125, 126, 128, 130,
133, 136, 239


	RNetica-package
	AbsorbNodes
	AddLink
	AdjoinNetwork
	CalcNodeState
	CaseFileDelimiter
	CaseFileStream
	CaseMemorytream
	CaseStream-class
	cc
	CliqueNode-class
	CompileNetwork
	CopyNetworks
	CopyNodes
	CPA
	CPF
	CreateNetwork
	DeleteNodeTable
	dgetFromString
	EliminationOrder
	EnterFindings
	EnterGaussianFinding
	EnterIntervalFinding
	EnterNegativeFinding
	Extract.NeticaNode
	FadeCPT
	FileCaseStream-class
	FindingsProbability
	GenerateRandomCase
	GetNamedNetworks
	GetNetworkAutoUpdate
	GetNthNetwork
	HasNodeTable
	IDname
	is.active
	is.discrete
	is.NodeRelated
	IsNodeDeterministic
	JointProbability
	JunctionTreeReport
	LearnCases
	LearnCPTs
	LearnFindings
	MakeCliqueNode
	MemoryCaseStream-class
	MemoryStreamContents
	MostProbableConfig
	MutualInfo
	NeticaBN
	NeticaBN-class
	NeticaCaseStream
	NeticaNode
	NeticaNode-class
	NeticaRNG
	NeticaRNG-class
	NeticaSession
	NeticaSession-class
	NeticaVersion
	NetworkFindNode
	NetworkFootprint
	NetworkName
	NetworkNodeSetColor
	NetworkNodeSets
	NetworkNodesInSet
	NetworkSetPriority
	NetworkSetRNG
	NetworkTitle
	NetworkUndo
	NetworkUserField
	NewDiscreteNode
	NodeBeliefs
	NodeChildren
	NodeEquation
	NodeExpectedUtils
	NodeExpectedValue
	NodeExperience
	NodeFinding
	NodeInputNames
	NodeKind
	NodeLevels
	NodeLikelihood
	NodeName
	NodeNet
	NodeParents
	NodeProbs
	NodeSets
	NodeStates
	NodeStateTitles
	NodeTitle
	NodeUserField
	NodeValue
	NodeVisPos
	NodeVisStyle
	normalize
	ParentStates
	ReadFindings
	RetractNodeFinding
	ReverseLink
	StartNetica
	WithOpenCaseStream
	woe
	write.CaseFile
	WriteFindings
	WriteNetworks
	Index

