Package ‘RNetica’

August 26, 2013
Version 0.3-4
Date 2013/07/24
Title R interface to Netica(R) Bayesian Network Engine
Author Russell Almond
Maintainer Russell Almond <ralmond@fsu.edu>
Depends R (>= 3.0), methods, utils, grDevices

Description
This provides an R interface to the Netica (http://norsys.com/) Bayesian network library API

License Artistic-2.0 + file LICENSE

URL http://ralmond.net/RNetica

R topics documented:

RNetica-package 1
AbsorbNodes e 10
AddLink 11
AdjoinNetwork 13
CaseFileDelimiter e e 16
CaseFileStream e 18
CompileNetwork 21
CopyNetworks o e e e e e e 22
CopyNodes o o e e 24
CPA . e e e 26
CPF . e e 29
CreateNetwork e e e e 31
DeleteNodeTable e 33
EliminationOrder e e 34
EnterFindings e 36
EnterNegativeFinding 37
Extract.NeticaNode 39

R topics documented:

FadeCPT e 53
FindingsProbability 55
GetNamedNetworks e 57
GetNetworkAutoUpdate 58
GetNthNetwork e e e 60
HasNodeTable e 61
IDname e e 63
IS.ACHIVE . . . o o e e e e e e e e e e e e e e 64
IS.ISCIEtE e e e e 66
is.NodeRelated 67
IsNodeDeterminiStic i e e e e e 70
JointProbability e 71
JunctionTreeReport L 73
LearnCases e e 74
LearnCPTs e e e e 76
LearnFindings 83
MakeCliqueNode e 85
MemoryCaseStream e e e e e e e e 88
MemoryStreamContents oL e e e e 91
MostProbableConfig 93
NeticaBN e 95
NeticaCaseStream o v it e e e e e e e e e e e e 97
NeticaNode e e 101
NeticaVersion e e 104
NetworkFindNode 105
NetworkFootprint L 106
NetworkName e e 108
NetworkNodeSetColor e 110
NetworkNodeSets e e e e e e e e 112
NetworkNodesInSet e 114
NetworkSetPriority L 116
NetworkTitle e e e e e e 117
NetworkUndo e e 119
NetworkUserField 120
NewDiscreteNode e 122
NodeBeliefs e e e 124
NodeChildren e e 127
NodeExXperience it e e e 128
NodeFinding e 130
NodelnputNames e 133
NodeKind e 135
NodeLevels e 137
NodeLikelihood e 140
NodeName e e 142
NodeNet e 144
NodeParents e e e e e e e 146
NodeProbs e e 148

NodeSets e e 150

RNetica-package 3

NodeStates e e 152
NodeStateTitles e 155
NodeTitle o e 156
NodeUserField e 158
NodeVisPos o e 159
NodeVisStyle e e e e e 161
normalize e 162
ParentStates e 165
ReadFindings e 166
RetractNodeFinding 169
ReverseLink o L 171
StartNetica e e 173
WithOpenCaseStream 0 it e 175
write.CaseFile e 176
WriteFindings L 178
WriteNetworks L L 180
RNetica-package R interface to Netica(R) Bayesian Network Engine
Description

This provides an R interface to the Netica, in particular, it binds many of the functions in the Netica
C APl into the R langauge. RNetica can create and modify networks, enter evidence and extract the
conditional probabilities from a Netica network.

Details

License

Package: = RNetica
Version: 0.2-6

Date: 2012/11/22

Depends: R (>=2.0), methods, utils, grDevices

(http: /Inorsys.com/) Bayesian network library API

License: Artistic-2.0 + file LICENSE

URL: http://ralmond.net/RNetica

Built: R 2.15.2; x86_64-pc-linux-gnu; 2012-11-22 19:38:18 UTC; unix

While RNetica (the combination of R and C code that connects R and Netica) is free software, as is
R, Netica is a commercial product. Users of RNetica will need to purchase a Netica API license key
(which is different from the GUI license key) from Norsys(R) (http://www.norsys.com/).

Once you have a license key, you can use it in one of two ways. First, it can be used as an argument
to the function StartNetica (). As this function is called when RNetica is loaded, you may need

RNetica-package

to call StopNetica () first and restart the licensed version. Alternatively, if you set the variable
NeticalLicenseKey in the R top-level environment before the call to 1ibrary (RNetica),
RNetica will pick up the license key from that location.

Without the license key, the Netica shared library will be restricted to a student/demonstration mode
with limited functionality. Note that all of the example code (and hence R CMD check RNetica)
can be run using the limited version.

Index

AbsorbNodes

AddLink
AdjoinNetwork

CPA

CPF

CompileNetwork
CopyNetworks
CopyNodes
CreateNetwork
DeleteNodeTable
EliminationOrder
EnterFindings
EnterNegativeFinding
Extract.NeticaNode
FindingsProbability
GetNamedNetworks
GetNetworkAutoUpdate
GetNthNetwork
HasNodeTable

IDname

IsNodeDeterministic

JointProbability

Delete a Netica nodes in a way that maintains
the connectivity.

Adds or removes a link between two nodes in a
Netican network.

Links an evidence model network to a system
model netwok.

Representation of a conditional probability
table as an array.

Representation of a conditional probability
table as a data frame.

Builds the junction tree for a Netica Network
Makes copies of Netica networks.

Copies or duplicates nodes in a Netica network.
Creates (destroys) a new Netica network.
Deletes the conditional probability table of a
Netica node.

Retrieves or sets the elimination order used in
compiling a Netica network.

Enters findings for multiple nodes in a Netica
network.

Sets findings for a Netaca node to a list of
ruled out values.

Extracts portions of the conditional
probability table of a Netica node.

Finds the probability of the findings entered
into a Netica network.

Finds a Netica network (if it exists) for the
name.

Turns Netica automatic updating on or off for a
network.

Fetch a Netica network by its position in the
Netica list.

Tests to see if a Netica node has a conditional
probability table.

Tests to see if a string is a valid as a Netica
Identifier.

Determines if a node in a Netica Network is
deterministic or not.

Calculates the joint probability over several

RNetica-package

JunctionTreeReport
MakeCliqueNode
MostProbableConfig
NeticaBN
NeticaNode
NeticaVersion
NetworkFindNode
NetworkFootprint
NetworkName
NetworkNodeSetColor
NetworkNodeSets

NetworkNodesInSet

NetworkSetPriority
NetworkTitle

NetworkUndo
NetworkUserField
NewDiscreteNode

NodeBeliefs

NodeChildren
NodeFinding
NodeInputNames
NodeKind
NodeLevels
NodeLikelihood
NodeName

NodeNet
NodeParents

network nodes.

Produces a report about the junction tree from
a compiled Netica network.

Forces a collection of nodes in a Netica
network to be in the same clique.

Finds the configuration of the nodes most likel
to have lead to observed findings.

An object referencing a Bayesian network in
Netica.

An object referencing a node in a Netica
Bayesian network.

Fetches the version number of Netica.

Finds nodes in a Netica network.

Returns a list of names of unconnected edges.
Gets or Sets the name of a Netica network.
Returns or sets a display colour to use with a
netica node.b

Returns a list of node sets associated with a
Netica network.

Returns a list of node labeled with the given
node set in a Netica Network.

Changes the priority order of the node sets.
Gets the title or comments associated with a
Netica network.

Undoes (redoes) a Netica operation on a
network.

Gets user definable fields associated with a
Netica network.

Creates (or destroys) a node in a Netica
Bayesian network.

Returns the current marginal probability
distribution associated with a node in a Netica
network.

Returns a list of the children of a node in a
Netica network.

Returns of sets the observed value associated
with a Netica node.

Associates names with incomming edges on a
Netica node.

Gets or changes the kind of a node in a Netica
network.

Accesses the levels associated with a Netica
node.

Returns or sets the virtual evidence associated
with a Netica node.

Gets or set of a Netica node.

Finds which Netica network a node comes from.
Gets or sets the parents of a node in a Netica

6 RNetica-package

network.

NodeProbs Gets or sets the conditional probability table
associated with a Netica node.

NodeSets Lists or changes the node sets associated with
a Netica node.

NodeStateTitles Accessors for the titles and comments
associated with states of Netica nodes.

NodeStates Accessor for states of a Netica node.

NodeTitle Gets the title or Description associated with a
Netica node.

NodeUserField Gets user definable fields associated with a
Netica node.

NodeVisPos Gets, sets the visual position of the node on
the Netica display.

NodeVisStyle Gets/sets the nodes visual appearence in
Netica.

ParentStates Returns a list of the names of the states of
the parents of a Netica node.

RetractNodeFinding Clears any findings for a Netica node or
network.

ReverselLink Reverses a link in a Netica network.

StartNetica Starting and stopping the Netica shared
library.

WriteNetworks Reads or writes a Netica network from a file.

is.NodeRelated Computes topological properities of a 'Netica'
network.

is.active Check to see if a Netica network or node object
is still wvalid.

is.discrete Determines whether a Netica node is discrete or
continuous.

normalize Normalizes a conditional probability table.

RNetica Environment and Netica Objects

Netica exists in both as a stand alone graphical tool for building and manipulating Bayesian net-
works (the Netica GUI) and as a shared library for manipulating Bayesian networks (the Netica
API). The RNetica package binds the API version of Netica to a series of R functions which do
much of the work of manipulating the network. The file format for the GUI and API version of
Netica is identical, so analysts can easily move back and forth between the two.

The function StartNetica () (invoked automatically when library (RNetica)) builds a
Netica environment which can be accessed from R. Networks created and loaded into the RNetica
environment can then be manipulted from inside of R. Note that the RNetica environment is separate
from other Netica environments that may be created using the Netica GUI (or API invoked from
a different program); RNetica can only manipulate the networks that are currently loaded into its
environment.

The key to this process is that the two most common functions for creating networks, CreateNetwork ()
and ReadNetworks () both return a special object of class Net icaBN which encapsulates a
pointer back to the Bayesian network in the RNetica environment. This object can be manipulated

RNetica-package 7

with the functions in this package.

Netica nodes (created through NewDiscreteNode () or NewContinuousNode (), or retrieved

from the network using NetworkFindNode (), NetworkAllNodes (), NetworkNodesInSet (),
or one of a variety of other functions that return nodes) are represented as special objects of class
NeticaNode which contain pointers to the node in a Netica network. Netica nodes know which
network they belong to, so each node implicitly references its network.

Note that if more than one network is loaded they may have identically named nodes that are not
identical. For example, net1l and net2 may both have a node named “Proficiency”. If the R
variable Proficiency is bound to the Net icaNode object correspoinding to the variable “Pro-
ficiency” in net1, it can only be used to access the instance of that variable in net 1, not the one
in net2.

Because of the way R likes to hang onto references to objects, it is quite possible for a Net i caBN
or NeticaNode object to hang around after it has been deleted, renamed or otherwise rendered
invalid. The function is.active () does a quick check to make sure that the pointer to the object
in the RNetica environment has not be set to NULL.

Note that unlike ordinary R objects, Net icaBN and NeticaNode objects only last as long as
the RNetica environment lasts. In particular, if StopNetica () is called to close the RNetica
environment, or the R session is exited (either cleanly or through a crash), then all of the Net i caBN
and Net i caNode objects should become inactive. It is an error to execute RNetica functions with
the old objects.

For networks, the simplest solution is to save each network to a file using WriteNetworks (). If
aNeticaBNobjectnet isusedineitheranet <- ReadNetworks () orWriteNetworks (net)
call, then the R object will be badged with the name of the last used filename. Thus, after saving

and restoring a R session, the expression net <- ReadNetworks (net) will recreate net as

an object pointing to a new network that is identical to the last saved version.

For nodes, the best solution is to use a query function to return a list of the desired nodes, in
particular, NetworkFindNode () or NetworkAllNodes (). If a particular subset of nodes
should be loaded every time the network is loaded, then they can be placed in a node set, and the
function NetworkNodesInSet () can be used to retrieve just the interesting nodes. All of these
functions return a list of Net i caBN objects, which can be used to provide convenient access. For
example, if net was previously saved and “Proficiency” is a node in net, then:

net <- ReadNetworks (net)
net.nodes <- NetworkAllNodes (net)

will load all of the nodes in net, and the expression net .nodes$Proficiency will access the
“Proficiency” node.

Creating and Editing Networks

Operations with Bayesian networks generally proceed in two phases: Building network, and con-
ducting inference. This section describes the most commonly used options for building networks.
The following section describes the most commonly used options for inference.

First, the function CreateNetwork () is used to create an empty network. Multiple networks can
be open within the RNetica environment, but each must have a unique name. Names must conform
to Netica’s IDname rules.

8 RNetica-package

Nodes can be added to a network with the functions NewDiscreteNode () and NewContinuousNode ().
Note that Netica makes an internal distinction between these two types of nodes and a node cannot

be changed from one type to another. Nodes must all have a unique (within the network) name

which must conform to the IDname rules.

Edges between nodes are created using the AddLink (parent, child) function. This forms
a directed graph which must be acyclic (that is it must not be possible to follow a path along the
direction of the arrows and return to the starting place). The function NodeParents (child)
returns the current set of parents for the node child (nodes which have edges pointing towards
child). NodeParents (child) may be set, which serves several purposes. First, it allows
connections to be added and removed. Second, setting one of the parent locations to NULL produces
a special Stub node, which serves as a placeholder for a later connection. Third, it allows one to
reorder the nodes, which determines the order of the dimensions of the conditional probability table.

A completed Bayesian network has a conditional probability table (CPT) associated with each node.
The CPT provies the conditional probability distributions of the node given the states of its parents
in the graph. RNetica provides two functions for accessing and setting this CPT. The function
NodeProbs () returns (or sets) the conditional probability table as a multi-dimensional array.
However, using the array extractor [.NeticaNode allows the conditional probability table to
be manipulated as a data frame, where the first several columns provide the states of the parent
variables, and the remaining columns the probabilities of the the node being in each of thoses states
given the parent configurations. This latter approach has a number of features for working with
large tables and tables with complex structure.

Finally, when the network is complete, the function WriteNetworks () can be used to save it
to a file, which can either be later read into RNetica, or can be used with the Netica GUI or other
applications that use the Netica API.

Inference

The basic purpose for building a Bayesian network is to raplidly calculate conditional probabilities.
In Netica language, one enters “findings” (conditions) on the known or hypothesized variables and
then calculates “beliefs” (conditional probalities) on certain variables of interest.

Netica, like most Bayesian network software, uses two different graphical representations, one for
model construction and one for inference. The acyclic directed graph is use for model construction
(previous section). The function CompileNetwork () builds the second graphical representa-
tion: the junction tree. The function JunctionTreeReport () provides information about the
compiled representation.

While compiling can take a long time (depending on the size and connectivity of the network),
repeated compilations appear to be harmless. There is an UncompileNetwork () function, but
performing any editing operation (adding or removing nodes or edges) will automatically return
the network to an uncompiled state. Netica tries to preserve finding information. In particular
the function AbsorbNodes () provides a mechanism for removing nodes from a network with-
out changing the joint probability (including influence of findings) of the remaining nodes. (The
network must be recompiled after a call to AbsorbNodes () though.)

The principle way to enter observed evidence is setting NodeFinding (node) <- value. The
function NodeLikelihood () can be used to enter “virtual evidence”, however, some care must
be taken as it alters the meanings of several of the other functions.

The conditional (given the entered findings and likelihoods) probability distribution can be queried
at any time using the function NodeBeliefs (). The function JointProbability () calcu-

RNetica-package 9

lates the joint distribution over a collection of nodes, and the function FindingsProbability ()
calculates the prior probability of the observed findings. The function MostProbableConfig ()
finds the mode of the joint probability distribution (given the current findings and likelihood).

Note that in the default state, when findings are entered, the beliefs about all other nodes in the net-

work are then updated. This can be time consuming in large networks. The function SetNetworkAutoUpdate ()
can be used to change this to a lazy updating mode, when the evidence from the findings are only

propagated when required for a call to NodeBeliefs () or a similar function. The function
WithoutAutoUpdate (net, expr) is useful for setting findings in a large number of nodes in

net without the overhead of belief updating.

Node Sets

The function NodeSets () allows the modeller to attach labels to the nodes in the network. For
the most part, Netica ignores these labels, except that it will colour nodes from various sets different
colours (NetworkNodeSetColor ()). Aside from a few internal labels used by Netica, these
node sets are reserved for user programming.

RNetica provides some functions that make node sets incredibly convenient ways to describe the
indended usage of the nodes. In particular, the function NetworkNodesInSet () returns a list of
all nodes which are tagged as being in a particular node set. For example, suppose that the modeller
has marked a number of nodes as being in the node set "ReportingVar". Then the following
code would generate a report about the network:

net.ReportingVars <- NetworkNodesInSet (net, "ReportingVar")
lapply (net.ReportingVars, NodeBeliefs)

Warning

The current status of RNetica is that of a late alpha to early beta release. The code base is stable
enough to do useful work, but more testing is still required. Users are advised to work in such a
way that they can easily recover from problems.

In particular, because RNetica calls C code, there is a possiblity that it will crash R. There is also
a possibility that pointers embedded in NeticaBN and NeticaNode objects will become cor-
rupted. If such problems occur, it is best to restart R and reload the networks.

Please send information about both serious and not-so-serious problems to the maintainer.

Legal Stuff

Netica and Norsys are registered trademarks of Norsys, LLC, used by permission.

Although Norsys is generally supportive of the RNetica project, it does not officially support RNet-
ica, and all questions should be sent to the package maintainers.

Author(s)

Russell Almond
Maintainer: Russell Almond <almond @acm.org>

10 RNetica-package

References

The Netica API documentation can be found at http://norsys.com/onLineAPIManual/
index.html.

Almond, R. G. & Mislevy, R. J. (1999) Graphical models and computerized adaptive testing. Ap-
plied Psychological Measurement, 23, 223-238.

Examples

FH AR AR AR AR AR AR AR AR AR AR AR AR F R RHF
Network Construction:

abc <- CreateNetwork ("ABC")

A <- NewDiscreteNode (abc, "A",c ("AL","A2","A3","A4"))
B <- NewDiscreteNode (abc, "B",c("B1","B2","B3"))

C <- NewDiscreteNode (abc, "C",c("C1","C2"))

AddLink (A, B)
NodeParents (C) <- list (A,B)

NodeProbs (A)<-c (.1, .2,.3,.4)

NodeProbs (B) <— normalize (matrix(1:12,4,3))
NodeProbs (C) <- normalize(array(l:24,c(4,3,2)))
abcFile <- tempfile ("peanut",fileext=".dne")
WriteNetworks (abc, abcFile)

DeleteNetwork (abc)

FHEHEH A H A F A A R R

Inference using the EM-SM algorithm (Almond & Mislevy, 1999).

System/Student model

EMSMSystem <- ReadNetworks (paste(library (help="RNetica") $path,
"sampleNets", "System.dne",
sep=.Platform$file.sep))

Evidence model for Task 1la

EMTaskla <- ReadNetworks (paste (library (help="RNetica") $path,
"sampleNets", "EMTaskla.dne",
sep=.Platform$file.sep))

Evidence model for Task 2a

EMTask2a <- ReadNetworks (paste (library (help="RNetica") $path,
"sampleNets", "EMTask2a.dne",
sep=.Platform$file.sep))

Task la has a footprint of Skilll and Skill2 (those are the

referenced student model nodes. So we want joint the footprint into
a single clique.

MakeCliqueNode (NetworkFindNode (EMSMSystem, NetworkFootprint (EMTaskla)))
The footprint for Task2 a is already a clique, so no need to do

anything.

AbsorbNodes 11

Make a copy for student 1

studentl <- CopyNetworks (EMSMSystem, "studentl")

Monitor nodes for proficiency

studentl.prof <- NetworkNodesInSet (studentl,"Proficiency")

studentl.tla <- AdjoinNetwork (studentl,EMTaskla)
We are done with the original EMTaskla now
DeleteNetwork (EMTaskla)

Now add findings

CompileNetwork (studentl)

NodeFinding (studentl.tla$Obslal) <- "Right"
NodeFinding (studentl.tla$Obsla2) <- "Right"

studentl.probtla <- JointProbability (studentl.prof)

Done with the observables, absorb them
AbsorbNodes (studentl.tla)

CompileNetwork (studentl)

studentl.probtlax <- JointProbability (studentl.prof)

Now Task 2
studentl.t2a <- AdjoinNetwork (studentl, EMTask2a, "t2a")
DeleteNetwork (EMTask2a)

Add findings
CompileNetwork (studentl)
NodeFinding (studentl.t2a$0bs2a) <- "Half"

AbsorbNodes (studentl.t2a)
CompileNetwork (studentl)
studentl.probtla2ax <- JointProbability (studentl.prof)

DeleteNetwork (list (studentl, EMSMSystem))

AbsorbNodes Delete a Netica nodes in a way that maintains the connectivity.

Description

This function deletes Net i caNode connecting the parents of the deleted node to its children. If
multiple nodes are passed as the argument, then all of the nodes are absorbed. The joint probability
distribution over the remaining nodes should be the same as the marginal probalility distribution
over the remaining nodes before the nodes were deleted.

Usage

AbsorbNodes (nodes)

12 AbsorbNodes

Arguments

nodes A NeticaNode or list of Net icaNodes to be deleted.

Details

This function provides a way of removing a node without affecting the connectivity, or the joint
probability of the remaining nodes. In particular, all of the relationship tested by 1 s . NodeRelated ()
among the remaining nodes should remain true (or false) when we are done.

Value

Returns NULL.

Author(s)
Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: AbsorbNodes_bn()!

See Also

NeticaNode, AddLink (),NodeChildren (),NodeParents (),ReverselLink (),is.NodeRelated()

Examples

anet <- CreateNetwork ("Absorbant")

xnodes <- NewDiscreteNode (anet,paste("X",1:5,sep="_"))

AddLink (xnodes[[1]],xnodes[[2]])

AddLink (xnodes[[2]],xnodes[[3]])

AddLink (xnodes[[3]],xnodes[[4]])

AddLink (xnodes[[3]],xnodes[[5]])
stopifnot (

all (match (xnodes[4:5],NodeChildren (xnodes[[3]]),nomatch=0)>0),
is.NodeRelated (xnodes[[2]],xnodes[[3]], "parent"),
is.NodeRelated (xnodes[[2]],xnodes[[1]],"child")

)

These are leaf nodes, shouldn't change topology, except locally.
AbsorbNodes (xnodes[4:5])

stopifnot (
Nodes 4 and 5 are now deleted
all(!is.active (xnodes[4:5])),
length (NodeChildren (xnodes[[3]]))==0,

is.NodeRelated (xnodes[[2]],xnodes[[3]], "parent"),
is.NodeRelated (xnodes[[2]],xnodes[[1]],"child")
)

"http://norsys.com/onLineAPIManual/functions/AbsorbNodes_bn.html

AddLink 13

This should connect X1->X3

AbsorbNodes (xnodes[[2]])

stopifnot (
Node 2 is now deleted
lis.active (xnodes[[2]]),
length (NodeChildren (xnodes[[3]]))==0,
is.NodeRelated(xnodes[[1]],xnodes[[3]], "parent"),
is.NodeRelated (xnodes[[3]],xnodes[[1]],"child")

)

DeleteNetwork (anet)

AddLink Adds or removes a link between two nodes in a Netican network.

Description

Add link adds an edge from Parent to Child. Delete Link removes that edge. This states that
the distribution of child will be specified conditional on the value of parent. Consequently,
adding or removing edges with affect the conditional probability tables associated with the Child
node (see NodeProbs ().)

Usage

AddLink (parent, child)
Deletelink (parent, child)

Arguments
parent A NeticaNode representing an independent variable to be added to the con-
ditioning side of the relationship. The nodes parent and child must both be
in the same network.
child A NeticaNode representing dependent variable to be added to the condition-
ing side of the relationship.
Details

After adding alink parent —-> child,itbethe casethatparent isinNodeParents (child)
and childis amember of NodeChildren (parent). If child already has other parents, then
the new parent will be added to the end of the list. The order of the parents can be set by setting
NodeParents (child).

In general, the Bayesian network must always be an acyclic directed graph. Therefore, if parent
is a decendent of child (thatisif is.NodeRelated (child), "decendent", childis TRUE),
then Netica will generate an error.

The function DeleteLink () removes the relationship, and the parent and child nodes
should no longer be in each other parent and child lists. The parent list of the child node is shortened
(a stub node for later reconnection is not created as when NodeParents (child) [1] <- list (NULL)).

14 AddLink

Value

The function AddLinK invisibly returns the index of the new parent in the parent list.

The function DeleteLink invisibly returns the child node.

Note

The Netica API specifies the first argument to DeleteLink_bn () as an index into the parent list.
RNetica maps from the node to the index.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: AddLink_bn()?, DeleteLink_bn()?

See Also

NeticaNode, NodeParents (), NodeChildren (), is.NodeRelated ()

Examples

abnet <- CreateNetwork ("AABRBR")
A <- NewDiscreteNode (abnet, "A")
B <- NewDiscreteNode (abnet, "B")

AddLink (A, B)
stopifnot (
match (A, NodeParents (B) , nomatch=0)>0,
match (B, NodeChildren (A) , nomatch=0) >0
DeletelLink (A, B)
stopifnot (

match (A, NodeParents (B) , nomatch=0)==0,
match (B, NodeChildren (A) , nomatch=0) ==

DeleteNetwork (abnet)

2http://norsys.com/onLineAPIManual/functions/AddLink_bn.html
3http://norsys.com/onLineAPIManual/functions/DeleteLink_bn.html

AdjoinNetwork 15

AdjoinNetwork Links an evidence model network to a system model netwok.

Description

This function assumes that the two arguments are networks that were designed to be connected to
one another. It copies the nodes from em into sm and then tries to resolve any stub links in the
copied nodes by connecting them to nodes in sm.

Usage
AdjoinNetwork (sm, em, setname = character())
Arguments
sm An active Net i caBN which contains the system state variables.
em An active Net 1 caBN which contains variables that provide evidence about the
system state.
setname An optional character vector containing names of node sets (see NodeSets ()).
If supplied, all of the newly created nodes are added to the node sets.
Details

This follows the System Model-Evidence Model protocol laid out in Almond et al (1999) and
Almond and Mislevy (1999). The idea is that the network sm is a complete network that encodes
beliefs about the current status of a system. In particular, it often encodes the state of knowledge
about a student and is then called a student model.

The second network em is an incomplete network: a fragment of a network, some of whose nodes
could be stub nodes referring to nodes in the sm (see NodeInputNames () and NodeKind ()).
The idea is that the evidence model provides a set of observable values associated with some diag-
nostic proceedure, in particular, a task on an assessment.

The function Ad joinNetwork (sm, em) copies all of the nodes from em to sm, modifying sm in
the process (copy it first using CopyNetworks (sm) if this is not the intention). It then the parents
of each node, emnode, in em looking for stub nodes (cases where NodeParents (emnode) [j]
has been set to NULL for some parent. AdjoinNetworks (sm, em) then tries to find a matching
parent by searching for a system model node, smnode named Node InputNames (emnode) [J].
If it finds one, it sets NodeParents (emnode) [j] <- smnode; if not, it issues a warning.

The function AdjoinNetwork (sm, em) also copies node set information from the nodes in em
to their copies in sm. The value of setname is concatenated with the current node sets of the
nodes in em. This provides a handy way of identifying the evidence model from which the nodes
came.

After findings are entered on the nodes in the evidence model, the can be eliminated using AbsorbNodes ().

Value

A list containing the newly copied nodes (the instances of the em nodes now in sm).

16 AdjoinNetwork

Author(s)
Russell Almond

References

Almond, R. G. & Mislevy, R. J. (1999) Graphical models and computerized adaptive testing. Ap-
plied Psychological Measurement, 23, 223-238.

Almond, R., Herskovits, E., Mislevy, R. J., & Steinberg, L. S. (1999). Transfer of information
between system and evidence models. In Artificial Intelligence and Statistics 99, Proceedings (pp.
181-186). Morgan-Kaufman

See Also

NeticaNode, AbsorbNodes (), JointProbability (),NodeSets (),CopyNodes () ,NetworkFootprint (

Examples

System/Student model

EMSMSystem <- ReadNetworks (paste (library (help="RNetica") $path,
"sampleNets", "System.dne",
sep=.Platform$file.sep))

Evidence model for Task la

EMTaskla <- ReadNetworks (paste (library (help="RNetica") $path,
"sampleNets", "EMTaskla.dne",
sep=.Platform$file.sep))

Evidence model for Task 2a

EMTask2a <- ReadNetworks (paste (library (help="RNetica") $path,
"sampleNets", "EMTask2a.dne",
sep=.Platform$file.sep))

Evidence model for Task 2b

EMTask2b <- ReadNetworks (paste (library (help="RNetica") $path,
"sampleNets", "EMTask2b.dne",
sep=.Platform$file.sep))

Task la has a footprint of Skilll and Skill2 (those are the

referenced student model nodes. So we want joint the footprint into
a single clique.

MakeCliqueNode (NetworkFindNode (EMSMSystem, NetworkFootprint (EMTaskla)))
The footprint for Task2 a is already a clique, so no need to do

anything.

Make a copy for student 1

studentl <- CopyNetworks (EMSMSystem, "studentl")

Monitor nodes for proficiency

studentl.prof <- NetworkNodesInSet (studentl,"Proficiency")

AdjoinNetwork 17

studentl.tla <- AdjoinNetwork (studentl, EMTaskla)
We are done with the original EMTaskla now
DeleteNetwork (EMTaskla)

Now add findings

CompileNetwork (studentl)

NodeFinding (studentl.tla$Obslal) <- "Right"
NodeFinding (studentl.tla$Obsla2) <- "Right"

studentl.probtla <- JointProbability (studentl.prof)

Done with the observables, absorb them
AbsorbNodes (studentl.tla)

CompileNetwork (studentl)

studentl.probtlax <- JointProbability (studentl.prof)

This should be the same
stopifnot (
sum (abs (studentl.probtla-studentl.probtlax)) <.0001

Now Task 2
studentl.t2a <- AdjoinNetwork (studentl, EMTask2a, "t2a")
stopifnot (
setequal (names (studentl.t2a), names (NetworkNodesInSet (studentl, "t2a")))
)
DeleteNetwork (EMTask2a)

Add findings
CompileNetwork (studentl)
NodeFinding (studentl.t2a$0bs2a) <- "Half"

studentl.probtla2a <- JointProbability (studentl.prof)

AbsorbNodes (studentl.t2a)
CompileNetwork (studentl)
studentl.probtlaZ2ax <- JointProbability (studentl.prof)

This should be the same
stopifnot (
sum (abs (studentl.probtlaZ2a-studentl.probtlazax)) <.0001

Adjoining networks twice should result in copies with incremented
numbers.

AdjoinNetwork (studentl, EMTask2b)

AdjoinNetwork (studentl, EMTask2b)

DeleteNetwork (studentl)
DeleteNetwork (EMTask2b)
DeleteNetwork (EMSMSystem)

18 CaseFileDelimiter

CaseFileDelimiter Gets or sets special characters for case files.

Description

The function CaseFileDelimiter sets the field delimiter used when writing case files. The
function CaseFileMissingCode sets the character code used for missing values in case files.
If called with a null argument, then the current value is returned.

Usage

CaseFileDelimiter (newdelimiter = NULL)
CaseFileMissingCode (newcode = NULL)

Arguments

newdelimiter A character scalar containing the new delimiter. It must be either a comma, a
space, or a tab.

newcode The character to be used as a delimiter. It must be either an asterisk ("*"), a
question mark ("?"), a space, (" ") or the empty string ("").
Details

Case files are essentially a comma separated value files, although tab and space are allowed as
alternative delimiters. The space and empty string are only allowed as missing value codes when
the delimiter is a comma.

The value of the delimiter is global, and applies to all case files written from this point on.

When the argument is null (the default) the current value is returned without changing it.

Value

The value of the delimiter or mising code before the function call as a string.

Note

The default R missing code "NA" does not work with Netica.

Author(s)
Russell G. Almond

References

http://norsys.com/onLineAPIManual/index.html: SetCaseFileDelimChar_ns()*, Set-
MissingDataChar_ns()>

4http://norsys.com/onLineAPIManual/functions/SetCaseFileDelimChar_ns.html
Shttp://norsys.com/onLineAPIManual/functions/SetMissingDataChar_ns.html

CaseFileStream 19

See Also

WriteFindings, WriteFindings, read.CaseFile

Examples

defaultDelim <- CaseFileDelimiter () # Get default
dl <- CaseFileDelimiter ("\t")
d2 <- CaseFileDelimiter (" ")
d3 <- CaseFileDelimiter (", ")

defaultMiss <- CaseFileMissingCode () # Get default
ml <- CaseFileMissingCode ("+")
m2 <- CaseFileMissingCode ("?")
m3 <- CaseFileMissingCode (" ")
m4 <- CaseFileMissingCode ("")
Not run:
This should thow an error.
CaseFileDelimiter (" ")

End (Not run)
m5 <- CaseFileMissingCode ("?")

d4<- CaseFileDelimiter (" ")

Not run:
This should throw an error
CaseFileMissingCode (" ")

End (Not run)
But this is okay
CaseFileMissingCode ("*")

stopifnot (dl==defaultDelim, d2=="\t", d3==" ", d4==",6")
stopifnot (ml==defaultMiss, m2=="%", m3=="?", mi4==" ", m5=="")

restore defaults
CaseFileDelimiter (defaultDelim)
CaseFileMissingCode (defaultMiss)

CaseFileStream A stream of cases for reading/writing Netica findings to a file

Description

This object is subclass of Net icaCaseStreamso it is a wrapper around a Netica stream which is
used to read/write cases. In this subclass, the case stream is assocaited with a Netica case file (’.cas’
extension). The function ReadFindings reads the findings from the stream and the function
WriteFindings writes them out.

20 CaseFileStream

Usage

CaseFileStream (pathname)
is.CaseFileStream(x)
getCaseStreamPath (stream)

Arguments
pathname A character scalar giving a path to the case file. Netica expects case files to end
with the extension ".cas"
stream A CaseFileStream object.
X A object to be printed or whose type is to be determined.
Details

A CaseFileStream object is a subclass of the NeticaCaseStream object, which is an R
wrapper around a Netica stream object, in this case one that reads or writes to a case file. Case files
are tab (or comma, see CaseFileDelimiter) separated value files where columns represent
variables and rows represent cases. Although the function WriteFindings always appends a
new case to the end of a file (and hence does not need to keep the stream object open between calls),
the function ReadFindings will read (by default) sequentially from the cases in the stream, and
hence the stream needs to be kept open between calls.

The function CaseFileStream will open a stream in Netica and create anew CaseFileStream.
If the argument pat hname is the pathname of the case file in the file system. This file should be a
file previously written by WriteFindings or be in the same format. The delimiter used should
be the one given by CaseFileDelimiter, and the code used for missing values should be the
value of CaseFileMissingCode.

The function CloseCaseStream closes an open case stream (and is harmless if the stream is
already closed. Although RNetica tries to close open case streams when they are garbage col-
lected, users should not count on this behavior and should close them manually. Also be aware
that all case streams are automatically closed when R is closes or RNetica is unloaded. The
function isCaseStreamOpen tests to see if the stream is open or closed, and the function
OpenCaseStreamreopens a previously closed case stream.

The functions getCaseStreamPath returns the path on which the CaseFileStream is fo-
cused.

For other properties of CaseFileStream, see NeticaCaseStream.

Value

The function CaseFileStream returns a new, open CaseFileStream object.

The functions is.CaseFileStream returns a logical value indicating whether or not the argu-
mentisaCaseFileStream.

The function getCaseStreamPath returns a string giving the path of the file associated with
stream, or NULL if the argument is not a CaseFileStream.

CaseFileStream 21

Note

Internally, a weak reference system is used to keep a list of Netica stream objects which need to
be closed when RNetica is unloaded. Stream objects should also be forced closed when garbage
collected. The weak reference system is somewhat experimental, so well designed code should
manually close the streams when the program is through with it.

Stream objects are fragile, and will not survive saving and restoring an R session. However, the
object retains information about itself, so that calling OpenCaseStream on the saved object,
should reopen the stream. Note that any position information will be lost.

Author(s)
Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: NewFileStream_ns()®, http:
//homepage.stat.uiowa.edu/~luke/R/references/weakfinex.html

See Also

CaseFileDelimiter,CaseFileMissingCode,NeticaCaseStream,MemoryCaseStream,
WriteFindings, ReadFindings,

Examples

abc <- CreateNetwork ("ABC")

A <- NewDiscreteNode (abc, "A",c("Al","A2","A3","A4"))
B <- NewDiscreteNode (abc, "B",c ("B1","B2","B3"))

C <- NewDiscreteNode (abc, "C",c("C1","C2"))

AddLink (A, B)
AddLink (A, C)
AddLink (B, C)

Outputfilename
casefile <- tempfile("testcase",fileext=".cas")

filestream <- CaseFileStream(casefile)
stopifnot (is.CaseFileStream(filestream),
isCaseStreamOpen (filestream))

Case 1
NodeFinding (A) <- "AL"
NodeFinding (B) <- "B1"
NodeFinding (C) <- "C1"
filestream <- WriteFindings(list (A,B,C),filestream,1001,1.0)
stopifnot (getCaseStreamLastId(filestream)==1001,
abs (getCaseStreamlLastFreqg(filestream)-1.0) <.0001)

Shttp://norsys.com/onLineAPIManual/functions/NewFileStream_ns.html

22

CompileNetwork

Close it

filestream <— CloseCaseStream(filestream)

stopifnot (is.CaseFileStream(filestream),
'isCaseStreamOpen (filestream))

Reopen it

filestream <- OpenCaseStream(filestream)

stopifnot (is.CaseFileStream(filestream),
isCaseStreamOpen (filestream))

##Case 1
RetractNetFindings (abc)
filestream <- ReadFindings(list(A,B,C),filestream, "FIRST")
stopifnot (getCaseStreamlLastId(filestream)==1001,
abs (getCaseStreamLastFreq(filestream)-1.0) <.0001)

##Clean Up
CloseCaseStream(filestream)
DeleteNetwork (abc)

CompileNetwork Builds the junction tree for a Netica Network

Description

Before Netica performs inference in a network, it needs to compile the network. This process
consists of building a junction tree and conditional probability tables for the nodes of that tree. The
function CompileNetwork () compiles the network and UncompileNetwork () undoes the
compilation and frees the associated memory.

Usage

CompileNetwork (net)
UncompileNetwork (net)
is.NetworkCompiled (net)

Arguments

net An active Net i caBN which will be compiled.

Details

Usually Bayesian network projects operate in two phases. In the construction phase, new nodes are
added to the network, new connections made and conditional probabilty tables are set.

In the inference phase, findings are added to nodes and other nodes are queried about their current
conditional probability tables.

CompileNetwork 23

The functions CompileNetowrk () and UncompileNetwork () move the networks between
the two phases. The documentation for El iminationOrder () and JunctionTreeReport ()
provide more details about the compilation process. The function NetworkCompiledSize ()
provides information about the amount of storage used by the compiled network, but only after the
network is compiled.

The function is.NetworkCompiled () tests to see if a network is compiled or not.

Value

The Net i caBN object net is returned invisibly.

Note

Calling NetworkCompiledSize () on an uncompiled network produces, an error, but also the
sensible value of —1. The function is.NetworkCompiled () calls the same internal function
as NetworkCompiledSize, but clears the error. This means it also clears any other errors that
might be lurking in the system (see ReportErrors ().

I think calling CompileNetwork () twice on the same network is harmless. Adding a node to a
network will automatically uncompile it.

Author(s)
Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: CompileNet_bn()’, UncompileNet_bn()®,
SizeCompiledNet_bn()?,

See Also
NeticaBN, HasNodeTable (),NodeFinding (),NodeBeliefs (),EliminationOrder (),
JunctionTreeReport (), JointProbability (),MostProbableConfig(),FindingsProbability ()

Examples

irt5 <- ReadNetworks (paste(library (help="RNetica") $path,
"sampleNets", "IRT5.dne",
sep=.Platform$file.sep))
stopifnot (!is.NetworkCompiled(irt5))

CompileNetwork (irt5) ## Ready to enter findings
stopifnot (is.NetworkCompiled(irth))

UncompileNetwork (irt5) ## Ready to add more nodes
stopifnot (!is.NetworkCompiled(irt5))

"http://norsys.com/onLineAPIManual/functions/CompileNet_bn.html
8http://norsys.com/onLineAPIManual/functions/UncompileNet_bn.html
%http://norsys.com/onLineAPIManual/functions/SizeCompiledNet_bn.html

24 CopyNetworks

DeleteNetwork (irth)

CopyNetworks Makes copies of Netica networks.

Description

Makes a copy of the networks in the list nets giving them the names in newnamelist. The
options argument controls how much information is copied.

Usage

CopyNetworks (nets, newnamelist, options = character(0))
Arguments

nets A list of Net icaBN objects.

newnamelist A character vector of the same length as nets which gives the names for the
newly created copies.

options A character vector containing information about what to copy. The elements
should be one of the values "no_nodes", "no_links", "no_tables",
"no_visual".

Details

Copies each of the networks in the net s lists, giving it a new name from the newnamelist. It
returns a list of the new networks. If the specified net does not exist, then a warning is issued and a
NULL is returned instead of the corresponding Net i caBN object.

The opt ions argument is passed to the opt i ons argument of the Netica API function CopyNet_bn ().
Meanings for the various arguments can be found in the documentation for that function. Note that
Netica expects a list of comma separated values. RNetica will collapse the options argument

into a comma separated list, so the argument can be given either as a character vector of length 1
containing a comma separated list, or the elements of that list in separate elements of a character
vector.

Value

A list of Net i caBN objects corresponding to the new networks, or if the length of net s is one, a
single Net icaBN object is returned instead. A NULL is returned instead of the Net i caBN object
if the corresponding element of net s does not exit.

Author(s)
Russell Almond

CopyNodes 25

References

http://norsys.com/onLineAPIManual/index.html: CopyNet_bn()'°

See Also

DeleteNetwork ()

Examples

netl <- CreateNetwork ("Original")
nets <- CreateNetwork (paste ("Original",2:3,sep=""))

copyl <-CopyNetworks (netl, "Copyl")
stopifnot (is (copyl, "NeticaBN"))

stopifnot (as.character (copyl) == "Copyl")

stopifnot (copyl != netl)

netc <- CopyNetworks (nets,paste ("Copy",2:3,sep=""))
stopifnot (all (sapply (netc,is, "NeticaBN")))
stopifnot (as.character (netc) == ("Copy2", "Copy3"))

DeleteNetwork (c (netc,nets, list (copyl,netl)))

CopyNodes Copies or duplicates nodes in a Netica network.

Description

This function either copies nodes from one net to another or duplicates nodes within the same

network.
Usage

CopyNodes (nodes, newnamelist = NULL, newnet = NULL, options = character(0))
Arguments

nodes A list of active Net 1 caNode objects all from the same network.

newnamelist If supplied, this should be character vector with the same lenght as nodes giv-
ing the new names for the nodes.

newnet If supplied, it should be an active Net icaBN which is the destination for the
new nodes. If this argument is NULL the nodes will be duplicated within the
original network.

Ohttp://norsys.com/onLineAPIManual/functions/CopyNet_bn.html

26 CopyNodes

options A character vector of options, with each element being one of the options. Cur-
rently, the only supported options are "no_tables" (do not copy the condi-
tional probability tables for the nodes) and "no_1links" (do not duplicate the
links, which implies do not copy tables).

Details

The nodes in the first argument will be copied into a new network as specified by newnet. If
newnet is not specified or if it the same as the network from which nodes come, then the nodes
will be duplicated instead of copied.

If the nodes are duplicated, then will be given new names. The default Netica behavior for new
names is to append a number to the end of the node name, or to increment an existing number.
If newnamelist is supplied, these names will be used instead of the add a number convention.
Supplying newname1ist will change the names of the nodes when copying from one network to
another.

When nodes are copied links going into the node are copied as well. Thus if there is a link
A —> B in the network and B is copied into the same network, then there will a link A -> Bl
to the new node. If B is copied into a new network, the link will be there but not attached, as if
NodeParents (B1) [A] <— NULL had been called.

The argument opt ions allows control over what is copied. The currently supported options are:

* "no_tables" — The conditional probability tables of the nodes (see NodeProbs ()) will
not be copied, and new tables will need to be set in the new network.

* "no_1links" — The links going into the node s will not be copied. Note thatthe "no_links™"
option implies the "no_tables" option, so both do not need to be specified.
Value

A list containing the new nodes (or just the new node, if there is only one).

Note
There may be some information that is not copied. For example, the NodeSets () information is
not copied.

Author(s)
Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: CopyNodes_bn()'!

See Also

CopyNetworks (),NeticaNode,NeticaBN (),NodeProbs (),NodeParents (),AbsorbNodes (),
DeleteNodes ()

Uhttp://norsys.com/onLineAPIManual/functions/CopyNodes_bn.html

CopyNodes 27

Examples

System <- ReadNetworks (paste(library (help="RNetica") $path,
"sampleNets", "System.dne",
sep=.Platform$file.sep))

EMTaskla <- ReadNetworks (paste (library (help="RNetica") $path,
"sampleNets", "EMTaskla.dne",
sep=.Platform$file.sep))

studentl <- CopyNetworks (System, "Studentl")
studentl.sysnodes <- NetworkAllNodes (studentl)

studentl.tlanodes <- CopyNodes (NetworkAllNodes (EMTaskla), newnet=studentl)

Copied, new nodes have the same names as the old nodes.
stopifnot (
setequal (names (NetworkAllNodes (EMTaskla)),
names (studentl.tlanodes))

The nodes in the evidence model have stub connections to the nodes in
the system model. Need to link them up.

stopifnot (
any (sapply (NodeParents (studentl.tlanodes[[1]]),NodeKind) == "Stub"),
any (sapply (NodeParents (studentl.tlanodes[[2]]),NodeKind) == "Stub")

studentl.allnodes <- NetworkAllNodes (studentl)
for (node in studentl.tlanodes) {
stubs <- sapply (NodeParents (node),NodeKind) == "Stub"
NodeParents (node) [stubs] <- studentl.allnodes[NodeInputNames (node) [stubs]]
}

stopifnot (
sapply (NodeParents (studentl.tlanodes[[1]]),NodeKind) != "Stub",
sapply (NodeParents (studentl.tlanodes[[2]]),NodeKind) !="Stub"

Duplicate these nodes.
studentl.tlxnodes <- CopyNodes (studentl.tlanodes)

Autonaming increments the numbers.
stopifnot (
setequal (names (studentl.tlxnodes),c("Obsla3","Obsla4d"))

Duplicate and rename.
studentl.tlcnodes <- CopyNodes (studentl.tlanodes,c("Obslcl","Obslc2"))

stopifnot (
setequal (names (studentl.tlcnodes),c("Obslcl", "Obslc2"))

28

Duplicated nodes have real not stub connections.

CPA

stopifnot (
sapply (NodeParents (studentl.tlcnodes[[1]]),NodeKind) != "Stub",
sapply (NodeParents (studentl.tlcnodes[[2]]),NodeKind) !="Stub"
)
DeleteNetwork (list (System, studentl, EMTaskla))
CPA Representation of a conditional probability table as an array.

Description

A conditional probability table for a node can be represented as a array with the first p dimensions
representing the parent variables and the last dimension representing the states of the node. Given
a set of values for the parent variables, the values in the last dimension contain the conditional
probabilities corresponding conditional probabilities. A CPF is a special data.frame object
which represents a conditional probability table.

Usage

is.CPA (x)
as.CPA (x)

Arguments

x Object to be tested or coerced into a CPF.

Details

One way to store a conditional probability table is as an array in which the first p dimensions
represent the parent variables, and the p 4+ 1 dimension represents the child variable. Here is an
example with two parents variables, A and B, and a single child variable, C"

, , C=cl
al
a2
a3
a4
, , C=c2

bl
0.07
0.12
0.17
0.20

bl

b2
0.23
0.25
0.27
0.29

b2

b3
0.30
0.31
0.32
0.33

b3

CPA 29

al 093 0.77 0.70
a2 088 0.75 0.69
a3 083 073 0.68
a4 080 0.71 0.67

[Because R stores (and prints) arrays in column-major order, the last value (in this case tables) is
the one that sums to 1.]

The CPA class is a subclass of the array class (formally, it is class ¢ ("CPA", "array")). The
CPA class interprets the dimnames of the array in terms of the conditional probability table. The
first p values of names (dimnames (x)) are the input names of the edges (see Node InputNames ()
or the variable names (or the parent variable, see NodeParents (), if the input names were
not specified), and the last value is the name of the child variable. Each of the elements of
dimnames (x) should give the state names (see NodeStates ()) for the respective value. In par-
ticular, the conversion function as . CPF () relies on the existance of this meta-data, and as . CPA ()
will raise a warning if an array without the appropriate dimnames is suppled.

Although the intended interpretation is that of a conditional probability table, the normalization
constraint is not enforced. Thus a CPA object could be used to store likelihoods, probability poten-
tials, contingency table counts, or other similarly shaped objects. The function normalize scales
the values of a CPA so that the normalization constraint is enforced.

The method NodeProbs () returns a CPA object.

The function as . CPA () is designed to convert between CPF's (that is, conditional proability tables
stored as data frames) and CPAs. It assumes that the factors variables in the data frame represent the
parent variables, and the numeric values represent the states of the child variable. It also assumes
that the names of the numeric columns are of the form varname . state, and attempts to derive
variable and state names from that.

If the argument to as . CPA (x) is an array, then it assumes that the dimnames (x) and names (dimnames (x))
are set to the states of the variables and the names of the variables respectively. A warning is issued
if the names are missing.

Value

The function is.CPA () returns a logical value indicating whether or not the is (x, "CPA") is
true.

The frunction as . CPA returns an object of class c ("CPA", "array"), which is essentailly an
array with the dimnames set to reflect the variable names and states.
Note

The obvious way to print a CPA would be to always show the child variable as the rows in the
individual tables, with the parents corresponding to rows and tables. R, however, internally stores
arrays in column-major order, and hence the rows in the printed tables always correspond to the
second dimension. A new print method for CPA would be nice.

Author(s)
Russell Almond

30 CPF

See Also

NodeProbs (), Extract.NeticaNode, CPF, normalize ()

Examples

arf <- data.frame (A=rep(c("al","a2"),each=3),
B=rep(c("bl", "b2","b3"),2),
C.cl=1l:6, C.c2=7:12, C.c3=13:18, C.c4=19:24)
arfa <- as.CPA(arf)
stopifnot (
is.CPA (arfa),
all (dim(arfa)==c(2,3,4))

arrl <- array(l:24,c(4,3,2),
dimnames=list (A=c ("al","a2","a3","a4"),B=c("bl","b2","b3"),
C=c("cl","c2")))
arrla <- as.CPF (arrl)
stopifnot (
is.CPA(as.CPA (arrla))

Not run:
as.CPF (node[])

End (Not run)

CPF Representation of a conditional probability table as a data frame.

Description

A conditional probability table for a node can be represented as a data frame with a number of
factor variables representing the parent variables and the remaining numeric values representing
the conditional probabilities of the states of the nodes given the parent configuration. Each row
represents one configuration and the corresponding conditional probabilities. A CPF is a special
data.frame object which represents a conditional probability table.

Usage
is.CPF (x)
as.CPF (x)
Arguments

X Object to be tested or coerced into a CPF.

CPF 31

Details

One way to store a conditional proability table is a table in which the first severl columns indicate
the states of the parent variables, and the last several columns indicate probabilities for several child
variables. Consider the following example:

A B Ccl Cc2 Cc3 Cc4
[1,] al bl 0.03 0.17 033 047
[2,] a2 bl 005 0.18 032 045
[3,] al b2 006 0.19 031 044
[4] a2 b2 008 0.19 031 042
[5] al b3 009 020 030 041
[6,] a2 b3 0.10 020 030 040

In this cas the first two columns correspond to parent variables A and B. The variable A has two
possible states and the variable B has three. The child variable is C' and it has for possible states.
The numbers in each row give the conditional proabillities for those states give the state of the child
variables.

The class CPF is a subclass of data . frame (formally, itis class ¢ ("CPF", "data.frame")).
Although the intended interpretation is that of a conditional probability table, the normalization con-
straint is not enforced. Thus a CPF object could be used to store likelihoods, probability potentials,
contingency table counts, or other similarly shaped objects. The function normalize scales the
numeric values of CPF so that each row is normalized.

The method " [.NeticaNode" returns a CPF (if the node is not deterministic).

The function as.CPF () is designed to convert between CPAs (that is, conditional proability ta-
bles stored as arrays) and CPFs. In particular, as.CPF is designed to work with the output of
NodeProbs () or a similarly formatted array. It assumes that names (dimnames (x)) are the
names of the variables, and dimnames (x) is a list of character vectors giving the names of the
states of the variables. (See CPA for details.) This general method should work with any numeric
array for which both dimnames (x) and names (dimnames (x)) are specified.

The argument x of as.CPF () could also be a data frame, in which case it is permuted so that the
factor variable are first and the class tag "CDF " is added to its class.

Value

The function is.CPF () returns a logical value indicating whether or not the is (x, "CDF") is
true.

The frunction as . CPF returns an object of class c ("CPF", "data.frame"), which is essen-
tailly a data frame with the first couple of columns representing the parent variables, and the re-
maining columns representing the states of the child variable.

Note

The parent variable list is created with a call expand.grid (dimnames (x) [1: (p—1)]1). This
produces conditional probabilty tables where the first parent variable varies fastest. The Netica GUI
displays tables in which the last parent variable varies fastest.

32 CreateNetwork

Author(s)

Russell Almond

See Also

NodeProbs (), Extract.NeticaNode, CPA, normalize ()

Examples

arf <- data.frame (A=rep(c("al","a2"),each=3),

B=rep(c ("bl","b2","b3"),2),

C.cl=1l:6, C.c2=7:12, C.c3=13:18, C.c4=19:24)
arf <- as.CPF (arf)
stopifnot (is.CPF (arf))

arr <- array(l:24,c(2,3,4),
dimnames=1list (A=c ("al","a2"),B=c("b1l","b2", "b3"),
C=c("cl","c2","c3","c4")))
arrf <- as.CPF (arr)
stopifnot (
is.CPF (arrf),
all (levels (arrf$A)==c("al", "az2")),
all(levels (arrf$B)==c("bl", "b2", "b3")),
nrow (arrf)==6, ncol (arrf)==

##Warning, this is not the same as arf, rows are permuted.
as.CPF (as.CPA (arf))

Not run:
as.CPF (NodeProbs (node))

End (Not run)

CreateNetwork Creates (destroys) a new Netica network.

Description

CreateNetwork () makes a new empty network in Netica. DeleteNetwork () frees the
memory associated with the named network inside of Netica.

Usage

CreateNetwork (names)
DeleteNetwork (nets)

CreateNetwork 33

Arguments
names A character vector giving the name or names of the network to be created.
nets A list of Net i caBN objects to be destroyed.

Details

The CreateNetwork method creates a new network for each of the names. Names must follow
the IDname rules. It returns a Net i caBN object, or a list of such objects if the argument names
has length greater than 1.

The DeleteNetwork method frees the Netica memory associated with each net in its argument.
Note that the network will not be available for use after it is deleted. It returns the NeticaBN
objects, but modified so that they are no longer active.

The function 1ink{is.active} (), checks to see if the network associated with a Net 1 caBN
object still corresponds to a network loaded into Netica’s memory.

These functions wrap the Netica API functions NewNet_lbn () and DeleteNet_bn ().

Value

A single NeticaBN object if the length of the argument is 1, and a list of suct objects if the
argument has length greater than 1. For DeleteNets () if a specified network does not exist, the
corresponding element in the return list will be NULL.

Implementation Note

Currently, the Net icaBN object uses the name of the networks as the pointer into the network.
Thus either a character vector of names or a list of Net 1 caBN objects is mostly equivalent.

Future versions may actually use pointers to the Netica objects.

Note

The function DeleteNetwork () implicitly deletes any nodes assocaited with the network. There-
fore, any nodes associated with this network will become inactive (see is.active ()).

Author(s)
Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: NewNet_bn()!?, DeleteNet_bn()"

See Also

CopyNetworks (), is.active ()

2nttp://norsys.com/onLineAPIManual/functions/NewNet_bn () .html
13http: //norsys.com/onLineAPIManual/functions/DeleteNet_bn () .html

34 DeleteNodeTable

Examples

netl <- CreateNetwork ("EmptyNet")
stopifnot (is (netl, "NeticaBN"))

stopifnot (as.character (netl)=="EmptyNet")
stopifnot (is.active (netl))

netd <- DeleteNetwork (netl)
stopifnot (!is.active (netd))
stopifnot (!is.active(netl))

stopifnot (as.character (netd)=="EmptyNet")
DeleteNodeTable Deletes the conditional probability table of a Netica node.
Description

This function completely removes the conditional probability table (CPT) associated with a node.

Usage

DeleteNodeTable (node)

Arguments

node An active Net i caNode whose conditional probability table is to be tested.

Value

Returns the modified node invisibly.

Author(s)
Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: DeleteNodeTables_bn()'*

See Also

NeticaNode, NodeParents (), NodeInputNames (), HasNodeTable ()

“nttp://norsys.com/onLineAPIManual/functions/DeleteNodeTables_bn.html

EliminationOrder 35

Examples

al <- CreateNetwork ("AB1")
A <- NewDiscreteNode (al, "A",c ("A1l","A2"))

NodeProbs (A) <- c(0,1)
stopifnot (
all (HasNodeTable (A)) ==TRUE

DeleteNodeTable (A)
stopifnot (
all (HasNodeTable (A)) ==FALSE

DeleteNetwork (al)

EliminationOrder Retrieves or sets the elimination order used in compiling a Netica net-
work.

Description

The compilation process involves eliminating the nodes in the network one-by-one, different orders

will produce junction trees of different sizes. The function EliminationOrder (net) returns

the current elimination order associated with a network. The expressionEliminationOrder (net) <- value
sets the elimination order.

Usage

EliminationOrder (net)
EliminationOrder (net) <- value

Arguments
net An active Net icaBN/
value Either NULL (to clear the elimination order) or a list of every node in net with
no duplicates.
Details

Large cycles create problems for propagating probabilities in Bayesian networks. A solution to this
problem is to fill-in chords (short cuts) in the cycles and then transform the network to a tree shape
with the nodes of the tree representing cliques of the graph. This is commonly called a junction tree
(although a junction tree additionally has nodes separating the cliques, called sepsets in Netica).

Finding the optimal pattern of fill-ins is an NP hard problem. A common way of approaching it is to
eliminate the nodes from the network one-by-one and connect the neighbors of the eliminated node
(if they were not already connected). In this case, the sequence of eliminated nodes will determine

36 EliminationOrder

which edges are filled in, and hence the size of the final junction tree. Finding an optimal eliminator
order is also NP hard, but simple heuristics (like the greedy algorithm) tend to do reasonably well in
practice. (See Almond, 1995, for a complete description of the algorithm and heuristics solutions).

When Netica compiles a network (CompileNetwork (net)), it picks an elimination order, un-
less one has already been set. Unless the network has a particular difficult structure, then the Netica
defaults should work pretty well. The function JunctionTreeReport (net) gives a report
about the existing tree.

If the analyst has some clue about the structure of the network and wants to manually select the
elimination order, this can be set through the form EliminationOrder (net) <-nodelist.
Here nodelist should be a complete list of all of the nodes in net with no duplication. Alterna-
tively, it can be set to NULL.

Setting the elimination order does not affect an already compiled network, it is only is applied when
the network is next compiled.

Value

A list of all of the nodes in the network in elimination order if the elimination order is currently set,
otherwise NULL.

The setter form returns net invisibly.

Note

The Netica documentation does not specify the heuristics for selecting the elimination order if no
order is specified. I suspect it is some variation on the greedy algorithm, which works well in many
cases.

Author(s)
Russell Almond

References

Almond, R.G. (1995) Graphical Belief Modeling. Chapman and Hall.

http://norsys.com/onLineAPIManual/index.html: GetNetElimOrder_bn()!’, Set-
NetElimOrder_bn()'®,

See Also

NeticaBN, NetworkAllNodes (), CompileNetwork (), JunctionTreeReport ()
Examples

EMSMMotif <- ReadNetworks (paste(library (help="RNetica") $path,
"sampleNets", "EMSMMotif.dne",
sep=.Platform$file.sep))

Bhnttp://norsys.com/onLineAPIManual/functions/GetNetElimOrder_bn.html
nttp://norsys.com/onLineAPIManual/functions/SetNetElimOrder_bn.html

EnterFindings 37

Should be null before we do anything.
stopifnot (
is.null (EliminationOrder (EMSMMotif))

)

CompileNetwork (EMSMMotif)
Now should have an elimination order.
stopifnot (
length (EliminationOrder (EMSMMotif)) ==
length (NetworkAllNodes (EMSMMotif)),
NetworkCompiledSize (EMSMMotif) == 84

)
JunctionTreeReport (EMSMMotif)

EMSMMotif is partitioned into observable and proficiency variables.
Tell Netica to eliminate observable varaibles first.
EliminationOrder (EMSMMotif) <- c(NetworkNodesInSet (EMSMMotif, "Observable"),
NetworkNodesInSet (EMSMMotif, "Proficiency"))
UncompileNetwork (EMSMMotif)
CompileNetwork (EMSMMotif)
stopifnot (
length (EliminationOrder (EMSMMotif)) ==
length (NetworkAllNodes (EMSMMotif)),
NetworkCompiledSize (EMSMMotif) == 84
)
JunctionTreeReport (EMSMMotif)

Clear elimination order.
EliminationOrder (EMSMMotif) <- NULL
stopifnot (

is.null (EliminationOrder (EMSMMotif))
)

DeleteNetwork (EMSMMotif)

EnterFindings Enters findings for multiple nodes in a Netica network.

Description

This function takes two arguments, a network and a list of nodes and the correspoinding findings.
It sets all of the findings at once.

Usage

EnterFindings (net, findings)

38 EnterFindings

Arguments
net An active and compiled Net icaBN.
findings An integer or character vector giving the findings. The names (findings)
should be names of nodes in net. The values of findings should be corre-
sponding states either expressed as a character string or as an integer index into
the list of states for that node. (See NodeFinding (node).
Details

This function enters findings for multiple nodes at the same time. It offers two improvements over
repeated calls to NodeFinding (). First, it finds the nodes by name in the network, making it
easier to work with data in the form of key—value pairs that might come from other systems. Second,
it wraps the calls to NodeFinding () inacall to WithoutAutoUpdate () which should only
propagate the new findings after all values have been entered.

Value

The value of net is returned invisibly.

Author(s)

Russell Almond

See Also

NeticaBN,NodeBeliefs (),EnterNegativeFinding(),EnterFindings (),RetractNodeFinding/(),
NodeLikelihood (), JointProbability (),MostProbableConfig(),FindingsProbability ()

Examples

Motif <- ReadNetworks (paste(library (help="RNetica") $path,
"sampleNets", "EMSMMotif.dne",
sep=.Platform$file.sep))

CompileNetwork (Motif)

obs <- c(Obslal="Right",Obsla2="Wrong",
Obslbl="Right", Obslb2="Wrong",
Obs2a="Half", Obs2b="Half")

EnterFindings (Motif, obs)
JointProbability (NetworkNodesInSet (Motif, "Proficiency"))

DeleteNetwork (Motif)

EnterNegativeFinding 39

EnterNegativeFinding
Sets findings for a Netaca node to a list of ruled out values.

Description

This is conceptually equivalent to setting NodeFinding{node}<-not (eliminatedVals)
(although this will not work as NodeF inding does not accept set values). It essentially eliminates
any of the eliminatedVals as possible values (assigns them zero probability).

Usage

EnterNegativeFinding (node, eliminatedVals)

Arguments
node An active Net i caNode whose value was observed or hypothesized.
eliminatedvals
A character or integer vector indicating the values to be ruled out. Character
values should be one of the values in NodeStates (node). Integer values
should be between 1 and NodeNumStates (node) inclusive.
Details

This function essentially assers that Pr(node € eliminatedVals) = 0. Thus, it rules out the
values in the eliminatedvVals set. Note that the length of this set should be less than the
number of states, or all possibilities will have been eliminated.

Note calling EngerNegativeFining (node, ...) clears any previous findings (including

virutal findings set through NodeLikelihood () or simplie findinding set through NodeFinding (node) <-value).
The function Ret ractNodeFinding (node) will clear the current finding without setting it to

a new value.

Value

This function returns node invisibly.

Note

If SetNetworkAutoUpdate () hasbeen set to TRUE, then this function could take some time as
each finding is individually propagated. Consider wrapping multiple calls setting NodeFinding ()
in WithoutAutoUpdate (net, ...).

Unlike the Netica function EnterFindingNot_bn () the function EnterNegativeFinding ()
internally calls RetractFindings. So there is no need to do this manually. Also, the internal
Netica function multiplies multiple calls to EnterFindingNod_bn () add to the list of negative
findings, while in the R version takes the entire list.

40 Extract.NeticaNode

Author(s)
Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: EnterFindingNot_bn()!”

See Also

NeticaBN,NodeBeliefs (),NodeFinding (),RetractNodeFinding (),NodeLikelihood()

Examples

irt5 <- ReadNetworks (paste(library (help="RNetica") $path,
"sampleNets", "IRT5.dne",
sep=.Platform$file.sep))

irt5.theta <- NetworkFindNode (irt5, "Theta")
irt5.x <- NetworkFindNode (irt5,paste ("Item",1:5,sep="_"))

CompileNetwork (irt5) ## Ready to enter findings
Calculated new expected beliefs

renormed <— NodeProbs (irt5.theta)

renormed[c ("negl", "neg2")] <= 0

renormed <- renormed/sum(renormed)

Negative finding

EnterNegativeFinding (irt5.theta,c("negl", "neg2")) ## Rule out negatives.
stopifnot (

NodeFinding (irt5.theta) == "@NEGATIVE FINDINGS",

sum (abs (NodeLikelihood (irt5.theta) - ¢(1,1,1,0,0))) < le-6,

sum (abs (NodeBeliefs (irt5.theta) - renormed)) < l.e-6

DeleteNetwork (irth)

Extract.NeticaNode Extracts portions of the conditional probability table of a Netica node.

Description

Provides an efficient mechansim for extracting or setting portions of large conditional probability
tables. In particular, allows setting many rows a CPT to the same value.

"nttp://norsys.com/onLineAPIManual/functions/EnterFindingNot_bn.html

Extract.NeticaNode 41

Usage

S3 method for class 'NeticaNode'

x[..., drop=FALSE]

S3 method for class 'NeticaNode'

x[[...]]

S3 replacement method for class 'NeticaNode'
x[...] <= value

EVERY_STATE

Arguments

x An active, discrete Net icaNode whose conditional probability table is to be
accessed.

Indices specifying rows of the table to extract or replace. If a single index,
i, is given, it should be a data frame selecting the parent states, or an integer
pointing at a configuration. If multiple indexes are given, the number of indexes
should correspond to the number of parent states of the variable. The values
should either be character strings (corresponding to parent variable states), or
numeric (indexes to parent states). In character strings, the special value "« "
is allowed to select all values of that variable. In numeric indexes, the special
value EVERY_STATE indicates that all states are selected. Leaving the index
position blank is the same as specifying " +«" or EVERY_STATE.

drop If true and a single row is selected, that row will be returned as a numeric vector
instead of a conditional probability frame (CPF).

value Either a numeric vector with length NodeNumStates (x) giving the condi-
tional probabilities for the specified rows in the table or a character scaler (dis-
crete node) or numeric scaler (continuous node) giving the value that should be
given probability 1.

Details

The function NodeProbs (node) allows one to access the entire conditional probability at once
as a conditional probability array (CPA). Although the built-in R array replacement mechanisms
allow one to make various kinds of edits, it is relatively inefficient. In particular, to set a single row
of an array, the entire table is read into R and then written back to Netica.

This funciton allows the syntax node [. . .] to be used to access only a portion of the table. Ther
are many different ways . . . can be interpreted, which are described below.

In this access model the value EVERY__STATE or the character value " «" has a special meaning
of match every level of that state variable. Netica supports this as a shortcut method for specifying
conditional probability tables with many similar values. However, when reading the conditional
probability tables from Netica they are expanded and no attempt is made to collapse over identical
TOWS.

A second difference is that node [...] returns the conditional probability table in data frame
(CPF) format. This is particularly convenient becasue that format does not need to cover every
parent configuration, thus it is ideal for holding subset of the complete table.

42 Extract.NeticaNode

A third difference is that a number of special values are allowed for the probability table. First, if
the node is deterministic, the value of a parent configuration can be set to the state name instead of
a probabity vector. This creates a deterministic conditional probability table full of 1’s and 0’s. For
continuous nodes, the nodes value for a parent configuration (assuming all discrete or discritized
parents) can be set directly. Finally, if the last column of the conditional probabilities is not supplied,
it will be computed. This is particularly handy for binary nodes.

Normally, the expression node [...] produces a data frame either in CPF format, or with the
probabilities replaced by a single column of values. If drop==TRUE or equivalently if node [[.. .]]
was the expression, only the matrix of probabilities or the vector of values will be returned. The
expressionnode [[...]] <- value is not supported.

The sections below describe the various indexing options.

Value

For the form node [. . .] the return value is a data frame in the CPF format giving the conditional
probability table. If the node is deterministic (IsNodeDetermistic (node)==TRUE), then the
probilities will be replaced with a single column giving the value of the node. If the node is discrete,
then the value will be a factor. If the node is continuous, then the value will be a real vector.

If drop==TRUE or an expression of the form node [[. . .]] was called, then the return value will
be a matrix of probabilities (the last several columns of the data frame). If the node is deterministic,
then the result will instead be either a factor (discrete node) or real vector (continuous node) giving
the value of the node for each parent configuration.

The form node [. . .]<-value returns node invisibly.

Selecting Rows Using Data Frames

This selection uses the syntax node [df] or node [df] <-value, wheree df is a data frame or
a matrix. It is assumed that the columns represent the variables, and the rows represent the selected
configurations of the parent variables.

In this configuration, the number of rows of df and value should match (or the length of value
should equal the number of rows if one of the special values is used). When the value is being
queried rather than set, the number of rows in the result may be greater than the number of rows in
df because of EVERY_STATE expansion.

There are three different ways that df could be represented:

1. It can be a data frame filled with factor variables whose levels correspond to the states of the
corresponding parent node.

2. It can be a matrix or data frame of type character whose values correspond to the state names of
the corresponding parent variables, or possibly the special value " « " meaning that all values
of that parent should be matched.

3. It can be a matrix of data frame of integers whose values correspond to the state indexes of the
parent variables. In this case the special value EVERY_STATE can be supplied indicating that
all values should be matched. Otherwise, it should be a number between 1 and the number of
states of that variable, inclusive.

The number of columns in df should be the same as the number of parent variables for node. If
df has column names, then all columns should be named. In this case the parent variables will be

Extract.NeticaNode 43

match by the NodeInputNames (node) if they exist, or the names of the parent varaibles if they
do not (see ParentStates (node) for more details). Otherwise, positional selection is used.

Selecting Rows Using Array-type Selection

The second way that rows from the conditional probability table can be selected is using an ana-
logue of the selection mechansims supported by R for selecting cells from an array. Essentially, the
rows of the conditional probability table are treated as if they are the elements of an array whose
dimnames correspond to ParentStates{node}. In particular the number of dimensions cor-
responds to the number of parent variables, and the extent of each dimension corresponds to the
number of states of the corresponding parent variable.

In this selection mode, the length of . . . should correspond to the number of parent variables (that
is, there should be one fewer comma, than parent variables). Each element can be one of three
things:

1. A character or factor vector selecting the appropriate states of the parent variable.
2. An integer vector selecting the appropriate states of the parent variable by position.

3. One of the special values EVERY_STATE, "«" or blank indicating that all values of the
appropriate variable should be selected.

The order of the entries should be the same as the order of the parent variables in NodeParents{node}.
The selection looks very similar to selection using a data frame, where the data frame consists of
applying expand.grid(...).

Once again EVERY_STATE or "+" entries are treated specially inside of Netica, which allows
every matching row of the table to be simultaneously set to the same probabilities.

Note that negative selections and logical selections are not currently supported.

Selecting Rows Using Named Parents

As with R array index selection, the dimensions of the selection in the . . . argument can be speci-
fied using named arguments. If one of the elements of . . . is named, they all should be named. The
names should correspond to ParentNames (node) , that is the Node InputNames (node) are
used if available, and the names of the parent nodes are used as a fallback.

As before the value for a parent variable can be set to a value or a vector of possible values as either
an integer, factor or character value. The special values EVERY_STATE and "+ " are interpreted
as before. If the value of a parent variable is unspecified, this is equivalent to using the value
EVERY_STATE.

Selecting Rows Using a Single Integer

If . .. is asingle integer, it is treated as an index into the possible configurations. These are defined
by expand.grid (ParentStates (node). Each index refers to a row in that table. This is
particularly meant for running through loops on all values, although working with value as a data
frame or using NodeP robs may be faster in those cases.

There is some ambiguity when there is a single parent variable about whether the array-type selec-
tion or the index was intended, but both are identical, so there should be no conflict.

44 Extract.NeticaNode

Special Meanining for NULL selection

If ... is NULL, that is if the calling expression looks like node [] then the intention is that all
rows of the conditional probability table are to be selected. This is the only meaningful selection
type if there are no parent variables. It also provides a fast and convenient way to set all rows of
the conditional probabillity table to the same value (if value) has a single row, or to retrieve the
complete conditional probability table in CPF format.

If value is a data frame with both factor and numeric variables, then it takes on a different meaning.
In this case, the factor variables are used as if they were the selection argument (the . . .) and the
remaining numeric values the probabilities.

Setting Value to a Probability Matrix

In general the replacement value should be a matrix. The number of columns should match the
number of states of node (see below for the behavior if the number of columns is one less than the
number of states). It should have the same number of rows as the number of rows in the selection
after any expansion has been applied for vector valued arguments, but not counting the special
values EVERY_STATE or "+ " (or blank entries in the list).

Netcia has a special shortcut for EVERY__STATE and all matching rows are set to the same prob-
ability value. This means that the number of rows in the value must match the selection counting
the special values as if they selected a single row. In particular, if node has one or more parent
variables and value is a matrix with more than one row, node [] <- value will generate a
error, because the selection has only one row (with every value set to EVERY_STATE.

When value is an undimensioned vector, the function will do its best to figure out if it should be
treated as a row or a column vector. In the case of unusual behavior, expressing value as a matrix
should make the programmers intention clear.

Setting Deterministic Values

When a node is deterministic, that is all probabilities are 0 or 1, then it is meaningful to talk
about the conditional value of a node instead of the conditional probability table. The expression
node[...] displays the conditional probabililty table in a special way when the node is deter-
ministic. In this case it displays the value as a single variable giving the state of the child variable
given the configuration of the parents. In the case of discrete nodes, this is a factor variable giving
the state. In the case of continuous nodes, this is a numeric vector giving the value.

The same conventions can be used in setting the conditional probability of a node. In the expression
node[...] <— valueifvalue is afactor or character vector then the selected configurations
are set to deterministic probabilities with the indicated value given probability of 1 and all others
with probability 0. It is possible to set some rows of a conditional probability table to be determin-
istic and others to have unrestriced probabilities, however, the deterministic rows will then print out
as unconstrained probabilites with 0 and 1 values.

Continuous nodes (nodes for which is.continuous (node) == TRUE) use a variation of
this system. Here the value is an arbitrary numeric value. For this to be meaningful, it is assumed
that all of the parents of node are either discrete ofr have been discritized.

Warning: Setting an unconditional discrete node to a constant value, that is executing an expression
like node[] <- wvalue is almost certainly a mistake. Probably what is intended by that expres-
sionis NodeFinding (node) <- value. In particular, if the former expression is used and the

Extract.NeticaNode 45

later someone attempts to set NodeFinding (node) <- valuel,where valuel != value,
this will produce a contradiction (probability zero event) and all kinds of error will follow.

Automatic normalization

If the number of columns in value is one less than the number of states in node, then is assumed
that the probability values should be calculated for the last state via normalization, that is it is as-
signed all of the remaining probability not asigned in the first couple of columns. In particular, the
value is internally translated via the expression: value <- cbind(value,l-apply (value,l,sum)).

This is particularly useful when the node is binary (has exactly 2 states). Then the replacement
only needs to specify the probability for the first one. For example node [] <- .5 would set the
probability distribution of node to the uniform distribution if node is binary.

There is some potential for confusion if value is not specified as a matrix. In particular, if the
number of states of the child value is one more than the number of configurations of the parents,
it is unclear whether this is an attempt to set the node value of a discrete node or an unnormalized
probability. It should be possible by specifying value as a matrix or one row or one column to
clarify the intent.

Note

I have tried to anticipate most of the ways that somebody might want to index the conditional
probability table, not to mention all of the peculiar ways that R overloads the extraction operator.
Negative selections are not allowed. I have almost certainly missed some combinations, and some
untested combinations might preform rather strangely. Undoubtedly somebody will come to rely
on that strangeness and it will never get fixed.

Factor variables do not easily handle the use of "+ " as a wildcard. To make this work, a construction
like factor (varstates, c(1:3,EVERY_STATE), labels=c("al","a2","a3","«")).

Internally R uses 1-based indexing and Netica uses 0-based indexing. RNetica makes the translation
inside of the C layer, so these function should be called with R-style 1-based indexing.

This documentation file is longer than War and Peace.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNodeProbs_bn()!®, SetNodeProbs_bn()'?,
GetNodeFuncState_bn()?°, SetNodeFuncState_bn()?!, GetNodeFuncReal_bn()??, SetNodeFuncReal_bn()?,

8nttp://norsys.com/onLineAPIManual/functions/GetNodeProbs_bn.html
Ynttp://norsys.com/onLineAPIManual/functions/SetNodeProbs_bn.html
2nttp://norsys.com/onLineAPIManual/functions/GetNodeFuncState_bn.html
2lnttp://norsys.com/onLineAPIManual/functions/SetNodeFuncState_bn.html
2nttp://norsys.com/onLineAPIManual/functions/GetNodeFuncReal_bn.html
Bhttp://norsys.com/onLineAPIManual/functions/SetNodeFuncReal_bn.html

46 Extract.NeticaNode

See Also

NeticaNode,NodeParents (),NodeInputNames (),NodeStates (),ParentStates(),
CPF, CPA

Examples

Setup
xnet <- CreateNetwork ("X")

A <- NewDiscreteNode (xnet, "A",c ("A1l","A2","A3","A4"))
Aalt <- NewDiscreteNode (xnet, "Aalt",c("Al","A2","A3","A4"))
B <- NewDiscreteNode (xnet,"B",c("B1","B2","B3"))

B2 <- NewDiscreteNode (xnet, "B2",c ("B1", "B2"))

Balt <- NewDiscreteNode (xnet, "Balt",c("B1","B2","B3"))
C2 <- NewDiscreteNode (xnet, "C2",c("C1","C2"))

C3 <- NewDiscreteNode (xnet, "C3",c("C1","C2","C3"))

C4 <- NewDiscreteNode (xnet,"C4",c("C1","C2","C3","C4"))
Cont <- NewContinuousNode (xnet, "Cont")

CC <- NewContinuousNode (xnet, "CC")

CCC <- NewContinuousNode (xnet, "CCC")

Tests for various setting modes.

Null before we set any probabilities anything
stopifnot (
all(is.na(C2[])), length(C2[]) == 2,

all(is.na(Cont[])), length(Cont[])==1

NodeProbs (C2) <- c(1,0)
stopifnot (
c2[]=="cCc1"
)
This 1s just a demonstration of the syntax, in practice
the expression NodeFinding(C2) <- "C2" is usually better.
C2[] <= "c2"
stopifnot (
NodeProbs (C2)==c (0, 1)
)

C3[] <= 3
stopifnot (
C3[] == "C3"

Setting value of continuous node
Cont[] <- 145.4
stopifnot (abs(Cont[] - 145.4) < .0001)

Setting value with probabilities
C2[] <= c(.3,.7)
stopifnot (sum(abs (NodeProbs (C2)-c(.3,.7))) < .0001)

Extract.NeticaNode

C3[] <= c(1,2,1)/4
stopifnot (sum(abs (NodeProbs (C3)-c(.25,.5,.25))) < .0001)

Automatic normalization

C2[] <- .25

stopifnot (abs (sum(NodeProbs (C2)-c(.25,.75))) < .0001)
C3[] <- c(1,1)/3

stopifnot (abs (sum(NodeProbs (C3)-1/3)) < .0001)

Now some one parent cases
AddLink (A, B)
AddLink (A, B2)

stopifnot (
nrow (B[])==NodeNumStates (A),
ncol (B[])==1+NodeNumStates (B),
nrow (B[[]])==NodeNumStates (A),
ncol (B[[1]1] odeNumStates()

)
)
all(is.na (B
B

[1[,2: (1+NodeNumStates (B))1)),
all(is.na(B[[

J]))

NodeProbs (B) <- normalize (matrix(1:12,4))
Browl <- B[1]
stopifnot (
nrow (Browl)==1,ncol (Browl)==4,
sum (abs (Browl[,2:4]-c(1,5,9)/15))<.00001
)
Browl2 <— B[1l:2]
stopifnot (
nrow (Browl2)==2,ncol (Browl2)==4,
sum (abs (Browl2[2,2:4]-c(2,6,10)/18))<.00001

Browd <— B["A4"]
stopifnot (
nrow (Brow4d)==1,ncol (Browd)==4,
sum (abs (Brow4d [,2:4]-c(1,2,3)/6))<.00001
)
Brow34 <- B[c("A3","Ad")]
stopifnot (
nrow (Brow34)==2,ncol (Brow34)==4,
abs (sum (Brow4[1,2:4]-c(3,7,11)/21))<.00001
)
Ball <— B["x"]
stopifnot (
nrow (Ball)==4,ncol (Ball)==4
)
Ball <- B[EVERY_STATE]
stopifnot (
nrow (Ball)==4,ncol (Ball)==4

48

Extract.NeticaNode

Brow24 <- B[data.frame (A=factor (c("A2","A4"),NodeStates (A)))]
stopifnot (

nrow (Brow24)==2,ncol (Brow24)==4,

sum (abs (Brow24[2,2:4]1-c(1,2,3)/6))<.00001

Set all rows to the same value.
B[] <- matrix(c(1,1,1)/3,1)
stopifnot (
abs (NodeProbs (B)-1/3)<.0001
)
B[EVERY_STATE] <- matrix(c(1,2,1)/4,1)
stopifnot (
abs (NodeProbs (B) [3,]1-c(.25,.5,.25))<.0001
)
B["*"] <- matrix(c(1,2,3)/6,1)
stopifnot (
abs (NodeProbs (B) [2,]-¢c(1/6,1/3,.5))<.0001

Setting to exact values

B2[1:2] <- "B1"

B2[3] <- "B2"

B2[4] <- "B2"

B2tab <- B2[]

stopifnot (
IsNodeDeterministic (B2),
nrow (B2tab)==4,ncol (B2tab)==2,

length(B2[[]]) == 4,
B2[[]] == c("B1","B1","B2","B2"),
as.integer (B2tab[,2]) == c(1,1,2,2)

)
Setting one value to non-deterministic changes the way the table is
displayed.
B2[2] <= c(.5,.5)
B2tab <- B2[]
stopifnot (
! IsNodeDeterministic (B2),
nrow (B2tab)==4,ncol (B2tab)==3,

sum (abs (B2tab[2,2:3]- c¢(.5,.5))) < .001,
B2tab[1l,2:3] == c(1,0),
B2[[3]] == c(0,1)

Self-normalizing setting

Not run:

This will generate an error because it is trying to set all four
configurations to the same value but it is given four values.
B2[] <- c¢(.1,.2,.3,.4)

End (Not run)

Extract.NeticaNode

B2[1:4] <= c(.1,.2,.3,.4)
stopifnot (

sum (abs (NodeProbs (B2) [,2]-c(.9,.8,.7,.6))) < .001
)
B2[1:2] <= .5 ## Set both values to the same thing
B2[3:4] <= c(.6,.7) ## set to normalizing probs
stopifnot (

sum (abs (NodeProbs (B2) [,2]-c (.5, .5,.4,.3))) < .001
)

Beware! This next form assumes you are setting the rows to the same
thing.

B2[3:4] <= c(.2,.8) ## Ambiguous instructions

stopifnot (

sum (abs (NodeProbs (B2) [,2]-c(.5,.5,.8,.8))) < .001
)
Using a matrix makes intent clear
B2[3:4] <- matrix(c(.2,.8),2) ## set to normalizing probs
stopifnot (
sum (abs (NodeProbs (B2) [,2]-c(.5,.5,.8,.2))) < .001

Data frame as value
First do a blank extraction to get general shape.
B2frame <- B2][]
Now manipulate it however
B2frame[,2:3] <- 1:8
And set it back
B2[] <- normalize (B2frame)
stopifnot (
sum (abs (NodeProbs (B2) [,1]1-¢c(1/6,2/8,3/10,4/12))) <.001

B2framel <-B2frame[B2frame$SA=="A3",]
B2framel[,2:3] <- c(4,6)/10
B2[] <- B2framel ## Only row 3 affected
stopifnot (
sum (abs (NodeProbs (B2) [,1]-c(1/6,2/8,4/10,4/12))) <.001

Continuous node with one discrete parent
AddLink (A, Cont) ##Notice how old value is replicated

stopifnot (
nrow (Cont[]) ==4, ncol(Cont[]) == 2,
length(Cont[[]]) == 4,

abs (Cont[][,2]-145.4) <.0001,
abs (Cont [[3]]-145.4) <.0001

)

AddLink (A, CC)

stopifnot (
nrow (CC[]) ==4, ncol(CCI[]) == 2,
is.na(CC[][,2])

Extract.NeticaNode

Cont[] <= 7
stopifnot (
abs (Cont[[]]1-7) <.0001
)
Cont[2] <= 3.2
stopifnot (
abs (Cont[[]]1-c(7,3.2,7,7)) <.0001

Cont[1:2] <= O
Cont[3:4] <= c(8,1)
stopifnot (
abs (Cont[[]]-c(0,0,8,1)) <.0001,
abs (Cont [3:4,drop=TRUE]-c(8,1)) < .0001

Two parent case
AddLink (A, C2)
AddLink (B, C2)

C2[] <= c(.5,.5)
stopifnot (
nrow (C2[1)

==12, ncol(C2[])==4,
sum (abs (C2[[]1]-

.5)) < .0001

AddLink (&, C4)
AddLink (B, C4)
stopifnot (
nrow (C4[])==12, ncol(C4[])==6,
all(is.na(C4[[11]))

NodeProbs (C4) <- normalize(array(1:48,c(4,3,4)))

Data Frame/matrix Selection

dfsel <- data.frame (A=factor(c("A2","A3"),levels=NodeStates (Ad)),
B=factor (c("B1","B3"), levels=NodeStates (B)))

C21.33 <- C4[dfsel]

stopifnot (
nrow (C21.33)==2, ncol(C21.33)==6,
C21.33[1,1] == "Ap2",
Cc21.33[2,2] == "B3",

abs (C21.33[1,3]1-2/80) < .0001,
abs (C21.33[2,4]1-23/116) < .0001

Extract.NeticaNode 51

dfselbak <- data.frame (B=factor(c("B3","B2"), levels=NodeStates (B)),
A=factor (c("Al1l","A4"),levels=NodeStates (A)))
C13.42 <- C4[dfselbak]

stopifnot (
nrow (C13.42)==2, ncol(Cl3.42)==0,
C13.42([1,1] == "Al",
Cl13.42[2,2] == "B2",

abs (C13.42[1,31-9/108) < .0001,
abs (C13.42([2,41-20/104) < .0001

C2[dfsel] <- matrix(c(.7,.6,.3,.4),2)
C2[dfselbak] <= c(.9,.1)

stopifnot (

sum(abs(c2([11[,1] - ¢(.5,.7,.5,.5, .5,.5,.5,.9, .9,.5,.6,.5))) < .0001

)

Test for error with using variables in selection inside of a
function.
testSel <- function(node,sell,sel2, val) {

localselvar <- data.frame(sell,sel?2)

names (localselvar) <- ParentNames (node)

node [localselvar]

node[localselvar]<-val

invisible (node)

testSel (C2, factor (c ("A2","A3"), levels=NodeStates (A)),
factor (c("B1","B3"), levels=NodeStates (B)),
matrix(c(.7,.6,.3,.4),2))

Array-like selection

stopifnot (
sum (abs (C4[[2,3]1]1-c(10,22,34,46)/112))<.0001,
sum (abs (C4[[B=2,A=4]]-c(8,20,32,44)/104))<.0001

Cl.23 <= C4[1,2:3]
stopifnot (
nrow (C1.23)==2, ncol(Cl.23)==6,
sum(abs (C1.23[,3] - c(5/92 ,9/108))) <.0001
)
C2[] <- .5
C2[1,2:3] <= .99
stopifnot (
sum(abs(C2([11[,1] - c(.5,.5,.5,.5, .99,.5,.5,.5, .99,.5,.5,.5))) < .0001

Cl.23 <= C4["Al1",c("B2","B3")]
stopifnot (
nrow (C1.23)==2, ncol(Cl.23)==06,
sum(abs (C1.23[,3] - c(5/92 ,9/108))) <.0001

52

c2[] <= .5
C2["A1",c("B2","B3")] <- .99
stopifnot (
sum(abs(C2[[11[,1] - ¢(.5,.5,.5,.5, .99,.5,.5,.5,
)
C34.12 <- C41[3:4,1:2]
stopifnot (
nrow (C34.12)==4, ncol(C34.12)==6,
sum(abs (C34.12[,3] - c(3/84,4/88, 7/100, 8/104)))
)
C2[] <= .5
C2[3:4,1:2] <= .99
stopifnot (
sum(abs(C2[[11[,1] - ¢(.5,.5,.99,.99, .5,.5,.99,
)
Wildcards
Cl. <- C4[1,EVERY_STATE]
stopifnot (
nrow (Cl.) == 3, ncol(Cl.)==6,
sum(abs(Cl1.[,3] -c(1/76, 5/92, 9/108))) < .0001
)
c2[] <-=.5
C2[1,EVERY_STATE] <- "C1"
stopifnot (
sum(abs(Cc2([11[,1] - c(1,.5,.5,.5, 1,.5,.5,.5, 1,
)
C.2 <- C4[EVERY_STATE, 2]
stopifnot (
nrow (C.2) == 4, ncol(C.2)==6,
sum(abs(C.2[,3] -c(5/92, 6/96, 7/100, 8/104))) <

)

C2[] <-.5

C2 [EVERY_STATE, 2] <-

stopifnot (
sum(abs(C2[[1]11[,1]

Cl' <_ C4["Al","*"]
stopifnot (

Lo Al

- c(.5,.5,.5,

nrow (Cl.) == 3, ncol(Cl.)==0,
sum(abs(Cl.[,3] -c(1/76, 5/92, 9/108)))

)

C2[] <-.5
C2["Al","*"] <_ "Cl"
stopifnot (

sum(abs (C2[[]1][,1]

C.2 <-— C4["*","B2"]

<

.5, 0,0,0,0, .5,.

.0001

Extract.NeticaNode

99,.5,.5,.5))) < .0001
<.0001
99, .5,.5,.5,.5))) < .0001
5,.5,.5))) < .0001
.0001
5,.5,.5))) < .0001
5,.5,.5))) < .0001

Extract.NeticaNode
stopifnot (
nrow (C.2) == 4, ncol(C.2)==6,
sum(abs(C.2[,3] -c(5/92, 6/96, 7/100, 8/104))) < .0001
)
C2[] <-.5
C2["«","B2"] <= "C2"
stopifnot (
sum(abs(c2([11[,1] - ¢(.5,.5,.5,.5, 0,0,0,0, .5,.5,.5,.5))) < .0001
)
Missing parent values
Cl. <- C4[1,]
stopifnot (
nrow (Cl.) == 3, ncol(Cl.)==6,
sum(abs (C1.[,3] -c(1/76, 5/92, 9/108))) < .0001
)
C2[] <-.5
C2[1,] <= "c1i"
stopifnot (
sum(abs(c2((11[,1] - ¢(1,.5,.5,.5, 1,.5,.5,.5, 1,.5,.5,.5))) < .0001
)
C.2 <= C41[,2]
stopifnot (
nrow (C.2) == 4, ncol(C.2)==0,
sum(abs(C.2[,3] -c(5/92, 6/96, 7/100, 8/104))) < .0001
)
C2[] <-.5
C2[,2] <= "c2"
stopifnot (
sum(abs(c2((11[(,1] - ¢(.5,.5,.5,.5, 0,0,0,0, .5,.5,.5,.5))) < .0001
)
Cl. <- C4[a=1]
stopifnot (
nrow (Cl.) == 3, ncol(Cl.)==6,
sum(abs(Cl.[,3] -c(1/76, 5/92, 9/108))) < .0001
)
c2[] <-=.5
c2[A=1] <- "c1"
stopifnot (
sum(abs(Cc2((11[,1] - ¢c(1,.5,.5,.5, 1,.5,.5,.5, 1,.5,.5,.5))) < .0001
)
C.2 <= C4[B="B2"]
stopifnot (
nrow (C.2) == 4, ncol(C.2)==6,
sum(abs (C.2[,3] -c(5/92, 6/96, 7/100, 8/104))) < .0001

)

C2[] <-.5
C2[B="B2"] <-
stopifnot (

Lol

53

54

Extract.NeticaNode

sum(abs(Cc2([]1][,1] - ¢(.5,.5,.5,.5, 0,0,0,0, .5,.5,.5,.5))) < .0001

Data frame as value

dfset <- data.frame (A=factor(c("A2","A3"), levels=NodeStates (A4)),
B=factor (c("B1","B3"), levels=NodeStates (B)),
Cc.Cl=c(1,0), C.C2=c(0,1))
C2[] <= .5
C2[] <- dfset
stopifnot (
sum(abs(c2([1]1[,1] - ¢(.5,1,.5,.5, .5,.5,.5,.5, .5,.5,0,.5))) < .0001

Continuous Child node
AddLink (B2, Cont)

stopifnot (
nrow (Cont [])==8, ncol(Cont[])==3,
sum (abs (Cont[[]]-c(0,0,8,1))) < .0001

AddLink (A, CCC)

AddLink (B, CCC)

stopifnot (
nrow (CCC[])==12, ncol(CCC[])==3,
all(is.na(CCC[I[11))

Cont[] <= 0

Cont[1,1] <= 1.1

Cont[2:3,2] <= c(2.2,3.2)

Cont ["A4"™,"s"] <- 4

Not run:

Can't set to multiple values when using % selection.
Cont ["A4","x"] <- c(4.1,4.2) ## Generates an error

End (Not run)

stopifnot (
sum (abs (Cont[[]]-c(1.1,0,0,4,0,2.2,3.2,4))) < .0001,
abs (Cont [["Al","B1"]]-1.1) <.0001,
sum (abs (Cont [[B=2,A=2:3]]1-c(2.2,3.2))) < .0001,
sum (abs (Cont [[A=4]] —-4)) < .0001

Set by integer count
12 rows in AxB combinations
for (i in 1:12) {
CCC[i] <- 1
Cc2[1i] <- i/100
}
stopifnot (
sum(abs (CCC[[]]-t(matrix(1:24,3,4)))) <.0001,
sum(abs(C2[[]1][,1]-t(matrix(1:24/100,3,4)))) <.001

FadeCPT 55

)
for (i in 1:12) {

stopifnot (
abs(CCcC[[i]] - i) <.0001,
abs(C2[[i]][1] - 1/100) <.0001

}

DeleteNetwork (xnet)

FadeCPT Fades a Netica Conditional Probability Table

Description

This function fades a Netica conditional probability table associated with a node (that is, it makes
it closer to uniform). This is used when learning conditional probabilities over time, so that newer
observations will have more weight than older ones.

Usage

FadeCPT (node, degree = 0.2)

Arguments
node A NeticaNode object.
degree A scalar value between 0 and 1 providing the amount of fading to be done. A
degree of 1 produces a uniform distribution and a degree of 0 leaves the CPT
unchanged.
Details

This is essentially an exponential filter, with 1-degree as the retained weight. Calling it once
with degree of 1 — d and again with degree 1 — f is equivalent to calling it once with degree 1 — df .

If prob are the current probabilities associated with a row of the CPT, and expr is the current
experience, then the new probabilities will be newprob = normalize (prob* exper =
(1-degree) + degree), and the new experience will be the normalization constant.

This funciton is often used together with LearnFindings to downweight old cases when the
conditional probabilities are thought to be changing slowly over time.

Value

This function returns the node object.

56 FadeCPT

Note

Frequently the degree is made time dependent. If dt is the time elapsed since the last observation,
the degree is frequently an expression like 1-expt (R, dt), where R is a constant less than 1
which controls how quickly the CPT is faded.

Author(s)
Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: FadeCPTable_bn()**

See Also

NodeExperience, NodeProbs, LearnFindings
Examples

aaa <- CreateNetwork ("AAA")
A <- NewDiscreteNode (aaa,paste ("A",1:5,sep=""),c("true", "false"))

for(i in l:length(d)) {

NodeProbs (A[[i]]) <- c(.8,.2)
NodeExperience (A[[1i]]) <- 10
}
deg <- .2

expected <- NodeProbs(A[[1]])*10*(1l-deg)+tdeg

FadeCPT(A[[1]], deg)

stopifnot (
sum (abs (NodeProbs (A[[1]]) —expected/sum (expected))) < .0001,
abs (NodeExperience (A[[1]]) —sum(expected)) < .001

Fading by deg then by deg2 is the same as fading by
1-(1-deg) x (1-deg2)

deg2 <- .3
FadeCPT (A[[1]],deg2)
FadeCPT (A[[2]], 1-(1-deg)x(1-deg2))
stopifnot (
sum (abs (NodeProbs (A[[1]]) - NodeProbs (A[[2]]))) < .0001

Fade by two time units.
lambda <- .8
FadeCPT (A[[3]],1-1lambda”2)

Xhttp://norsys.com/onLineAPIManual/functions/FadeCPTable_bn.html

FindingsProbability 57

Special cases
FadeCPT (A[[4]],0)
FadeCPT (A[[5]],1)

stopifnot (

sum (abs (NodeProbs (A[[4]]) -c(.8,.

sum (abs (NodeProbs (A[[5]]) -c(.5,.5))) < .0001
)

DeleteNetwork (aaa)

FindingsProbability
Finds the probability of the findings entered into a Netica network.

Description

This function assumes that the network has been compiled and that a number of findinds have
been entered. The function calculates the prior probability for the entered findings (that is, the
normalization constant of the Bayesian network).

Usage

FindingsProbability (net)

Arguments

net An active and compiled Bayesian Network.

Details

In the usual algorithms for propagating probabilities in a Bayesian network the probabilities are
passed unnormalized. When reporting the probabilities, a normalization constant is calculated.
This normalization constant is the probability of all of the findings that have been entered through
NodeFinding (). (See Almond, 1995, for details on the use of normalization constants as prob-
abilities of findings.)

It is not meaningful to call this function before the network has been compiled. Calling it before
findings have been entered will result in a value of 1. 0.

Value
A scalar real value representing the probability of the findings, or NA if the network was not found
or not compiled.

Note

Netica gives a warning about the interpretation if likelihood findings have been set (through NodeLikelihood ().
In this case, the value is perhaps better though of as a normalization constant.

58 GetNamedNetworks

Author(s)

Russell Almond

References

Almond, R. G. (1995) Graphical Belief Modeling. Chapman and Hall.

http://norsys.com/onLineAPIManual/index.html: FindingsProbability_bn()*

See Also

NeticaNode,NodeBeliefs (),EnterNegativeFinding(),RetractNodeFinding(),
NodeLikelihood()

Examples

EMSMMotif <- ReadNetworks (paste(library (help="RNetica") $path,
"sampleNets", "EMSMMotif.dne",
sep=.Platform$file.sep))

CompileNetwork (EMSMMotif)
norml <- FindingsProbability (EMSMMotif)
stopifnot (abs(norml-1) <.0001)

Find observable nodes
obs <- NetworkNodesInSet (EMSMMotif, "Observable")

NodeFinding (obs$Obslal) <- "Right"
NodeFinding (obs$Obsla2) <- "Wrong"

problr2w <- FindingsProbability (EMSMMotif)
stopifnot (problr2w < 1, problr2w > 0)

Clear it out and try again
RetractNetFindings (EMSMMotif)
NodeLikelihood (obs$Obs2a) <- c¢(.75,.75,.75)
prob75 <- FindingsProbability (EMSMMotif)
stopifnot (abs (prob75-.75) < .0001)

DeleteNetwork (EMSMMotif)

GetNamedNetworks Finds a Netica network (if it exists) for the name.

Bhttp://norsys.com/onLineAPIManual/functions/FindingsProbability_bn.html

GetNamedNetworks 59

Description

This searches through the currently open Netica networks and returns a Net i caBN object pointing
to the networks with the given names. If no network with the name is found NULL is returned
instead, so this provides a way to check whether a network exists.

Usage

GetNamedNetworks (namelist)

Arguments

namelist A character vector giving the name or names of the networks to be found.

Details

GetNamedNetworks () searches the list of network names looking for a network with the ap-
propriate name. If it is found, a handle to that network is returned as a Net i caBN object. If not,
NULL is returned.

Value

If namelist is of length 1, then a single Net i caBN object or NULL will be returned.

If namelist is of length greater than 1, then a list of the same length as namelist is returned.
Each element is a Net icaBN related to the corresponding name or NULL if the name does not
refer to a network.

Note

This function does a linear search through all networks, so it could be pretty slow if there are a large
number of networks open.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNthNet_bn()?®

See Also

CreateNetwork (), GetNthNetwork ()

http://norsys.com/onLineAPIManual/functions/GetNthNet_bn.html

60 GetNetworkAutoUpdate

Examples

netl <- CreateNetwork ("myNet")

Fetch the network we Jjust created by name.
net2 <- GetNamedNetworks ("myNet")
stopifnot (is (net2, "NeticaBN"))

stopifnot (as.character (netl)==as.character (net2))
stopifnot (netl==net2)

No network named "fish", this should return NULL
fish <- GetNamedNetworks ("fish")
stopifnot (all (sapply (fish,is.null)))

DeleteNetwork (net2)

GetNetworkAutoUpdate
Turns Netica automatic updating on or off for a network.

Description

Netica networks can either propagate the effects of new findings immediately, or they can delay
propagation until the user queries the network. These functions toggle the switch that controls the
autoupdate mechanism

Usage

GetNetworkAutoUpdate (net)
SetNetworkAutoUpdate (net, newautoupdate)
WithoutAutoUpdate (net, expr)

Arguments
net A NeticaBN object to be queried or changed.
newautoupdate
A logical values, TRUE to turn automatic updating on. A value NA produces an
error.
expr An R expresssion to be evaluated with automatica updating turned off.
Details

Automatic updating means that queries operate very quickly, however, if a large number of finding
are to be entered before the next query, they can slow the network down. These functions provide a
mechanism for controlling that.

GetNetworkAutoUpdate () returns the current status of the autoupdate flag. SetNetworkAutoUpdate ()
sets flag, but returns its current value (to make it easier to restore). The function WithoutAutoUpdate
provides a mechansim for turning updating off while performing a series of operations.

GetNetworkAutoUpdate 61

Value

GetNetworkAutoUpdate () and SetNetworkAutoUpdate both returns the current autoup-
date flage as a logical value.

WithoutAutoUpdate () returns the value of executing expr, unless executing expr results in
an error in which case it returns a try—error.
Note

Automatic updating makes a lot of sense when Netica is running under the GUI, but not so much
when it is running as an API. It is probably easiest to just set this to false all the time.

Author(s)

Russell Almond

References
http://norsys.com/onLineAPIManual/index.html: SetNetAutoUpdate_bn()*’, Get-
NetAutoUpdate_bn()28

See Also

NeticaBN, NodeBeliefs (), NodeFinding ()

Examples

autoNet <—- CreateNetwork ("AutomaticTest")
GetNetworkAutoUpdate (autoNet)

SetNetworkAutoUpdate (autoNet, FALSE)

stopifnot (!GetNetworkAutoUpdate (autoNet))
stopifnot (!SetNetworkAutoUpdate (autoNet, TRUE))
stopifnot (GetNetworkAutoUpdate (autoNet))

result <- TRUE
WithoutAutoUpdate (autoNet, result <<-GetNetworkAutoUpdate (autoNet))
stopifnot (!result)

DeleteNetwork (autoNet)

2Ihttp://norsys.com/onLineAPIManual/functions/SetNetAutoUpdate_bn.html
Bnttp://norsys.com/onLineAPIManual/functions/GetNetAutoUpdate_bn.html

62 GetNthNetwork

GetNthNetwork Fetch a Netica network by its position in the Netica list.

Description

Fetches networks according to an internal sequence list of networks maintained inside of Netica.
If the number passed is greater than the number of currently defined networks, this function will
return NULL

Usage

GetNthNetwork (n)

Arguments

n A vector of integers greater than 1.

Details

The primary use for this function is probably to loop through all open networks. As this function
will return NULL when there are no more networks, that can be used to terminate the loop.

Note that the sequence numbers can change, particularly after functions that open and close net-
works.

This is a wrapper for the Netica function GetNthNet_bn ().

Value

If n is of length 1, then a single Net i caBN object or NULL will be returned.

If n is of length greater than 1, then a list of the same length as n is returned. Each element is a
NeticaBN related or NULL if the number is greater than the number of open networks.
Note
The Netica shared library uses a zero-based reference (i.e., the first net is 0), but this function
subtracts 1 from the argument, so it uses a one-based reference system (the first net is 1).
Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNthNet_bn()*

Yhttp://norsys.com/onLineAPIManual/functions/GetNthNet_bn.html

HasNodeTable 63

See Also

CreateNetwork (), GetNamedNetworks ()

Examples

count <- 1

while (!is.null (net <- GetNthNetwork (count))) {
cat ("Network number ",count," is ",net,".\n")
count <- count +1

t

cat ("Found ", count-1," networks.\n")

HasNodeTable Tests to see if a Netica node has a conditional probability table.

Description

This function tests to see if a conditional probability table has been assigned to node. The function
returns two values, the first tests for existence of the table, the second tests for a complete table (no
NAs).

Usage

HasNodeTable (node)

Arguments

node An active Net i caNode whose conditional probability table is to be tested.

Details

This function returns two values. The first is true or false according to whether the conditional
probabilty table has been established, that is has NodeProbs () been set. The second value tests
to see whether the conditional probabilty table is complete, that is, does it have any NAs associated
with it.

In many cases, it is the second value that is of interest, so a1l (HasNodeTable (node) is often
a useful idiom.

Value
A logical vector with two elements. The first states whether or not the node has any of its conditional
probabilities set. The second tests whether or not the table has been completely specified.

Note

Generating incomplete tables is pretty hard to do in RNetica, a row must be deliberately set to NA.
However, a network read in from a file might have incomplete tables.

64 IDname

Author(s)
Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: HasNodeTable_bn()>°

See Also

NeticaNode, NodeParents (), NodeInputNames (), DeleteNodeTable ()

Examples

abl <- CreateNetwork ("AB1")

A <- NewDiscreteNode (abl, "A",c("Al","A2","A3"))
B <- NewDiscreteNode (abl, "B",c("B1","B2"))
AddLink (A, B)

##Nodes start undefined.
stopifnot (
HasNodeTable (A) ==c (FALSE, FALSE)

NodeProbs (A) <- ¢ (0,1,0)
stopifnot (
HasNodeTable (A) ==c (TRUE, TRUE)

for (node in NetworkAllNodes (abl)) {
if ('all (HasNodeTable (node))) {
cat ("Node ", node, " still needs a conditional probability table.\n")

}

DeleteNetwork (abl)

IDname Tests to see if a string is a valid as a Netica Identifier.

Description

The function is.IDname () returns a logical vector indicating whether or not each element of x
is a valid Netica identifier. The function is.IDname () attempts to massage the input value to
conform to the IDname rules.

0nttp://norsys.com/onLineAPIManual/functions/HasNodeTable_bn.html

IDname 65

Usage

is.IDname (x)
as.IDname (x,prefix="y")

Arguments
X A character vector of possible identifier names.
prefix A character scalar that provides an alphabetic prefix for names that start with an
illegal character.
Details

Netica identifiers (net names, node names, state names, and similar) are limited to 30 characters
which must be a valid letter, number of the character °_’. The first chacter must be a letter. The
function is. IDname () tests to see if a string conforms to these rules, and thus is a legal name.

The function as . IDname () attempts to coerce its argument into the IDname format by applying
the following transformations.

1. The argument is coerced into a character vector.

2. If any value begins with a nonalphabetic character, the pre fix argument is prepended to all
values.

b}

3. All non-alphanumeric characters are converted to °_’.

4. Each value is truncated to 30 characters in length.

Note that these rules guarentee that the result will conform to the IDname convention. They do not
guarentee that the resulting values will be unique. In particular, watch out for long names that differ
only in the last few characters.

Value

A logical vector of the same length of x.

Note

This is primarily a utility for doing argument checking inside of functions that require a Netica
IDname.

Author(s)
Russell Almond

References

http://norsys.com/onLineAPIManual/index.html

See Also

CreateNetwork (),NewDiscreteNode (),NodeStates (), NodeName (), NodeInputNames (),

66 is.active

Examples

stopifnot (
is.IDname (c ("aFish", "Wandal", "feed me", "fish_food", "lmore", "USS",
"al23456789012345678901234567890")) ==
c (TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE) ,
as.IDname (c ("aFish", "Wandal", "feed me","fish_food", "lmore", "USS",
"al23456789012345678901234567890")) ==
c("yaFish", "yWandal", "yfeed_me", "yfish_food", "ylmore","yUSs_",
"yal234567890123456789012345678")

is.active Check to see if a Netica network or node object is still valid.

Description

Both Net icaBN and Net i caNode objects contain embedded pointers into Netica’s memory. The
function is.active () checks to see that the corresponding Netica objetct still exists.

Usage

is.active (x)

Arguments

X A NeticaBN or NeticaNode object to test, or a list of such objects.

Details

Internally, both Net i caBN and Net i caNode objects contian pointers to the corresponding Net-
ica objects. The DeleteNetwork () and DeleteNodes () functions deletes the Netica objects
(and clears the pointers in the R objects). It is difficult to control when R objects are deleted,
especially if they are protected in data structures that are saved in the workspace. The function
is.active () is meant to check if the corresponding object is still valid. In most cases, RNetica
will give an error (or at least a warning) if an inactive object is supplied as an argument.

Note that the function StopNetica () should make all Net icaBN and Net icaNode objects
inactive. Thus, these objects cannot be saved from one R session to another, and should be recreated
when needed.

Value

The function is.active () returns TRUE if the argument still points to a network or node loaded
in Netica’s memory, and FALSE if that network or node has been deleted. It returns NA if the
argument is not a Net i caBN or Net icaNode.

If x is a list, then a logical vector of the same length of x is returned with is.active () recur-
sivelly applied to each one.

is.discrete 67

Author(s)
Russell Almond

References

http://norsys.com/onLineAPIManual/index.html,http://lib.stat.cmu.edu/
R/CRAN/doc/manuals/R-exts.html

See Also

StopNetica (), NeticaBN, DeleteNetwork (), NeticaNode, DeleteNodes ()

Examples

anet <- CreateNetwork ("ActiveNet")
stopifnot (is.active (anet))

anodes <- NewContinuousNode (anet,paste ("ActiveNode",1:2,sep=""))
stopifnot (all(is.active (anodes)))

inode <- DeleteNodes (anodes[[1]])
stopifnot (!is.active (anodes[[1]]))
stopifnot (!is.active (inode))
stopifnot (is.active (anodes[[2]]))

DeleteNetwork (anet)

stopifnot (!is.active (anet))

Node gets deleted along with network
stopifnot ('any(is.active (anodes)))

is.discrete Determines whether a Netica node is discrete or continuous.

Description
A NeticaNode objet can take on either a discrete set of values or an arbitrary real value. These
functions determine which type of node this is.
Usage
is.discrete (node)
is.continuous (node)
Arguments

node A NeticaNode object to test.

68 is.discrete

Details

While in the Netica GUI, one first creates a node and then determines whether it will be discrete or
continuous, in the API this is determined at the time of creation (by calling NewCont inuousNode ()
or NewDiscreteNode (). These functions determine which type of node the given node is.

Note that setting NodeLevels can make a continuous node behave like a discrete one and vise
versa. For continuous nodes, the levels are cut points for getting a discrete state from the node. For
a discrete node, the levels are real value representing the midpoint of the node.

Value

TRUE or FALSE depedning on whether a node is discrete or continuous.

Note
Currently, this function does not actually look at the internal Netica state, but rather looks at the
attribute "node_discrete" which is set when the node is created.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNodeType_bn()*!, SetNodeLevels_bn()*?

See Also

NewDiscreteNode (), NewContinuousNode (),NeticaNode, NodelLevels (),NodeStates ()

Examples

netx <- CreateNetwork ("netx")

bnode <- NewDiscreteNode (netx, "bool",c("True", "False"))
stopifnot (is.discrete (bnode))
stopifnot (!is.continuous (bnode))

rnode <- NewContinuousNode (netx, "real")
stopifnot (!is.discrete (rnode))

stopifnot (is.continuous (rnode))

DeleteNetwork (netx)

3lnttp: //norsys.com/onLineAPIManual/functions/GetNodeType_bn.html
¥http://norsys.com/onLineAPIManual/functions/SetNodeLevels_bn.html

is.NodeRelated 69

is.NodeRelated Computes topological properities of a Net ica network.

Description

The function i s .NodeRelated () teststo seeif relation holds between nodel and node?2.
The function GetRelatedNodes creates a list of all nodes that satisfy the relation with any
node in nodelist.

Usage
is.NodeRelated (nodel, node2, relation = "connected")
GetRelatedNodes (nodelist, relation = "connected")
Arguments
nodel An active Net i caNode whose relationship will be tested.
node?2 Another active Net i caNode whose relationship will be tested.
relation A character scalar which should be one of the values: "parents", "children",
"ancestors", "descendents", "connected"”, "markov_blanket", or "d_connected".
Singular forms and modifiers are also allowed, see details.
nodelist A list of active Net i caNode whose relationship will be tested.
Details

These functions are useful for testing the topology of a network. Each of the functions offers
measure related to the network. The is.NodeRelated () form tests the relationship between
nodel and node2. The function GetRelatedNodes () returns a list of any nodes for which
the relationship holds with any of the elements of nodelist. The plural and singular forms of the
relationships can be used with both functions.

"parent", "parents". True if nodel is a parent of node?2, or returns a list of parents of the
nodes in nodelist.

"ancestor", "ancestors". True if there is a directed (parent to child) path from nodel to
node?2, or returns a list of ancestors of the nodes in nodelist.

"child", "children". True if nodel is a child of node2, or returns a list of children of the
nodes in nodelist.

"decendent", "decendents". True if there is a directed (parent to child) path from node?2
to nodel, or returns a list of decendents of the nodes in nodelist.

"connected". True if there is a chain (unordered path) from nodel to node2, or returns a list
of all nodes connected to any of the nodes in nodelist.

"markov_blanket". The Markov blanket of nodeset is the a set of nodes that renders the
nodes in nodeset conditionally independent of the remaining nodes given the ones in the blanket.
The simple form returns true if node?2 is in the Markov blanket of nodel.

70 is.NodeRelated

"d_connected". The rules for d-connection are somewhat complex (see Pearl, 1988), but ba-
sically nodel and node?2 are d-connected if they are not independent given the current findings.
The function returns true if nodel and node?2 are d-connected or a list of all nodes that are d-
connected to the nodes in nodelist.

In addition, the relation can be modified in the GetRelatedNodes () form by adding one or
more modifiers to the main relation separated by commas. The two that are useful in RNetica are:

"include_evidence_nodes". For the "markov_boundary" and "d_connected" re-
lations indicates whether nodes with findings should be included in the result (they would normally
not be included in the result).

"exclude_self". Forthe "ancestors", "descendents", "connected", and "d_connected"
relations, the elements of nodelist are not initially added to the result.

Value
For is.NodeRelated () TRUE or FALSE, or NA if one of the input nodes was not active.

For GetNodeRelated () alist of Net icaNode objects which have the target relationship with
one of the nodes in nodelist. There may be duplicates in this list.

Note

GetRelatedNodes () uses GetRelatedNodesMult_bn (),notGetRelatedNode_bn (),

but that should not present any serious issues. Also, it always passes an empty list for the related_nodes
arguments. Consequently, the "append", "union", "intersection", and "subtract"

options don’t make much sense. This is only a minor limitation as R provides similar functions.

Author(s)
Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: IsNodeRelated_bn()”, GetRe-
latedNodes_bn()**, GetRelatedNodesMult_bn()>

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems. Morgan—Kaufmann.

See Also

NeticaNode, NodeParents (), NodeChildren (), AddLink ()

Examples

testnet <- CreateNetwork ("ABCDEFG")
A D

4 N /N

#H#4# C F -G

Bnttp://norsys.com/onLineAPIManual/functions/IsNodeRelated_bn.html
3nttp://norsys.com/onLineAPIManual/functions/GetRelatedNodes_bn.html
Bhttp://norsys.com/onLineAPIManual/functions/GetRelatedNodesMult_bn.html

IsNodeDeterministic 71

#H4# / N\ /

B E

A <- NewDiscreteNode (testnet, "A"
<- NewDiscreteNode (testnet, "B"
<— NewDiscreteNode (testnet, "C"
<- NewDiscreteNode (testnet, "D"

NewDiscreteNode (testnet, "E"

<- NewDiscreteNode (testnet, "F"

<- NewDiscreteNode (testnet, "G"

M MEOQW
AN
|

AddLink (A, C)
AddLink (B, C)

AddLink (C, D)
AddLink (C,E)

AddLink (D, F)
AddLink (E, F)

AddLink (F, G)

stopifnot (
is.NodeRelated(A,C, "parent"),
is.NodeRelated (D,C, "child"),
is.NodeRelated (C, G, "ancestor"),
is.NodeRelated(E,C, "descendent"),
is.NodeRelated (A,B), ## Same as connected
is.NodeRelated (D, E, "markov_blanket"),
lis.NodeRelated (A,B, "d_connected"), ## No common ancestor
is.NodeRelated (D, ,"d_connected") ## Common ancestor

stopifnot (
setequal (GetRelatedNodes
setequal (GetRelatedNodes

("parents"),list (D,E)),
(
setequal (GetRelatedNodes
(
(

F,

C,"children"),1list (D,E)),

D, "descendents"),list (D,F,G)),
setequal (GetRelatedNodes (E,
E,
D

(

(

(

(B, "ancestors"),1list (E,C,A,B)),
setequal (GetRelatedNodes (

(

(

(D

(A

"ancestors, exclude_self"),

GetRelatedNodes (D, "ancestors, exclude_self")),
setequal (GetRelatedNodes (A),1list (A,B,C,D,E,F,G)), ##All nodes connected
, "markov_blanket"),1list (C,E,F)),
,"d_connected"),list(A,C,D,E,F,G))

setequal (GetRelatedNodes
setequal (GetRelatedNodes

DeleteNetwork (testnet)

IsNodeDeterministic
Determines if a node in a Netica Network is deterministic or not.

72 IsNodeDeterministic

Description

A node in a Bayesian network is all of its conditional probabilities are determined by its parent
states, that is they are all deterministic.

Usage

IsNodeDeterministic (node)

Arguments

node An active Net i caNode whose conditional probability table is to be tested.

Details

For discrete nodes, this returns TRUE if all the conditional probabilities are zero or one. It returns
FALSE otherwise.

Value

TRUE if the conditional probability table for node is deterministic, FALSE otherwise. If the node
is not active, or there is otherwise an error it returns NA.

Author(s)
Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: IsNodeDeterministic_bn()3¢

See Also

NeticaNode, NodeParents (), NodeInputNames (), NodeStates ()

Examples

ab <- CreateNetwork ("AB")

A <- NewDiscreteNode (ab, "A",c ("A1","A2","A3"))
B <- NewDiscreteNode (ab, "B",c("B1","B2"))
AddLink (A, B)

##Undefined node is not deterministic.
stopifnot (! IsNodeDeterministic (A))

NodeProbs (A) <- c¢(0,1,0)
stopifnot (IsNodeDeterministic (4))

NodeProbs (A) <- c¢(1/3,1/3,1/3)
stopifnot (! IsNodeDeterministic (A))

3nttp://norsys.com/onLineAPIManual/functions/IsNodeDeterministic_bn.html

JointProbability 73

NodeProbs (B) <- rbind(c(0,1), c(0,1), c(1,0))
stopifnot (IsNodeDeterministic (B))

DeleteNetwork (ab)

JointProbability Calculates the joint probability over several network nodes.

Description

The Bayesian network, once compiled, gives the joint probability of all nodes in the network given
the findings. This function caluclates the joint probability over all of the nodes its argument and
returns it as an array.

Usage

JointProbability (nodelist)

Arguments

nodelist A list of active Net i caNode objects from the same network.

Details

This calculates the joint probability distribution over two, three or more variables in the same net-
work. Calculating the joint probability is easy if all of the nodes are in the same clique, so one might
want to use the function MakeCliqueNode (nodelist) before compiling the network to force
the nodes in the same clique. The function can calculate the joint probability table for nodes not in
the same clique, it just takes longer.

Value
A multidimensional array given the probabilities of the various configurations. The dimensions cor-
respond to the variables in node 11 st, and the dimnames of the result are the result of sapply (nodelist, NodeStates

Note

One possible use for the joint probability function is to get a joint likelihood over the footprint
nodes in an evidence model (see Almond et al, 1999; Almond & Mislevy, 1999). However, Netica
currently does not support intserting a likelihood on a clique, just on a single node.

Author(s)

Russell Almond

74 JunctionTreeReport

References

Almond, R. G. & Mislevy, R. J. (1999) Graphical models and computerized adaptive testing. Ap-
plied Psychological Measurement, 23, 223-238.

Almond, R., Herskovits, E., Mislevy, R. J., & Steinberg, L. S. (1999). Transfer of information
between system and evidence models. In Artificial Intelligence and Statistics 99, Proceedings (pp.
181-186). Morgan-Kauphman

http://norsys.com/onLineAPIManual/index.html: JointProbability_bn()*’

See Also

NeticaNode,NodeBeliefs () MakeCliqueNode (),AddLink (), JunctionTreeReport (),
MostProbableConfig ()

Examples

EMSMMotif <- ReadNetworks (paste(library (help="RNetica") $path,
"sampleNets", "EMSMMotif.dne",
sep=.Platform$file.sep))

Force Skills 1 and 2 into the same clique.

Skillsl2 <- NetworkFindNode (EMSMMotif,c("Skilll","Skill2"))

cn <- MakeCligqueNode (Skillsl2)

CompileNetwork (EMSMMotif)
Prior Joint probability.
prior <- JointProbability(Skillsl2)

stopifnot (abs(sum(prior)-1) <.0001)

Find observable nodes
obs <- NetworkNodesInSet (EMSMMotif, "Observable")

NodeFinding (obs$0Obslal) <- "Right"
NodeFinding (obs$0Obsla2) <- "Wrong"

post <- JointProbability (GetClique (cn))
stopifnot (abs(sum(post)-1) <.0001)

DeleteNetwork (EMSMMotif)

JunctionTreeReport Produces a report about the junction tree from a compiled Netica net-
work.

nttp://norsys.com/onLineAPIManual/functions/JointProbability_bn.html

JunctionTreeReport 75

Description

The process of compilation transforms the network into a junction tree — a tree of cliques in the origi-
nal graph — that is more convenient computationally. The function JunctionTreeReport (net)
produces a report on the junction tree. The function NetworkCompiledSize (net) reports on
the size of the compiled network. The network must be compiled (CompileNetwork (net)
must be called) before these functions are called.

Usage
JunctionTreeReport (net)
NetworkCompiledSize (net)

Arguments

net An active and compiled Net i caBN object.

Value

For JunctionTreeReport () acharacter vector giving the report, one element per line.

For NetworkCompiledSize () ascalar value giving the size of the network.

Note

Currently, no attempt is made to parse the report, which has a fairly well structured format. Future
versions may produce a report object instead.

Author(s)
Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: ReportJunctionTree_bn()38, Size-
CompiledNet_bn()**

See Also

NeticaBN, CompileNetwork (),EliminationOrder (),

Examples

EMSMMotif <- ReadNetworks (paste(library (help="RNetica") $path,
"sampleNets", "EMSMMotif.dne",
sep=.Platform$file.sep))

CompileNetwork (EMSMMotif)

JunctionTreeReport (EMSMMotif)

3¥nttp://norsys.com/onLineAPIManual/functions/ReportJunctionTree_bn.html
Mnttp://norsys.com/onLineAPIManual/functions/SizeCompiledNet_bn.html

76 LearnCases

NetworkCompiledSize (EMSMMotif)

DeleteNetwork (EMSMMotif)

LearnCases Learn Conditional Probabilitiy Tables from a Netica Case Stream

Description

This function updates the conditional probabilities associated with the given list of nodes based on
the findings associated with that node and its parents found in the caseSt ream argument, which
should be a NeticaCaseStream object.

Usage

LearnCases (caseStream, nodelist, weight = 1)

Arguments

caseStream This should be a NeticaCaseStream object, or else an object which can be
made into a case stream: either a pathname for a case file, or a data frame of
the format described in MemoryCaseStream. The case stream can be either
opened or closed. If closed it is reopened before updating. In either case, it is
closed at the end of the function. Warning, due to a bug in Netica, memory
streams are not working and should not be used with Netica API 5.04 or earlier.
See below.

nodelist A list of active Net i caNode objects that reference the conditional probability
tables to be updated.

weight A multiplier for the weights of the cases in terms of number of observations.
Negative weights unlearn previously learned cases.

Details

This is like calling the function LearnFindings repeatedly with the values of the nodes set to
each of the case rows in turn. Thus, it updates the conditional probability tables for each nodes based
on observed counts in the case files, taking the current probability and the NodeExperience as
the prior distribution.

If the case stream has a column NumCa ses, then the weight assigned to Row j is weight *NumCases [J].
If the case stream does not have such a column, then it is treated as if each column has weight 1.
(Among other purposes, this allows case data to be stored in a compact format where all of the
possible cases are enumerated along with a count of repetitions.) Note that negative weights will

unlearn cases.

LearnCases 77

Value

This function returns the Net icaCaseStream used in the analysis. This might have either been
passed directly as the caseStream argument, or created from the value of the caseStream
argument. In either case, the stream is closed at the end of the function.

Netica Bugs

In version 5.04 of the Netica API, there is a problem with using Memory Streams that seems to
affect the functions LearnCases and LearnCPTs. Until this problem is fixed, most uses of
Memory Streams will require file streams instead. Write the case file using write.CaseFile,
and then create a file stream using CaseFileStream.

Note

To learn without using the current probabilities as priors, call DeleteNodeTable first.

Author(s)
Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: ReviseCPTsByCaseFile_bn()*

See Also

NodeExperience, NodeProbs,NodeFinding, FadeCPT, LearnFindings,DeleteNodeTable,
LearnCPTs

Examples

abb <- CreateNetwork ("ABB")

A <- NewDiscreteNode (abb, "A",c ("A1","A2"))
Bl <- NewDiscreteNode (abb,"B1",c("B1","B2"))
B2 <- NewDiscreteNode (abb, "B2",c("B1","B2"))

AddLink (A,B1)
AddLink (A, B2)

A[] <= c(.5,.5)
NodeExperience (A) <- 10

B1["A1"] <- c(.8,.2)
B1["A2"] <- c(.2,.8)
B2["A1"] <- c(.8,.2)
B2["A2"] <- c(.2,.8)
NodeExperience (Bl) <- c¢(10,10)
NodeExperience (B2) <- c¢(10,10)

Onttp://norsys.com/onLineAPIManual/functions/ReviseCPTsByCaseFile_bn.html

78 LearnCPTs

casesabb <-
data.frame (A=c ("A1","Al","Al","ALl","ALl","A2","A2", "A2", "A2","A2"),

Bl=c("Bl","Bl","Bl","B2","B2", "B2", "B2","B2","B1", "B1"),
B2=c("B1","B1","B1","B1", "B2","B2","B2", "B2", "B2", "B1"))

LearnCases (casesabb, list (A,Bl))

There is currently a bug in Netica, so that this function does not

work with memory streams. As a work around, use proper file streams

instead.

outfile <- tempfile("casesabb",fileext=".cas")
write.CaseFile (casesabb,outfile)
LearnCases (outfile, list (A,B1))

Probs for A & Bl modified, but B2 left alone
stopifnot (

NodeExperience (A)==20,

NodeExperience (Bl)==c(15,15),
NodeExperience (B2)==c(10,10),

sum (abs (NodeProbs (A) - .5)) < .001,
sum(abs (B1[["A1"]] - 11,4)/15)) < .001,
sum (abs (B1[["A2"] - 4,11)/15)) < .001,

((] c(
(((] c(
sum (abs (B2[["A1"]] - ¢(8,2)/10)) < .001,
sum(abs (B2 [["A2"]] c(2,8)/10)) < .001

DeleteNetwork (abb)

LearnCPTs Learn Conditional Probability Tables with Missing Data.

Description

This function updates the conditional probabilities associated with the given list of nodes based on
the findings associated with that node and its parents found in the caseSt ream argument, which
should be a NeticaCaseStream object. Unlike LearnCases, these algorithms can support
cases with missing or latent variables.

Usage

LearnCPTs (caseStream, nodelist, method = "COUNTING", maxIters = 1000L, maxTol = le-

Arguments

caseStream This should be a NeticaCaseStream object, or else an object which can be
made into a case stream: either a pathname for a case file, or a data frame of
the format described in MemoryCaseStream. The case stream can be either
opened or closed. If closed it is reopened before updating. In either case, it is

LearnCPTs 79

closed at the end of the function. Warning, due to a bug in Netica, memory
streams are not working and should not be used with Netica API 5.04 or earlier.

See below.

nodelist A list of active Net i caNode objects that reference the conditional probability
tables to be updated.

method A character scalar giving the name of the method to be used. This should be one
of “GRADIENT”, “EM” or “COUNTING?” (the default). See details.

maxIters An integer scalar giving the maximum number of interations for the EM and

gradient decent algorithms.

maxTol An real scalar giving the difference in log-likelihood required before the EM or
gradient decent algorithms to be considered converged.

weight A multiplier for the weights of the cases in terms of number of observations.
Negative weights unlearn previously learned cases.

Details

This function attempts to update the conditional probability tables of the nodes named in nodelist
using the data referenced in the first argument. Three different algorithms are available: Counting,
EM and Gradient Decent. The Counting algorithm cannot handle cases with missing data or latent
variables in the model. The method argument determines which method is used.

The Counting algorithm is the same as the one used in LearnCases. Cases where either the parent
or the child variable is missing are ignored when updating the conditional probablity table for the
node, that is the neither affect the NodeExperience or the NodeProbs. As a consequence,
models with latent variables cannot be fit with this algorithm.

The EM is similar to the Counting algorithms, but does more intelligent things with missing ob-
servations (particularly, missing parent variables). In particular, the complete data case of the EM
algorithm is the same as the counting algorithm.

The Gradient Decent algorithm is an alternative iterative algorithm. According to the Netica docu-
mentation it is similar to back propagation in neural networks. Again acording to Netica, it is faster
than EM, but more likely to find a local maxima. It appears not to respect prior information about
the conditional probability tables, and it sets the node experience to —Inf.

Both EM and Gradient Decent are an iterative algorithms. For these algorithms maxIters
gives the maximum number of iterations, and maxTol gives the convergence criteria (required dif-
ference in log likelihood). These parameters are ignored for the Counting algorithm. Currently,
Netica gives no indication of whether the algorithm terminated by achieving convergence (differ-
ence in log likelihood less than maxTol) or by exceeding maxIters. Norsys says they will fix
this in an upcoming release.

If the case stream has a column NumCases, then the weight assigned to Row j isweight xNumCases [J].
If the case stream does not have such a column, then it is treated as if each column has weight 1.
(Among other purposes, this allows case data to be stored in a compact format where all of the
possible cases are enumerated along with a count of repetitions.) Note that negative weights will

unlearn cases.

Value

Currently, NULL is returned. In the future, an object containing details about the convergence will
be returned.

80 LearnCPTs

Netica Bugs

In version 5.04 of the Netica API, there is no indication of whether the call to LearnCPTs_bn
has converged (terminated because the difference in log likelihood is less than maxTol) or not
(terminated because the number of iterations exceeded maxIters). Norsys has indicated that they
will add this functionality to a later release.

In version 5.04 of the Netica API, there is a problem with using Memory Streams that seems to
affect the functions LearnCases and LearnCPTs. Until this problem is fixed, most uses of
Memory Streams will require file streams instead. Write the case file using write.CaseFile,
and then create a file stream using CaseFileStream.

Note

The LearnCPTs function will not update the conditional probability table of a node unless NodeExperience
has been set for that node. Instead it will issue a warning and update the other nodes.

Author(s)
Russell G. Almond

References

http://norsys.com/onLineAPIManual/index.html: LearnCPTS_bn()*!, NewLearner_bn()*?,
SetLearnerMaxTol_bn()*?, SetLearnerMaxTol_bn()**

See Also

NodeExperience,NodeProbs,NodeFinding, FadeCPT,RetractNetFindings, LearnFindings
LearnCases

Examples

abb <- CreateNetwork ("ABB")

A <- NewDiscreteNode (abb, "A",c ("A1","A2"))
Bl <- NewDiscreteNode (abb,"B1",c("B1","B2"))
B2 <- NewDiscreteNode (abb, "B2",c("B1","B2"))

AddLink (A, B1)
AddLink (A, B2)

A[] <= c(.5,.5)
NodeExperience (A) <- 10

BI["A1"] <- c(.8,.2)
BL["A2"] <- c(.2,.8)
B2["A1"] <- c(.8,.2)
B2["A2"] <- c(.2,.8)

4http://norsys.com/onLineAPIManual/functions/LearnCPTS_bn.html
“nttp://norsys.com/onLineAPIManual/functions/NewLearner_bn.html
Bhnttp://norsys.com/onLineAPIManual/functions/SetLearnerMaxTol_bn.html
“nttp://norsys.com/onLineAPIManual/functions/SetLearnerMaxTol_bn.html

LearnCPTs

NodeExperience (Bl) <- c¢(10,10)

NodeExperience (B2) <- c¢(10,10)

casesabb <-

data.frame (A=c ("A1","Al","A1l","Al","ALl", "A2", "A2","A2" "A2","A2"),

Bl=c("B1","B1","B1","B2","B2", "B2","B2", "B2","BR1","B1L"),
B2=c("B1","B1","B1","B1","B2","B2", "B2", "B2", "B2","B1"))

LearnCPTs (casesabb, list (A,Bl))

There is currently a bug in Netica, so that this function does not

work with memory streams. As a work around, use proper file streams

instead.

outfile <- tempfile("casesabb",fileext=".cas")
write.CaseFile (casesabb,outfile)

LearnCPTs (outfile, list (A,Bl))

Probs for A & Bl modified, but B2 left alone

stopifnot (
NodeExperience (A)==20,
NodeExperience (Bl)==c(15,15),
NodeExperience (B2)==c(10,10),
sum (abs (NodeProbs (A) - .5)) < .001,
sum(abs (B1[["A1"]] - c(11,4)/15)) < .001,
sum(abs (B1[["A2"]] - c(4,11)/15)) < .001,
sum(abs (B2[["A1"]] - c(8,2)/10)) < .001,
sum (abs (B2 [["A2"]] - ¢c(2,8)/10)) < .001

Missing Data
NAs in parents affect both parent and child.
casesabbl <-
data. frame (A:C (llAl ll, llAl ll, IINA", llAl ", "Al "’ IIA2 ", "A2 "’ "AZ ll’ "AZ ll, "A2 ll) ,
Bl:c("Bl", "Bl", "Bl", "BZ", "BZH, "BZH, "B2 ", HNA", llBl", "Bl") ,
B2=c("B1","B1","B1l","NA","B2","B2", "B2", "B2", "B2","B1"))

outfilel <- tempfile("casesabbl", fileext=".cas")
write.CaseFile (casesabbl,outfilel)
LearnCPTs (outfilel, list (A,B1,B2))

stopifnot (
NodeExperience (A)==29,
NodeExperience (Bl)==c(19,19),
NodeExperience (B2)==c(13,15),
sum (abs (NodeProbs (A) - c(14,15)/29)) < .001,
sum(abs (B1[["A1"]] - c(13,6)/19)) < .001,
sum(abs (B1[["A2"]] - c(6,13)/19)) < .001,
sum (abs (B2[["A1"]] c(10,3)/13)) < .001,
sum(abs (B2[["A2"]] - c(3,12)/15)) < .001

DeleteNetwork (abb)

FHARFHAEHF AR AR F SRR

82

LearnCPTs

Start again with EM learning.

abb <- CreateNetwork ("ABB")

A <- NewDiscreteNode (abb, "A",c ("A1","A2"))
Bl <- NewDiscreteNode (abb, "B1",c("B1","B2"))
B2 <- NewDiscreteNode (abb, "B2",c("B1","B2"))

AddLink (A, B1)
AddLink (A, B2)

A[] <= c(.5,.5)
NodeExperience (A) <- 10

BI["A1"] <- c(.8,.2)
BL["A2"] <- c(.2,.8)
B2["A1"] <- c(.8,.2)
B2["A2"] <- c(.2,.8)

NodeExperience (Bl) <- ¢ (10,10)

NodeExperience (B2) <- c¢(10,10)

casesabb <-

data.frame (A=c ("A1","A1","A1l","ALl","ALl","A2","A2","A2","A2",""A2"),

Bl=c("B1","B1","B1","B2","B2","B2", "B2","B2", "B1", "B1"),
B2=c("B1","B1","B1","B1","B2","B2", "B2", "B2", "B2", "B1"))

LearnCPTs (casesabb, list (A,Bl),method="EM")

There is currently a bug in Netica, so that this function does not

work with memory streams. As a work around, use proper file streams

instead.

outfile <- tempfile("casesabb",fileext=".cas")
write.CaseFile (casesabb,outfile)
LearnCPTs (outfile,list (A,Bl),method="EM")

Complete data, this should look identical to the counting case.
Note that NodeExperience is no longer an integer
stopifnot (

abs (NodeExperience (A)-20) < .001,

sum (abs (NodeExperience (B1)-c(15,15))) < .001,

NodeExperience (B2)==c(10,10),

sum (abs (NodeProbs (A) - .5)) < .001,
sum(abs (B1[["A1"]] - c(11,4)/15)) < .001,
sum(abs (B1[["A2"]] - c(4,11)/15)) < .001,
sum(abs (B2[["A1"]] - c(8,2)/10)) < .001,
sum (abs (B2 [["A2"]] - ¢(2,8)/10)) < .001

Missing Data
EM deals more intelligently with missing data.
casesabbl <-
data‘ frame (A:C ("Al ll, llAl ll, IINA", 'lAl ", 'lAl ", IIA2 ", "AZ "’ "A2 "’ "AZ ll, "AZ ll) ,
Bl:c("Bl", "Bl", "Bl", "B2 "’ "B2 "’ "B2 IV, "B2 ", "NA", lVBl", "Bl") ,
B2=C(IIB1", llBlll, llBlll, IINA"’ IIBZ ll’ lIBZ ll’ IIB2 ll, IIBZ Il, llB2 Il, llBlll))

LearnCPTs

outfilel <- tempfile("casesabbl",fileext=".cas")
write.CaseFile (casesabbl,outfilel)
LearnCPTs (outfilel,list (A,Bl,B2),method="EM")

stopifnot (
NodeExperience (A) >29,
NodeExperience (B1)>c(19,19),
NodeExperience (B2)>c(13,15)

EM can handle complete latent variable case.
casesabb2 <-
data. frame (BI:C(HBIH, "Bl", "Bl", "BZ", "BZ", "BZ", "BZ "’ "NA", lVBlll, llBl") ,
B2=C(IIB1"’ llBlll’ "Blll’ "NA", llB2ll, "BZ", IIB2 ll, IIB2 Il, llB2 ll, llBlll))

outfile2 <- tempfile("casesabb2",fileext=".cas")
write.CaseFile (casesabbl,outfile?2)
LearnCPTs (outfilel,list (A,Bl1,B2),method="EM")

stopifnot (
NodeExperience (A) >39,
NodeExperience (Bl) >c(24,23),
NodeExperience (B2)>c (14, 20)

DeleteNetwork (abb)

FHEHEHF AR
One more time with Gradient Decent learning.

abb <- CreateNetwork ("ABB")

A <- NewDiscreteNode (abb, "A",c ("A1l","A2"))
Bl <- NewDiscreteNode (abb,"B1",c("B1","B2"))
B2 <- NewDiscreteNode (abb, "B2",c("B1","B2"))

AddLink (A,B1)
AddLink (A, B2)

A[] <= c(.5,.5)
NodeExperience (A) <- 10

B1["A1"] <- c(.8,.2)
B1["A2"] <- c(.2,.8)
B2["A1"] <- c(.8,.2)
B2["A2"] <- c(.2,.8)
NodeExperience (Bl) <- ¢ (10,10)
NodeExperience (B2) <- c¢(10,10)

casesabb <-
data. frame (A:C ("Al ", "Al ", |lAl ", "Al ", "Al ", "A2 ", "AZ "’ "A2 "’ "AZ ", "AZ ") ,
Bl:c("Bl", "Bl", "Bl", "B2 "’ "BZ "’ "B2 ", "B2 ", "B2 ", "Bl", "Bl") ,
B2=C(IIB1", “Bl", "Bl", "Bl", "BZ "’ "BZ ||’ "B2 ", "B2 Il, ||B2 Il, "Bl"))
LearnCPTs (casesabb, list (A,Bl),method="GRADIENT")

83

LearnCPTs

There is currently a bug in Netica, so that this function does not
work with memory streams. As a work around, use proper file streams
instead.

outfile <- tempfile("casesabb",fileext=".cas")
write.CaseFile (casesabb,outfile)
LearnCPTs (outfile, list (A,Bl),method="GRADIENT")

Complete data, this should look identical to the counting case.
Note that NodeExperience is no longer used, and the posterior
distribution no longer reflects the prior.

stopifnot (
NodeExperience (B2)==c(10,10),
sum (abs (NodeProbs (A) - .5)) < .001,
sum(abs (B1[["Al1"]] - c(3,2)/5)) < .001,
sum (abs (B1[["A2"]] - c(2,3)/5)) < .001,
sum(abs (B2[["A1"]] - c(8,2)/10)) < .001,
sum (abs (B2 [["A2"]] c(2,8)/10)) < .001

Gradient algorithm sets experience to -infinity, so need to reset.
NodeExperience (A) <- 10

NodeExperience (Bl) <- c(10,10)

NodeExperience (B2) <- ¢ (10,10)

Missing Data
GRADIENT deals more intelligently with missing data.
casesabbl <-
data. frame (Azc (HAl ", "Al 'l, HNA", "Al ", "Al ", "AZ ", "AZ ", "AZ", "AZ "’ "AZ ") ,
Bl=c("B1","B1","B1l","B2","B2", "B2","B2", "NA", "B1", "B1"),
B2:c("B1", "Bl", "Blll’ "NA", "B2 ll, IIB2 ll, IIB2 ll, IIB2 ", llB2 ll, llBl'l))

outfilel <- tempfile("casesabbl",fileext=".cas")
write.CaseFile (casesabbl,outfilel)
LearnCPTs (outfilel,list (A,Bl,B2), method="GRADIENT")

Gradient algorithm sets experience to —-infinity, so need to reset.
NodeExperience (A) <- 10

NodeExperience (B1l) <- c¢(10,10)

NodeExperience (B2) <- ¢ (10,10)

GRADIENT can handle complete latent variable case.
casesabb2 <-
data. frame (Bl:C("Bl", "Bl", "Bl", "B2 "’ "B2 ", "B2 IV, "B2 ", "NA", lVBl", "Bl") ,
B2=C(HB1", "Blll, "Bl", "NA"’ IIBZ ll’ "B2 l', llB2 'l’ llB2 ", "B2 ", 'lBl ll))
outfile2 <- tempfile("casesabb2",fileext=".cas")
write.CaseFile (casesabbl,outfile2)

LearnCPTs (outfilel, list (A,Bl,B2),method="GRADIENT")

DeleteNetwork (abb)

LearnFindings 85

LearnFindings Learn Netica conditional probabilities from findings.

Description

This function updates the conditional probabilities associated with the given list of nodes based on
the findings associated with that node and its parents. Before calling this function the findings to be
learned should be set using NodeFinding.

Usage
LearnFindings (nodes, weight = 1)
Arguments
nodes A list of active Net i caNode objects that reference the conditional probability
tables to be updated.
weight The weight of the current observation in terms of number of observations. Neg-
ative weights unlearn previously learned cases.
Details
For the purposes of this function, Netica regards the probabilities in Row j of the CPT for each
selected node as having an independent Dirichlet distribution with parameters (a;1,...,a;x) =
n;(pj1,-..,pjKx) where p;i is the probability associated with State & in Row j and n; is the expe-

rience associated with Row j.

If LearnFindings is called on a node which is currently instantiated to State £ and whose
parents are currently instantiated to the configuration which selects Row j of the table, then n; =
n;+weight and a’, = a;,+weight with all other values remaining the same. The new conditional
probabilities are p;, = a’y /n'.

The funciton FadeCPT is often used between calls to LearnFindings to downweight old cases
when the conditional probabilities are thought to be changing slowly over time.

Value

This returns the list of nodes whose conditional probability tables have been modified.

Note

Do not confuse this function with NodeFinding. NodeFinding instantiates a node and updates
all of the other beliefs associated with a node to reflect the new evidence. LearnFindings
incorporates the current case (the currently instantiated set of findings) into the CPTs for the nodes.

The LearnFindings function will not update the conditional probability table of a node unless
NodeExperience has been set for that node. Instead it will issue a warning and update the other
nodes.

86 LearnFindings

Author(s)
Russell G. Almond

References

http://norsys.com/onLineAPIManual/index.html: ReviseCPTsByFindings_bn()*

See Also

NodeExperience,NodeProbs,NodeFinding, FadeCPT,RetractNetFindings, LearnCases,
LearnCPTs

Examples

abb <- CreateNetwork ("ABB")

A <- NewDiscreteNode (abb, "A",c ("A1l","A2"))
Bl <- NewDiscreteNode (abb, "B1",c("B1","B2"))
B2 <- NewDiscreteNode (abb, "B2",c("B1","B2"))

AddLink (A, B1)
AddLink (A, B2)

A[] <= c¢(.5,.5)
NodeExperience (A) <- 10

B1["A1"] <- c(.8,.2)
B1["A2"] <- c(.2,.8)
B2["A1"] <- c(.8,.2)
B2["A2"] <- c(.2,.8)
NodeExperience (B1l) <- c¢(10,10)
NodeExperience (B2) <- c¢(10,10)

First Case

NodeFinding (A) <- "AL"
NodeFinding (B1) <- "B1"
NodeFinding (B2) <- "B2"

LearnFindings (list (A,B1l))
Probs for A & Bl modified, but B2 left alone
stopifnot (

NodeExperience (A)==11,
NodeExperience (Bl)==c(11,10),
NodeExperience (B2)==c(10,10),

sum (abs (NodeProbs (A) - c(6,5)/11)) < .001,
sum(abs (B1[["A1"]] - < (9,2)/11)) < .001,
sum(abs (B1[["A2"]] c(2,8)/10)) < .001,
sum(abs (B2[["A1"]] - c(8,2)/10)) < .001,
sum (abs (B2 [["A2"]] - ¢(2,8)/10)) < .001

)

$http://norsys.com/onLineAPIManual/functions/ReviseCPTsByFindings_bn.html

MakeCliqueNode

Second Case

RetractNetFindings (abb)
NodeFinding (A) <- "A2"
NodeFinding (B1l) <- "B1"
NodeFinding (B2) <- "B1"

LearnFindings (list (A,Bl))

Probs for A & Bl modified, but B2

stopifnot (
NodeExperience (A)==12,
NodeExperience (Bl)==c(11,11),
NodeExperience (B2)==c(10,10),
sum (abs (NodeProbs (A) - c(6)/12)
sum(abs (B1[["A1"]] - c(9,2)/11)
sum(abs (B1[["A2"]] - c(3,8)/11)
sum(abs (B2[["Al1"]] - c(8,2)/10))
sum(abs (B2[["A2"]] - c(2,8)/10))

Retract Case 2
LearnFindings (list (A,B1),-1)

AN N AN N

Back to where we were before Case

stopifnot (
NodeExperience (A)==11,

NodeExperience (Bl)==c(11,10),
NodeExperience (B2)= c(lO,lO),

sum (abs (NodeProbs (A) — c(5)/11)
sum(abs (BL[["AL1"]] - c(9,2)/11)
sum (abs (B1[["A2"]] - c(2,8)/10))
sum(abs (B2[["A1"]] - c(8,2)/10))
sum(abs (B2[["A2"]] - c(2,8)/10))

DeleteNetwork (abb)

left alone

<

.001,

.001,
.001,
.001,
.001

<

.001,

.001,
.001,
.001,
.001

87

MakeCliqueNode
clique.

Forces a collection of nodes in a Netica network to be in the same

Description

When a junction tree is compiled, if the nodes are in the same clique, it is easier to calculate their
joint probability. The function MakeCliqueNode (nodelist) forces the nodes in nodelist

by making a special one state clique node with all of the nodes in nodelist as a parent.

Usage

MakeCliqueNode (nodelist)

88 MakeCliqueNode

is.CliqueNode (x)
GetClique (cliquenode)

Arguments
nodelist A list of active Net i caNode objects from the same network.
X An object to be tested to see if it is a clique node.

cliquenode A CliqueNode to be queried.

Details

It is substantially easier to calculate the joint probability of a number of nodes if they are all in the
same clique (see JointProbability (nodelist). If it is known that such a query will be
common, the analyst can take steps to force the nodes into the same clique if required. The Student
Model/Evidence Model algorithm of Almond and Mislevy (1999) also requires that the student
model variables that are referenced in an evidence model all be in the same clique (although this
algorithm is not currently supported by Netica).

A node and its parents is always a clique or a subset of a clique in the junction tree (see CompileNetwork ()
or JunctionTreeReport ()). This function forces nodes into the same clique by creating a new
CliqueNode and making all of the nodes in nodelist parents of the new node.

The C1liqueNode is asubclass of Net i caNode (formally, the classis ¢ ("CliqueNode", "NeticaNode")).
It has a number of special features. It’s name is always “Clique” followed by a number. It only has

one state. And it has a special "clique" attiribute which records the nodelist used to create

it. The function is.CliqueNode () tests a node to see if it is a clique node, and the function

GetClique (node) retrieves the nodelist. (This should not be set manually).

The CliqueNode objects should, for the most part, behave like regular nodes. However, it is
almost certainly a mistake to try and set findings on a C1igqueNode.

Value

The function MakeCliqueNode (nodelist) returns a new CliqueNode object whose par-
ents are the variables in nodelist. This behaves in most respects like an ordinary node, but it
would almost certainly be a mistake to try and enter findings for this node. In particular, deleting the
clique node will no longer constrain its parents to be in the same clique (although other connections
in the network may cause the nodes to be placed in the same clique).

The function is.CliqueNode (x) returns a logical value which is true if x is a clique node.

The function GetClique (node) returns the nodelist used to create the clique node.

Note

Clique nodes only last for the R session that was used to create them. After that, they will appear
like ordinary nodes. They will still be present in the newtwork, but the special "clique™" attribute
will be lost.

Currently Netica only allows virutal evidence at the node level (NodeLikelihood ()). I'm lop-
pying to get Netica to support it at the clique level as well. At which point, this function becomes
extremely useful.

MakeCliqueNode 89

Author(s)

Russell Almond

References

Almond, R. G. & Mislevy, R. J. (1999) Graphical models and computerized adaptive testing. Ap-
plied Psychological Measurement, 23, 223-238.

Almond, R., Herskovits, E., Mislevy, R. J., & Steinberg, L. S. (1999). Transfer of information
between system and evidence models. In Artificial Intelligence and Statistics 99, Proceedings (pp.
181-186). Morgan-Kauphman

http://norsys.com/onLineAPIManual/index.html: See the NeticaEx function FormCliqueWith
is the documentation for JointProbability_bn()*®

See Also

NeticaNode, JointProbability (), AddLink (), JunctionTreeReport ()

Examples

EMSMSystem <- ReadNetworks (paste (library (help="RNetica") $path,
"sampleNets", "System.dne",
sep=.Platform$file.sep))

CompileNetwork (EMSMSystem)

Note that Skilll and Skill2 are in different cliques

JunctionTreeReport (EMSMSystem)

Skillsl2 <- NetworkFindNode (EMSMSystem,c("Skill1l","Skill2"))
cn <- MakeCliqueNode (Skillsl2)
cnclique <- GetClique (cn)

stopifnot (

is.CliqueNode (cn),
setequal (sapply (cnclique, NodeName) , sapply (Skillsl2, NodeName))

CompileNetwork (EMSMSystem)

Note that Skilll and Skill2 are in different cliques
JunctionTreeReport (EMSMSystem)

DeleteNodes (cn) ## This clears the clique.

DeleteNetwork (EMSMSystem)

4nttp://norsys.com/onLineAPIManual/functions/JointProbability_bn.html

90 MemoryCaseStream

MemoryCaseStream A stream of cases for reading/writing Netica from memory

Description

This object is subclass of Net icaCaseStream so it is a wrapper around a Netica stream which
is used to read/write cases. In this subclass, the case stream is assocaited with a memory buffer that
corresponds to an R data.frame object. The function MemoryStreamContents accesses
the contents as a data frame.

Usage

MemoryCaseStream (data.frame, label=deparse (substitute (data.frame)))
is.MemoryCaseStream(x)
getCaseStreamDataFrameName (stream)

Arguments

data.frame A data frame in which columns correspond to Netica nodes, and rows corre-
spond to cases. See details.

label A name for the stream object.

stream A NeticaCaseStream object.

X A object whose type is to be determined.
Details

A Netica case file has a format that very much resembles the output of write.table. The first
row is a header row, which contains the names of the variables, the second and subsequent rows con-
tain a set of findings: an assignment of values to the nodes indicated in the columns. There are no
row numbers, and the separator and missing value codes are the values of CaseFileDelimiter (),
and CaseFileMissingCode () respectively.

In addition to columns representing variables, two special columns are allowed. The column named
“IDnum”, if present should contain integers which correspond to ID numbers for the cases (this
correspond to the id argument of WriteFindings). The column named “NumCases” should
contain number values and this allows rows to be differentially weighted (this correspond to the
freqgargument of WriteFindings).

A simple way to convert a data frame into a set of cases for use with various Netica functions
that use cases would be to write the data frame to a file of the proper format, and then create a
CaseFileStream on the just written file. The MemoryCaseSt ream shortcuts that process by
writing the data frame to a memory buffer and then creating a stream around the memory buffer.
Like the CaseFileStream, the MemoryCaseStreamis a subclass of NeticaCaseStream
and follows the same conventions.

The function MemoryCaseStream opens a new memory stream using data.frame as the
source. If data.frame is NULL a new memory stream for writing is created. The function
CloseCaseStream closes an open case stream (and is harmless if the stream is already closed.

MemoryCaseStream 91

Although RNetica tries to close open case streams when they are garbage collected, users should not

count on this behavior and should close them manually. Also be aware that all case streams are au-

tomatically closed when R is closes or RNetica is unloaded. The function isCaseStreamOpen

tests to see if the stream is open or closed. The function OpenCaseStream if called on a closed
MemoryCaseStream will reopen the stream in Netica using the current value of MemoryStreamContents
as the source. (If called on an open stream it will do nothing but issue a warning).

The function getCaseStreamDataFrameName provides the value of 1abel when the stream
was created.

Value

The function OpenMemoryCaseStream returns a new, open CaseFileStream object.

The functions is.MemoryCaseStream returns a logical value indicating whether or not the
argument is a CaseFileStream.

The function getCaseStreamDataFrameName returns the value of 1abel used when the
stream was created, usually this is the name of the data . frame argument.

Netica Bugs

In version 5.04 of the Netica API, there is a problem with using Memory Streams that seems to
affect the functions LearnCases and LearnCPTs. Until this problem is fixed, most uses of
Memory Streams will require file streams instead. Write the case file using write.CaseFile,
and then create a file stream using CaseFileStream.

Note

MemoryCaseStreams are most useful for small to medium size data frames. Larger data frames
are probably better handled through case files.

Internally, a weak reference system is used to keep a list of Netica stream objects which need to
be closed when RNetica is unloaded. Stream objects should also be forced closed when garbage
collected. The weak reference system is somewhat experimental, so well designed code should
manually close the streams when the program is through with it.

Stream objects are fragile, and will not survive saving and restoring an R session. However, the
object retains information about itself, so that calling OpenCaseStream on the saved object,
should reopen the stream. Note that any position information will be lost.

Author(s)
Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: NewMemoryStream_ns()47, http:
//homepage.stat.uiowa.edu/~luke/R/references/weakfinex.html

“Thttp://norsys.com/onLineAPIManual/functions/NewMemoryStream_ns.html

92 MemoryCaseStream

See Also

CaseFileDelimiter,CaseFileMissingCode,WriteFindings, ReadFindings,MemoryStreamContent

Examples

abc <- CreateNetwork ("ABC")

A <- NewDiscreteNode (abc, "A",c ("AL1","A2","A3","A4"))
B <- NewDiscreteNode (abc, "B",c ("B1","B2","B3"))

C <- NewDiscreteNode (abc, "C",c("C1","C2"))

AddLink (A, B)
AddLink (A, C)
AddLink (B, C)

This is the file written in CaseFileStream help.

casefile <- paste(library (help="RNetica") $path,
"testData", "abctestcases.cas",
sep=.Platform$file.sep)

CaseFileDelimiter ("\t")

CaseFileMissingCode ("x")

cases <— read.CaseFile(casefile)

memstream <- MemoryCaseStream (cases)

##Case 1
memstream <- ReadFindings(list (A,B,C),memstream, "FIRST")
stopifnot (NodeFinding (A) == "Al",

NodeFinding (B) == "B1",

NodeFinding (C) == "C1",

getCaseStreamLastId (memstream)==1001,

abs (getCaseStreamLastFreq(memstream)-1.0) <.0001)
##Case 2
memstream <- ReadFindings(list (A,B,C),memstream, "NEXT")
stopifnot (NodeFinding (A) == "A2",

NodeFinding (B) == "B2",

NodeFinding (C) == "C2",

getCaseStreamlLastId (memstream)==1002,

abs (getCaseStreamLastFreq(memstream)-2.0) <.0001)
##Case 3
memstream <- ReadFindings (list (A,B,C),memstream, "NEXT")
stopifnot (NodeFinding (A) == "A3",

NodeFinding (B) == "B3",

NodeFinding (C) == "@NO FINDING",

getCaseStreamLastId (memstream)==1003,

abs (getCaseStreamLastFreq (memstream)-1.0) <.0001)
EOF

memstream <- ReadFindings(list (A,B,C),memstream, "NEXT")

MemoryStreamContents 93

stopifnot (is.na(getCaseStreamPos (memstream)))

##Clean Up
CloseCaseStream (memstream)
DeleteNetwork (abc)

MemoryStreamContents
Access the contents of a MemoryCaseStream

Description
This function returns the contents of a MemoryCaseStream’s internal buffer asa data. frame.
Alternatively, it sets the contents of the buffer to a given data frame.

Usage

MemoryStreamContents (stream)
MemoryStreamContents (stream) <- value

Arguments
stream A MemoryCaseStream object whose contents is to be access.
value Either a data frame giving the new value (see details), or else NULL.
Details

A set of cases for a Netica network corresponds to a data . frame. The columns represent nodes in
the graph, and the values in that particular column correspond to findings for that node: a particular
instantiation for that state, with a value of NA if the state of that node is unknown.

In addition to columns representing variables, two special columns are allowed. The column named
“IDnum”, if present should contain integers which correspond to ID numbers for the cases (this
correspond to the id argument of WriteFindings). The column named “NumCases” should
contain number values and this allows rows to be differentially weighted (this correspond to the
freqgargument of WriteFindings).

A MemoryCaseStream contains an R data frame object written out in string form. This func-
tion converts between the internal string object and the data frame representation. When called as
MemoryStreamContents (stream) it reads the current value of the stream and converts it
to a data frame. When called as setter function, it converts the value into a string and focuses the
MemoryCaseStream object on this string.

Setting the contents to NULL creates a new empty stream buffer inside of the stream object. This is
useful for creating a blank buffer for writing cases.

The code MemoryCaseSt ream object maintains a cached copy of the data frame associated with
the memory stream. Calling the function in either the setter or getter form updates that cache.

94 MemoryStreamContents

Calling this function when the stream is closed, will access the cached copy. In the case of the
setter form, this will updated the cached value, and if the stream is reopened, it will focus on the
new cached value. Note that if the stream is closed before MemorySt reamContents is called,
then the value returned will be the cached value created when MemoryStreamContents was
last called, or when the stream is opened.

Value
A data frame which corresponds to the contents of the stream buffer, or NULL if the stream buffer
is empty.

Note

The cached value of the stream can be accessed with the expression attr (stream, "Case_Stream_DataFrame").
While it is almost certainly a mistake to set this value directly, there may be situations (e.g., avoiding

duplicating the data frame when the stream is essentially open for reading only) where it is useful.

On the other hand, there may be situations where it is useful to read the cached value without forcing

a reread of the memory buffer.

Author(s)
Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: SetStreamContents_ns()*3,

See Also
CaseFileDelimiter,CaseFileMissingCode,WriteFindings, ReadFindings,MemoryCaseStreanmn,

NeticaCaseStream

Examples

casefile <- paste(library (help="RNetica") Spath,
"testData", "abctestcases.cas",
sep=.Platform$file.sep)

CaseFileDelimiter ("\t")

CaseFileMissingCode ("x")

cases <— read.CaseFile(casefile)

memstream <- MemoryCaseStream (cases)

Should be the same as cases
MemoryStreamContents (memstream)

MemoryStreamContents (memstream) <- cases

CloseCaseStream (memstream) ## Don't forget to read off the value

#nttp://norsys.com/onLineAPTManual/functions/SetStreamContents_ns.html

MostProbableConfig 95

first i1f needed before closing.
stopifnot (!isCaseStreamOpen (memstream))
This should return the cached value.

MemoryStreamContents (memstream)

Will clear stream when next open
MemoryStreamContents (memstream) <- NULL

OpenCaseStream (memstream)
stopifnot (is.null (MemoryStreamContents (memstream)))

CloseCaseStream (memstream)

MostProbableConfig Finds the configuration of the nodes most likel to have lead to observed
findings.

Description

Findings a set of values for each of the nodes in nodelist such that the probability of that value
set is highest given the state of any findings entered into the network. This is sometimes called the
“Most Probable Explanation” for the findings.

Usage

MostProbableConfig (net,nth = 0)

Arguments

net An active and compiled Net i caBN.

nth Leave this at its default value of zero, it is for future expansion.
Details

The most probable configuration of the nodes in the Bayesian network is the set of values for each of
the nodes in the network which have the highest joint probability. This may or may not be thee same
as setting the value of each node to the value that maximizes its NodeBeliefs (). Pearl (1988)
describes a special max-propagation algorithm which can calculate the most likely configuration of
nodes in a Bayesian network. This function runs that algorithm. The probability that is maximized
is the posterior probability given the findings.

Note that this produces a configuration over all of the nodes in the network, not just the nodes
in some particular set. The Netica documentation suggests running AbsorbNodes () over the
unnecssary nodes first. Another possibility (if the set of interesting nodes is small) is to call
JointProbability () on the affected nodes and then find the max of that.

96 MostProbableConfig

Value

A character vector whose names are the names of the nodes in the network (see NetworkAl1Nodes (net))
and whose values are the names of the states that maximize the posterior probabiity given the find-
ings.

Warning

The documentation for the netica function MostProbableConﬁg_bn()49 states that likelihood find-
ings (NodeLikelihood ()) are not handled properly in MostProbableConfig (). Seems to
indicate that this works properly, but some caution is still advised.

Note

The Bayesian network literature also discusses algorithms for the 2nd, 3rd, 4th, etc. most likely
findings. These algorithms are slightly more difficult to implement, but are possible on future plans
for the Netica API, as it offers the nth argument to the function MostProbableConfig_bn()*. At
this point in time, it is an error to set nth to anything but 0.

Author(s)
Russell Almond

References
Pearl, J. (1988) Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann.
http://norsys.com/onLineAPIManual/index.html: MostProbableConfig_bn()*!

See Also

NeticaBN, NodeBeliefs (), EnterNegativeFinding (), RetractNodeFinding(),
NodeFinding () JointProbability (), FindingsProbability ()

Examples

EMSMMotif <- ReadNetworks (paste (library (help="RNetica") $path,
"sampleNets", "EMSMMotif.dne",
sep=.Platform$file.sep))

CompileNetwork (EMSMMotif)
obs <- NetworkNodesInSet (EMSMMotif, "Observable")
prof <- NetworkNodesInSet (EMSMMotif, "Proficiency")

NodeFinding (obs$Obslal) <- "Right"
NodeFinding (obs$0bsla2) <- "Wrong"
NodeFinding (obs$Obslbl) <- "Right"

“nttp://norsys.com/onLineAPIManual/functions/MostProbableConfig_bn.html
Onttp://norsys.com/onLineAPIManual/functions/MostProbableConfig_bn.html
SIhttp://norsys.com/onLineAPIManual/functions/MostProbableConfig_bn.html

NeticaBN 97

NodeFinding (obs$0bslb2) <- "Wrong"
mpe <- MostProbableConfig (EMSMMotif)

Observed values should be set at their findings level.

stopifnot (
mpe$Obslal == "Right",
mpe$Obsla2 == "Wrong",
mpe$Obslbl == "Right",
mpe$Obslb2 == "Wrong"

MPE for just proficiency variables.
mpe [names (prof)]

DeleteNetwork (EMSMMotif)

NeticaBN An object referencing a Bayesian network in Netica.

Description

This object is returned by various RNetica functions which create or find network objects, and
contain handles to the Bayesian network. A NeticaBN object represents an active network. The
function is.active () tests whether the network is still loaded into Netica’s memory.

Usage

is.NeticaBN (x)

S3 method for class 'NeticaBN'
toString(x, ...)

S3 method for class 'NeticaBN'

print(x, ...)
S3 method for class 'NeticaBN'
Ops (el, e2)
el == e2
el != e2
Arguments
X The object to print or test
Other arguments to print () or toString ()
el A NeticaBN object to test.

e2 A NeticaBN object to test.

98 NeticaBN

Details

This is an object of class Net i caBN. It consists of a name, and an invisible handle to a Netica net-
work. The function is.active () tests the state of that handle and returns FALSE if the network
is no longer in active memory (usually because of a call to DeleteNetwork ()). The printed rep-
resentation depends on whether or not it is active (inactive nodes printas "<Deleted Network: Name >").

For active networks, the equality test tests to see if both object point to the same object in Netica
memory. Not that the name of the network is embedded in the object implementation and may get
out of sync with the network, so the printed representations may be unequal even if it points to the
same network. For inactive networks, the objects are compared using the cached names.

Value

For toString () astring. The function print () is usually called for its side effects.

The function is.NeticaBN () returns a logical scalar depending on whether or not its argument
isaNeticaBN.

The function Ops .Net icaBN () returns a logical value dending on whether the objects are equal.

Note

Internally, the Net i caBN objects are character strings with extra attributes. So as . character (net)
will return the name of the network.

Note that if a Net i caBN object is stored in an R object, and the network is subsquently renamed
(with a call to the set method of NetworkName), the old object may persist with the wrong name.
This may result in a situation where the printed names of the objects are different but net 1==net?2
returns true. This can be fixed with the code NetworkName (net) <- NetworkName (net).

Net icaBN objects are all rendered inactive when StopNetica () is called, therefore they do not
persist across R sessions. Generally speaking, the network should be saved, using WriteNetworks ()
and then reloaded in the new session using ReadNetworks (). When a network is saved or loaded
the "Filename" attribute is set, to provide a mechanism for storing the filename across R ses-
sions.

Author(s)
Russell Almond

References
http://norsys.com/onLineAPTurl/index.html: GetNetUserData_bn()*?, SetNetUser-
Data_bn()>? (these are used to maintain the back pointers to the R object).

See Also

CreateNetwork (),DeleteNetwork (), GetNamedNetworks () ,NetworkName (),is.active (),
NetworkAllNodes (), WriteNetworks (), GetNetworkFileName ()

2nttp://norsys.com/onLineAPIManual/functions/GetNetUserData_bn.html
Bhttp://norsys.com/onLineAPIManual/functions/SetNetUserData_bn.html

NeticaCaseStream 99

Examples

netl <- CreateNetwork ("aNet")
stopifnot (is.NeticaBN(netl))
stopifnot (is.active (netl))

stopifnot (as.character (netl)=="aNet")

net?2 <- GetNamedNetworks ("aNet")
stopifnot (as.character (net2)=="aNet")
stopifnot (netl==net2)

NetworkName (netl) <- "Unused"

stopifnot (netl==net2)

Warning: The following expression is true!
as.character (netl) != as.character (net2)

netd <- DeleteNetwork (netl)
stopifnot (!is.active(netl))
stopifnot (!is.active (net2))

stopifnot (as.character (netd)=="Unused")
stopifnot (netd == netl)

Warning: The following expression is true!
netl != net2

NeticaCaseStream A stream of cases for reading/writing Netica findings

Description

This object is a wrapper around a Netica stream which is used to read/write cases—sets of findings
entered into a Netica network. There are two subclasses: CaseFileStreamand MemoryCaseStream.
The function ReadFindings reads the findings from the stream and the function WriteFindings
writes them out.

Usage

OpenCaseStream(oldstream)
CloseCaseStream(stream)

S3 method for class 'NeticaCaseStream'
toString(x,...)

S3 method for class 'NeticaCaseStream'
print(x,...)

is.NeticaCaseStream(x)

isCaseStreamOpen (stream)

getCaseStreamPos (stream)
getCaseStreamLastId (stream)
getCaseStreamlLastFreq (stream)

100 NeticaCaseStream

Arguments
oldstream A previously closed Net icaCaseStream object.
stream A NeticaCaseStream object.
X A object to be printed or whose type is to be determined.
Other arguments to t oSt ring. These are ignored.
Details

A NeticaCaseStreamobjectis an R wrapper around a Netica stream object. There are two spe-
cial cases: CaseFileStream objects are streams focused on a case file, and MemoryCaseStream
objects are streams focused on a hunk of memory corresponding to an R data frame object.

Although the function WriteFindings always appends a new case to the end of a file (and hence
does not need to keep the stream object open between calls), the function ReadFindings will
read (by default) sequentially from the cases in the stream, and hence the stream needs to be kept
open between calls.

The functions CaseFileStreamand MemoryCaseSt ream create new streams and open them.
The function OpenCaseSt ream will reopen a previously closed stream, and will issue a warning
if the stream is already open. The function CloseCaseStream closes an open case stream (and
is harmless if the stream is already closed). Although RNetica tries to close open case streams
when they are garbage collected, users should not count on this behavior and should close them
manually. Also be aware that all case streams are automatically closed when R is closes or RNetica
is unloaded. The function isCaseStreamOpen tests to see if the stream is open or closed.
The function WithOpenCaseStream executes an arbitrary R expression in a context where the
stream is open, and then closed afterwards.

Netica internally keeps track of the current position of the stream when it is read or written. The
functions getCaseStreamPos, GetCaseStreamLastIdand getCaseStreamLastFreq
get information about the position in the file, the user generated id number and the frequency/weight
assigned to the case at the time the stream was last read or written. In particular, the function
ReadFindings returns a Net icaCaseStream object, which should be queried to find the ID
and Frequencies read from the stream. When ReadFindings reaches the end of the stream, the
value of getCaseStreamPos (stream) will be NA.

See CaseFileStream and MemoryCaseStream for specific details about these screen types.

Value

The functions OpenCaseStream and CloseCaseStream both return their argument, which
should be a NeticaCaseStream.

The function toString.CaseStream returns a string providing information about the source
and status its argument.

The functions is.NeticaCaseStream and isCaseStreamOpen both return logical values
indicating whether or not the condition holds. The latter function returns NA if its argument is not a
NeticaCaseStream.

The function getCaseStreamPos returns a scalar integer values giving the position of the last
record read from or written to the stream. The position is an integer corresponding to the number

NeticaCaseStream 101

of characters that have been read in the stream. If an attempt has been made to read past the end of
the stream, this value will be NA.

The function getCaseStreamLastId is a user specified integer associated with the case last
read from or written to the stream. It’s value is —1 if the user did not assign ID numbers.

The function getCaseStreamLastFreq returns a numeric scalar which is the weight associ-
ated with the last case read from or written to st ream. If the user did not specify frequencies when
the stream was written, the value returned is —1.

Note

The functions ReadNetworks and WriteNetworks also use Netica streams internally. How-
ever, as it is almost certainly a mistake to keep the stream open after the network has been read or
written, no Net i caCaseStream object is created.

Internally, a weak reference system is used to keep a list of Netica stream objects which need to
be closed when RNetica is unloaded. Stream objects should also be forced closed when garbage
collected. The weak reference system is somewhat experimental, so well designed code should
manually close the streams when the program is through with it.

Stream objects are fragile, and will not survive saving and restoring an R session. However, the
object retains information about itself, so that calling OpenCaseStream on the saved object,
should reopen the stream. Note that any position information will be lost.

Author(s)
Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: NewFileStream_ns()54,NewMemoryStream_ns()55,
DeleteStream_ns()>® http://homepage.stat.uiowa.edu/~luke/R/references/weakfinex.

html

See Also

CaseFileDelimiter,CaseFileMissingCode,WriteFindings, ReadFindings,MemoryCaseStream,Ca
WithOpenCaseStream

Examples

abc <- CreateNetwork ("ABC")

A <- NewDiscreteNode (abc, "A",c ("A1","A2","A3","A4"))
B <- NewDiscreteNode (abc, "B",c("B1","B2","B3"))

C <- NewDiscreteNode (abc, "C",c("C1","C2"))

AddLink (A, B)
AddLink (A, C)

http://norsys.com/onLineAPIManual/functions/NewFileStream_ns.html
Snttp://norsys.com/onLineAPIManual/functions/NewMemoryStream_ns.html
Snttp://norsys.com/onLineAPIManual/functions/DeleteStream_ns.html

102

AddLink (B, C)

Outputfilename
casefile <- tempfile("testcase",fileext=".cas")

filestream <— CaseFileStream(casefile)
stopifnot (is.NeticaCaseStream(filestream),
isCaseStreamOpen (filestream))

Case 1
NodeFinding (A) <- "AL"
NodeFinding (B) <- "B1"
NodeFinding (C) <- "C1"
filestream <- WriteFindings(list (A,B,C),filestream,1001,1.0)
stopifnot (getCaseStreamlLastId(filestream)==1001,
abs (getCaseStreamLastFreq(filestream)-1.0) <.0001)
posl <- getCaseStreamPos (filestream)
RetractNetFindings (abc)

Case 2

NodeFinding (A) <- "A2"

NodeFinding (B) <- "B2"

NodeFinding (C) <- "C2"

Double weight this case

filestream <- WriteFindings(list (A,B,C),filestream,1002,2.0)

pos2 <- getCaseStreamPos (filestream)

stopifnot (pos2>posl, getCaseStreamlLastId(filestream)==1002,
abs (getCaseStreamLastFreq(filestream)-2.0) <.0001)

RetractNetFindings (abc)

Case 3
NodeFinding (A) <- "A3"
NodeFinding (B) <- "B3"
C will be missing
filestream <- WriteFindings(list (A,B,C),filestream,1003,1.0)
stopifnot (getCaseStreamlLastId(filestream)==1003,
abs (getCaseStreamLastFreq(filestream)-1.0) <.0001)
RetractNetFindings (abc)

Close it

filestream <- CloseCaseStream(filestream)

stopifnot (is.NeticaCaseStream(filestream),
'isCaseStreamOpen (filestream))

Reopen it

filestream <- OpenCaseStream(filestream)

stopifnot (is.NeticaCaseStream(filestream),
isCaseStreamOpen (filestream))

##Case 1

RetractNetFindings (abc)

filestream <- ReadFindings(list(A,B,C),filestream, "FIRST")
posla <- getCaseStreamPos (filestream)

NeticaCaseStream

NeticaNode 103

stopifnot (posla==posl,
getCaseStreamLastId(filestream)==1001,
abs (getCaseStreamlLastFreqg(filestream)-1.0) <.0001)

##Case 2
RetractNetFindings (abc)
filestream <- ReadFindings(list(A,B,C), filestream, "NEXT")
stopifnot (getCaseStreamPos (filestream)==pos2,
getCaseStreamlLastId(filestream)==1002,
abs (getCaseStreamLastFreq(filestream)-2.0) <.0001)

##Clean Up

CloseCaseStream(filestream)

CloseCaseStream(filestream) ## This should issue a warning but be
harmless.

DeleteNetwork (abc)

NeticaNode An object referencing a node in a Netica Bayesian network.

Description

This object is returned by various RNetica functions which create or find nodes in a Net icaBN
network. A Net icaNode object represents a node object inside of Netica’s memory. The fucntion
is.active () tests whether the node is still a valid reference.

Usage

is.NeticaNode (x)
S3 method for class 'NeticaNode'

toString(x, ...)
S3 method for class 'NeticaNode'
print(x, ...)

S3 method for class 'NeticaNode'
Ops (el, e2)

el == e2
el = e2
Arguments
X The object to print or test
Other arguments to print () or toString ()
el A NeticaNode object to test.

e2 A NeticaNode object to test, or a list of such objects.

104 NeticaNode

Details

This is an object of class Net i caNode. It consists of a name, and an invisible handle to a Netica
node. The function is.active () tests the state of that handle and returns FALSE if the node is no
longer in active memory (usually because of a call to DeleteNode () or DeleteNetwork ().

NeticaNodes come in two types: discrete and continuous (see is.discrete ()). The two
types give slightly different meanings to the NodeStates () and NodeLevels () attributes of
the node. The printed representation shows whether the node is discrete, continuous or inactive
(deleted).

For active nodes, the equality test tests to see if both object point to the same object in Netica
memory. Not that the name of the node is embedded in the R object implementation and may get
out of sync with Netica memory, so the printed representations may be unequal even if it points to
the same node. For inactive nodes, the objects are compared using the cached names.

Value

For toString () astring. The function print () is usually called for its side effects.

The function is.NeticaNode () returns a logical scalar depending on whether or not its argu-
ment is a Net i caBN.

The function Ops.NeticaNode () returns a logical value dending on whether the objects are
equal. If the second argument is a list of Net icaNode objects, then a logical vector is returned,
testing e 1 against every element of e2.

Note

Internally, the Net i caNode objects are character strings with extra attributes. So as.character (node)
will return the name of the node.

Note that if a Net i caNode object is stored in an R object, and the Node is subsquently renamed
(with a call to the set method of NodeName), the old object may persist with the wrong name. This
may result in a situation where the printed names of the objects are different but nodel==node?2
returns true. This can be fixed with the code NodeName (net) <- NodeName (net).

NeticaNode objects are all rendered inactive when StopNetica () is called, therefore they do

not persist across R sessions. Generally speaking, the network should be saved, using WriteNetworks ()
and then reloaded in the new session using ReadNetworks (). The node objects should then be
recreated via a call to NetworkFindNode ().

Note that RNetica is lazy about creating Net icaNode objects for nodes when a network is read
from a file. Probably users should avoid creating or saving Net workNode objects unless they are
going to use them frequently.

Author(s)

Russell Almond

NeticaVersion 105

References

http://norsys.com/onLurl/Manual/index.html: AddNodeToNodeset_bn()’’, RemoveN-
odeFromNodeset_bn()*8, IsNodeInNodeset_bn()* GetNodeUserData_bn()*°, SetNodeUserData_bn()°!
(these are used to maintain the back pointers to the R object).

See Also

NeticaBN,NetworkFindNode (),is.active(),is.discrete (),NewContinuousNode (),
NewDiscreteNode (),DeleteNodes (), NodeName (), NodeStates (), NodeLevels ()

Examples

nety <- CreateNetwork ("yNode")

nodel <- NewContinuousNode (nety, "aNode")
stopifnot (is.NeticaNode (nodel))
stopifnot (is.active (nodel))

stopifnot (as.character (nodel)=="aNode")

node2 <- NetworkFindNode (nety, "aNode")
stopifnot (as.character (node2)=="aNode")
stopifnot (nodel==node2)

NodeName (nodel) <- "Unused"

stopifnot (nodel==node2)

Warning: The following expression is true!
as.character (nodel) != as.character (node?)

noded <- DeleteNodes (nodel)
stopifnot (!is.active (nodel))
stopifnot (!is.active (node2))

stopifnot (as.character (noded)=="Unused")
stopifnot (noded == nodel)

Warning: The following expression is true!
nodel != node2

DeleteNetwork (nety)

NeticaVersion Fetches the version number of Netica.

Description

The version number of Netica is returned as both an integer and a string.

SThttp://norsys.com/onLineAPIManual/functions/AddNodeToNodeset_bn.html
Bnttp://norsys.com/onLineAPIManual/functions/RemoveNodeFromNodeset_bn.html
Mnttp://norsys.com/onLineAPIManual/functions/IsNodeInNodeset_bn.html
Onttp://norsys.com/onLineAPIManual/functions/GetNodeUserData_bn.html
%http://norsys.com/onLineAPIManual/functions/SetNodeUserData_bn.html

106 NetworkFindNode

Usage

NeticaVersion ()

Details

This must be called after the call to StartNetica ().

Value
number Netica version number times 100 (to make it an integer).
message String defining Netica version.

Note

RNetica was developed with Netica API 5.04

Author(s)
Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNeticaVersion_bn()®?

See Also

StartNetica ()

Examples

print (NeticaVersion () Smessage)
stopifnot (NeticaVersion () $Snumber > 409) ## Version 4.09 is a popular one.

NetworkFindNode Finds nodes in a Netica network.

Description

The funciton NetworkFindNode finds a node in a Net i caBN with the given name. If no node
with the specified name found, it will return NULL. The function NetworkAl1Nodes () returns
a list of all nodes in the network.

Usage

NetworkFindNode (net, name)
NetworkAllNodes (net)

“http://norsys.com/onLineAPIManual/functions/GetNeticaVersion_bn.html

NetworkFindNode 107

Arguments
net The Net icaBN to search.
name A character vector giving the name or names of the desired nodes. Names must
follow the ITDname protocol.
Details

Although each Net icaNode belongs to a single network, a network contains many nodes. Within
anetwork, a node is uniquely identified by its name. However, nodes can be renamed (see NodeName () .

The function NetworkAl1lNodes () returns all the nodes in the network, however, the order of
the nodes in the network could be different in different calls to this function.
Value

The NeticaNode object or list of NeticaNode objects corresponding to names, or a list of
all node objects for NetworkAl1Nodes (). In the latter case, the names will be set to the node
names.

Note

Net icaNode objects do not survive the life of a Netica session (or by implication an R session).
So the safest way to "save" a Net icaNode object is to recreate it using NetworkFindNode ()
after the network is reloaded.

Author(s)

Russell Almond

References
http://norsys.com/onLineAPIManual/index.html, GetNodeNamed_bn()®, GetNetN-
odes_bn()®*

See Also

NodeNet () retrieves the network from the node.

Examples

tnet <- CreateNetwork ("TestNet")
nodes <- NewDiscreteNode (tnet,c ("A","B","C"))

nodeA <- NetworkFindNode (tnet, "A")
stopifnot (nodeA==nodes[[1]])

nodeBC <- NetworkFindNode (tnet,c ("B","C"))
stopifnot (nodeBC[[1l]]==nodes[[2]])

Bhttp://norsys.com/onLineAPIManual/functions/GetNodeNamed_bn.html
%nhttp://norsys.com/onLineAPIManual/functions/GetNetNodes_bn.html

108 NetworkFootprint

stopifnot (nodeBC[[2]]==nodes[[3]])

allnodes <- NetworkAllNodes (tnet)
stopifnot (length(allnodes)==3)
stopifnot (any (nodeA==allnodes)) ## NodeA in there somewhere.

Not run:

Safe way to preserve node and network objects across R sessions.
tnet <- WriteNetworks (tnet, "Tnet.neta")

g (save="yes")

R

library (RNetica)

tnet <- ReadNetworks (tnet)

nodes <- NetworkFindNodes (tnet, as.character (nodes))

End (Not run)
DeleteNetwork (tnet)

NetworkFootprint Returns a list of names of unconnected edges.

Description

When a link is detached through setting a NodeParents () to NULL, or through copying a node
but not its parent to a new network, this leaves a stub node, an unsatisfied connection. This function
runs through the set of nodes in a network and lists the names of all unsatisfied connections.

Usage

NetworkFootprint (net)

Arguments

net An active Net icaBN to be examined.

Details

Stub nodes — unsatisfied links or connections — can happen in two ways. Either one of the values
of NodeParents (node) to NULL, or by copying a node (CopyNodes () without copying its
parents. (This can also be done in the Netica GUI by detaching the link from the parent end). This
this case Netica names the NodeInputNames () accorind to the name of the old node.

The function NetworkFootprint (net) search all of the nodes in net to find stub nodes,
and reports the NodeInputNames () of the stub nodes. This function provies a test for unsat-
isfied connections, and should be of assistance when joining two networks together. The function
AdjoinNetwork (sm, em) joins two networks together and attempts to resolve the unsatisfied
connections in em.

One particular application of the footprint is in the EM—SM algorithm (Almond et al, 1999; Almond
and Mislevey, 1999). Here it is assumed that nodes in the footprint of an evidence model will

NetworkFootprint 109

be joined. Making a clique node MakeCliqueNode () ensures that joint information from the
evidence model will find a good home in the system model network.

Value

A character vector giving the input names of the stub nodes in net. Duplicate values are removed.

Author(s)
Russell Almond

References

Almond, R. G. & Mislevy, R. J. (1999) Graphical models and computerized adaptive testing. Ap-
plied Psychological Measurement, 23, 223-238.

Almond, R., Herskovits, E., Mislevy, R. J., & Steinberg, L. S. (1999). Transfer of information
between system and evidence models. In Artificial Intelligence and Statistics 99, Proceedings (pp.
181-186). Morgan-Kaufman

See Also

NeticaNode,NodeParents (),MakeCliqueNode (), NodeInputNames (), CopyNodes (),AdjoinNetwork

Examples

System/Student model

EMSMSystem <- ReadNetworks (paste(library (help="RNetica") $path,
"sampleNets", "System.dne",
sep=.Platform$file.sep))

CompileNetwork (EMSMSystem)
JunctionTreeReport (EMSMSystem)

Evidence model for Task 1la

EMTaskla <- ReadNetworks (paste(library (help="RNetica") $path,
"sampleNets", "EMTaskla.dne",
sep=.Platform$file.sep))

NetworkFootprint (EMTaskla)

The corresponding clique is not in system model, so force it in.

MakeCliqueNode (NetworkFindNode (EMSMSystem, NetworkFootprint (EMTaskla)))

CompileNetwork (EMSMSystem)

JunctionTreeReport (EMSMSystem)

Evidence model for Task 2a

EMTask2a <- ReadNetworks (paste (library (help="RNetica") $path,
"sampleNets", "EMTask2a.dne",
sep=.Platform$file.sep))

NetworkFootprint (EMTask2a)

110 NetworkName

This 1s already a clique, so nothing to do.

DeleteNetwork (1list (EMSMSystem, EMTaskla, EMTask2a))

NetworkName Gets or Sets the name of a Netica network.

Description

Gets or sets the name of the network. Names must conform to the IDname rules.

Usage

NetworkName (net)
NetworkName (net) <- wvalue

Arguments
net A Net icaBN object which links to the network.
value A character scalar containing the new name.
Details

Network names must conform to the ITDname rules for Netica identifiers. Trying to set the network
to a name that does not conform to the rules will produce an error, as will trying to set the network
name to a name that corresponds to another different network.

The NetworkTitle () function provides another way to name a network which is not subject to
the IDname restrictions.

Value

The name of the network as a character vector of length 1.

The setter method returns the modified object.

Note

NeticaBN objects are internally implemented as character vectors giving the name of the net-
work. If a network is renamed, then it is possible that R will hold onto an old reference that
still using the old name. In this case, NetworkName (net) will give the correct name, and
GetNamedNets (NetworkName (net)) will return a reference to a corrected object.

Author(s)
Russell Almond

NetworkNodeSetColor 111

References

http://norsys.com/onLineAPIManual/index.html: GetNetName_bn()®, SetNetName_bn()%

See Also

CreateNetwork (), NeticaBN, GetNamedNetworks (), NetworkTitle ()

Examples

net <- CreateNetwork ("funNet")
netcached <- net

stopifnot (NetworkName (net)=="funNet")

NetworkName (net) <-"SomethingElse"
stopifnot (as.character (net)=="SomethingElse")

##Warning, the following expression is true!
as.character (netcached) != NetworkName (netcached)
But this one holds

stopifnot (NetworkName (net)==NetworkName (netcached))
And this one

stopifnot (net==netcached)

This fixes the problem
NetworkName (netcached) <- NetworkName (netcached)

stopifnot (as.character (netcached) == NetworkName (netcached))

DeleteNetwork (net)

NetworkNodeSetColor
Returns or sets a display colour to use with a netica node.b

Description

Returns the display colour associated with a node set or sets the node set colour to a specified
value. The colour of the node in the Netica GUI will be the colour of the highest priority node set
associated with the node (see NetworkSetPriority ().

Usage

NetworkNodeSetColor (net, setname, newcolor)

Shttp://norsys.com/onLineAPIManual/functions/GetNetName_bn.html
%nhttp://norsys.com/onLineAPIManual/functions/SetNetName_bn.html

112 NetworkNodeSetColor

Arguments
net An active Net i caBN object representing the network.
setname A character scalar giving the name of the node set to be coloured.
newcolor An optional scalar of any of the three kind of R colours, i.e., either a colour name
(an element of colors ()), a hexadecimal string of the form "#rrggbb" or
"#rrggbbaa" (see rgb ()), or an integer i meaning palette () [1]. Non-
string values are coerced to integer. There are two special values: NA is used to
indicate that the set should not have a colour associated with it. If newcolor
is missing, then the existing colour is returned and not changed.
Details

Netica determines the visual style of a node by stepping through the node sets to which the node
belongs in priority order (see NetworkSetPriority ()) . Each node set can either have a
colour set, or a flag set to indicate that the next node in order or priority should be used to determine
the appearance of the node. The expression NetworkNodeSetColor (net, setname, NA)
sets the flag so that membership in set name does not affect the display of the node.

The function NetworkNodeSetColor (net, setname, colour) sets the colour associated
with the visual display of these nodes (this is only visible when the network is open in the Netica
GUI). The colour can be specified in any of the usual ways that colours are specified in R (see
col2rgb ()). The special value NA is used to indicate that the set should be ‘transparent’, that is
the colour of the next set in priorty should be used to colour the node.

The function NetworkNodeSetColor (net, setname), with the third argument missing, re-
turns the current node set colour instead of setting it.

Value

The old value of the node color as hexidecimal string value of the form "#rrggbb".

Note

The colors of the built-in Netica node sets serve as the ultimate default for the display of nodes.
These cannot be set or queried through this function. (This is a limitation of the Netica API).

Author(s)

Russell Almond

References

http://norsys.com/onLurl/Manual/index.html: ReorderNodesets_bn()®’, SetNode-
setColor_bn()®®

%'http://norsys.com/onLineAPIManual/functions/ReorderNodesets_bn.html
%nhttp://norsys.com/onLineAPIManual/functions/SetNodesetColor_bn.html

NetworkNodeSets 113

See Also

NeticaNode,NodeSets (),NetworkNodeSets (),col2rgb (), rgb (),NetworkNodesInSet (),
NetworkSetPriority ()

Examples

nsnet <- CreateNetwork ("NodeSetExample™)
Ability <- NewContinuousNode (nsnet,"Ability")

X1 <- NewDiscreteNode (nsnet,"Iteml",c("Right", "Wrong"))
EssayScore <- NewDiscreteNode (nsnet, "EssayScore",paste("level”,5:0,sep="_"))

Value <- NewContinuousNode (nsnet, "Value")

NodeKind (Value) <- "Utility"

Placement <- NewDiscreteNode (nsnet, "Placement",
c ("Advanced", "Regular", "Remedial"))

NodeKind (Placement) <— "Decision"

NodeSets (Ability) <- "ReportingVariable"
NodeSets (X1) <— "Observable"
NodeSets (EssayScore) <- c("ReportingVariable", "Observable")

Default colour is NA (transparent)
stopifnot (
is.na (NetworkNodeSetColor (nsnet, "Observable"))

Make Reporting variables a pale blue
NetworkNodeSetColor (nsnet, "ReportingVariable",rgb (1, .4, .4))
stopifnot (

NetworkNodeSetColor (nsnet, "ReportingVariable") == "#ff6666"
)
Using R (nee X11) color list.
NetworkNodeSetColor (nsnet, "Observable", "wheat2")
stopifnot (

NetworkNodeSetColor (nsnet, "ReportingVariable") == "#ff6666"

DeleteNetwork (nsnet)

NetworkNodeSets Returns a list of node sets associated with a Netica network.

Description

A node set is a character label associated with a node which provides information about its role in
the models. This function returns the complete list of node sets associated with any node in the
network.

114 NetworkNodeSets

Usage

NetworkNodeSets (net, incSystem = FALSE)

Arguments
net An active Net i caBN object representing the network.
incSystem A logical flag. If TRUE then built-in Netica node sets are returned as well as the
user defined ones.
Details

Netica node sets are a collection of string labels that can be associated with various nodes in a
network using the function NodeSets (). Node sets do not have any meaning to Netica: node set
membership only affect the way the node is displayed (see NetworkNodeSetColor ()). One
purpose of node sets is to label a set of nodes that play a similar role in the model. For example,
"ReportingVariable" or "Observable".

The expression NetworkNodeSets (node) returns the node sets that are currently associated
with any node. If incSystem=TRUE, then the internal Netica system node sets will be included
as well. These begin with a colon (‘:”). This value cannot be set directly, only indirectly through
the use of NodeSets.

Value

A character vector giving the node sets used by the network.

Note

Node sets cannot be destroyed, only created. An empty node set has no effect.

Author(s)
Russell Almond

References

http://norsys.com/onLurl/Manual/index.html: GetAllNodesets_bn()®

See Also

NeticaNode,NodeSets (),NetworkSetPriority (), NetworkNodesInSet (),NetworkNodeSetColor ()
Examples

nsnet <- CreateNetwork ("NodeSetExample")

Ability <- NewContinuousNode (nsnet,"Ability")

EssayScore <- NewDiscreteNode (nsnet, "EssayScore",paste("level",5:0,sep="_"))

“nttp://norsys.com/onLineAPIManual/functions/GetAllNodesets_bn.html

NetworkNodesInSet 115

Value <- NewContinuousNode (nsnet, "Value")

NodeKind (Value) <- "Utility"

Placement <- NewDiscreteNode (nsnet, "Placement",
c ("Advanced", "Regular", "Remedial"))

NodeKind (Placement) <- "Decision"
stopifnot (

length (NetworkNodeSets (nsnet)) == 0, ## Nothing set yet
length (NetworkNodeSets (nsnet, TRUE)) == 22 ## Number of system states

NodeSets (Ability) <- "ReportingVariable"
stopifnot (
NetworkNodeSets (nsnet) == "ReportingVariable"
)
NodeSets (EssayScore) <- "Observable"
stopifnot (
setequal (NetworkNodeSets (nsnet),c ("Observable", "ReportingVariable"))
)
Changing spelling of name adds new set, doesn't delete the old one.
NodeSets (EssayScore) <- "Observables"
stopifnot (
setequal (NetworkNodeSets (nsnet),
c ("Observables", "Observable","ReportingVariable"))
)
Nor does deletion
NodeSets (Ability) <- character()
stopifnot (
setequal (NetworkNodeSets (nsnet),
c ("Observables", "Observable","ReportingVariable"))

DeleteNetwork (nsnet)

NetworkNodesInSet Returns a list of node labeled with the given node set in a Netica Net-
work.

Description
A node set is a character label associated with a node which provides information about its role in
the models. This function returns a list of all nodes labeled with a particular node set.

Usage

NetworkNodesInSet (net, setname)

116 NetworkNodesInSet

Arguments
net An active Net i caBN object representing the network.
setname A character scalar giving the node set to look for.
Details

Netica node sets are a collection of string labels that can be associated with various nodes in a
network using the function NodeSets (). Node sets do not have any meaning to Netica: node set
membership only affect the way the node is displayed (see NetworkNodeSetColor ()). One
purpose of node sets is to label a set of nodes that play a similar role in the model. For example,
"ReportingVariable" or "Observable".

The expression NetworkNodesInSet (net, setname) searches through the network for all
nodes labeled with the given setname. It returns a list of such nodes. This value cannot be set
directly, only indirectly through the use of NodeSet s, or through the use of system primitives.

Note that it is acceptable to use the system built-ins. For examble searching for " : TableIncomplete"
will return a collection of nodes for which the conditional probability table has not yet been set.

Value

A list of nodes which are associated with the named node set.

Author(s)
Russell Almond

References

http://norsys.com/onLurl/Manual/index.html: GetAllNodesets_bn()’’, IsNodeInN-
odeset_bn()’!

See Also

NeticaBN,NodeSets (),NetworkSetPriority (),NetworkNodesInSet (),NetworkNodeSetColor ()

Examples

nsnet <- CreateNetwork ("NodeSetExample")

Ability <- NewContinuousNode (nsnet,"Ability")

X1 <- NewDiscreteNode (nsnet,"Iteml",c("Right", "Wrong"))

EssayScore <- NewDiscreteNode (nsnet, "EssayScore",paste("level”,5:0,sep="_"))

Value <- NewContinuousNode (nsnet, "Value")
NodeKind (Value) <- "Utility"

http://norsys.com/onLineAPIManual/functions/GetAllNodesets_bn.html
'ttp://norsys.com/onLineAPIManual/functions/IsNodeInNodeset_bn.html

NetworkSetPriority 117

Placement <- NewDiscreteNode (nsnet, "Placement",
c ("Advanced", "Regular", "Remedial"))
NodeKind (Placement) <- "Decision"

NodeSets (Ability) <- "ReportingVariable"
NodeSets (X1) <— "Observable"
NodeSets (EssayScore) <- c("ReportingVariable", "Observable")

setequal doesn't deal well with arbitrary objects, so
just use the names.
nodeseteqg <- function(x,y) {

setequal (as.character (x),as.character (y))

stopifnot (

nodeseteq (NetworkNodesInSet (nsnet, "ReportingVariable"),
list (Ability,EssayScore)),

nodeseteqg (NetworkNodesInSet (nsnet, "Observable"),
list (X1,EssayScore)),

nodeseteq (NetworkNodesInSet (nsnet, "Observables"),
list()),

nodeseteqg (NetworkNodesInSet (nsnet, ":Nature"),
list (Ability, EssayScore,X1)),

nodeseteq (NetworkNodesInSet (nsnet, ":Decision"),
list (Placement)),

nodeseteq (NetworkNodesInSet (nsnet, ":Utility"),
list (Value))

DeleteNetwork (nsnet)

NetworkSetPriority Changes the priority order of the node sets.

Description
Netica sets the visual appearance (i.e., colour, see NetworkNodeSetColor ()) of anode accord-
ing to highest priority set to which the node belongs. This function changes the order of priority.
Usage

NetworkSetPriority (net, setlist)

Arguments
net An active Net i caBN object representing the network.
setlist A character vector containing a subset of the node set names. The first ones in

the sequence will have the highest priority.

118 NetworkSetPriority

Details

Netica determines the visual style of a node by stepping through the node sets to which the node
belongs in priority order. Each node set can either have a colour set, or a flag set to indicate that
the next node in order or priority should be used to determine the appearance of the node (see
NetworkNodeSetColor ()).

This function switches the priority of the node sets names in the second argument. The node sets
note mentioned in set 1ist are not affected.
Value

Returns the net argument invisibly.

Note
The priority of the Netica internal node sets (the ones beging with ‘:”) are set by Netica and cannot
be changed. They all have lower priority than the user-defined node sets.

Author(s)
Russell Almond

References
http://norsys.com/onLurl/Manual/index.html: ReorderNodesets_bn()’?, SetNode-
setColor_bn()”?
See Also
NeticaNode, NodeSets (), NetworkNodeSets (), NetworkNodesInSet (),NetworkNodeSetColor ()
Examples
nsnet <- CreateNetwork ("NodeSetExample™)
Ability <- NewContinuousNode (nsnet,"Ability")
EssayScore <- NewDiscreteNode (nsnet, "EssayScore",paste("level",5:0,sep="_"))
Value <- NewContinuousNode (nsnet, "Value")
NodeKind (Value) <- "Utility"
Placement <- NewDiscreteNode (nsnet, "Placement",
c ("Advanced", "Regular", "Remedial"))
NodeKind (Placement) <- "Decision"

NodeSets (EssayScore) <- c("ReportingVariable", "Observable")

NetworkSetPriority (nsnet, c("Observable", "ReportingVariable"))
Now EssayScore should be coloured like an observable.

http://norsys.com/onLineAPIManual/functions/ReorderNodesets_bn.html
Bhttp://norsys.com/onLineAPIManual/functions/SetNodesetColor_bn.html

NetworkTitle 119

stopifnot (NodeSets (EssayScore) == ("Observable", "ReportingVariable"))
NetworkSetPriority (nsnet, c("ReportingVariable", "Observable"))
Now EssayScore should be coloured like a Reporting Variable

stopifnot (NodeSets (EssayScore) == c("ReportingVariable", "Observable"))

DeleteNetwork (nsnet)

NetworkTitle Gets the title or comments associated with a Netica network.

Description

The title is a longer name for a network which is not subject to the netica IDname restrictions. The
comment is a freeform text associated with a network.

Usage

NetworkTitle (net)
NetworkTitle (net) <- value
NetworkComment (net)
NetworkComment (net) <- wvalue

Arguments

net A NeticaBN object.

value A character object giving the new title or comment.
Details

The title is meant to be a human readable alternative to the name, which is not limited to the
IDname restrictions. The title also affects how the network is displayed in the Netica GUL

The comment is any text the user chooses to attach to the network. If value has length greater
than 1, the vector is collapsed into a long string with newlines separating the components.

Value

A character vector of length 1 providing the title or comment.

Author(s)

Russell Almond

120

References

NetworkUndo

http://norsys.com/onLineAPIManual/index.html: GetNetTitle_bn()’*, SetNetTi-
tle_bn()’?, GetNetComments_bn()’®, SetNetComments_bn()”’

See Also

NeticaBN, NetworkName ()

Examples

firstNet <— CreateNetwork ("firstNet")

NetworkTitle (firstNet) <- "My First Bayesian Network"
stopifnot (NetworkTitle (firstNet)=="My First Bayesian Network")

now <- date()
NetworkComment (firstNet)<-c ("Network created on",now)
Print here escapes the newline, so is harder to read
cat (NetworkComment (firstNet), "\n")
stopifnot (NetworkComment (firstNet) ==

paste (c ("Network created on",now),collapse="\n"))

DeleteNetwork (firstNet)

NetworkUndo

Undoes (redoes) a Netica operation on a network.

Description

Netica mantians an internal queue of reversable operations on a network. The NetworkUndo ()
rolls them back off the stack. The NetworkRedo ().

Usage

NetworkUndo (net)
NetworkRedo (net)

Arguments

net

A NeticaBN object on which an action took place.

Tnttp
Bhttp
Tonttp
TThttp

://norsys.
://norsys.
://norsys.
://norsys.

com/onLineAPIManual/functions/GetNetTitle_bn.html
com/onLineAPIManual/functions/SetNetTitle_bn.html
com/onLineAPIManual/functions/GetNetComments_bn.html
com/onLineAPIManual/functions/SetNetComments_bn.html

NetworkUndo 121

Details

The details of which operations are undoable is not clearly documented in Netica. Some obvious
things, like adding nodes, do not appear to work.

Value

Returns an invisible integer which is the return code from the underlying network function. Its value
is not documented, other than it will be negative if the undo/redo stack is empty.

Author(s)
Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: UndoNetLastOper_bn()’®, Re-
doNetOper_bn()79

See Also

NeticaBN, CreateNetwork

Examples

Not run:
activeNet <- CreateNetwork ("undoRedoTest")

NewContinuousNode (activeNet, "Nodel")
NewContinuousNode (activeNet, "Node2")
NewContinuousNode (activeNet, "Node3")

These tests don't actually work, I'm not sure

what constitutes an undoable action in Netica.
print (NetworkUndo (activeNet))

stopifnot (length (NetworkAllNodes (activeNet))==2)

print (NetworkUndo (activeNet))
stopifnot (length (NetworkAllNodes (activeNet))==1)

print (NetworkRedo (activeNet))
stopifnot (length (NetworkAllNodes (activeNet))==2)

DeleteNetwork (activeNet)

End (Not run)

nttp://norsys.com/onLineAPIManual/functions/UndoNetLastOper_bn.html
Phttp://norsys.com/onLineAPIManual/functions/RedoNetOper_bn.html

122 NetworkUserField

NetworkUserField Gets user definable fields associated with a Netica network.

Description

Netica provides a mechanism for associating user defined values with a network as a series of
key/value pairs. The key must be a IDname and the value can be an aribtrary string.

Usage

NetworkUserField (net, fieldname)
NetworkUserField (net, fieldname) <- value
NetworkAllUserFields (net)

Arguments
net A Net icaBN object indicating the network.
fieldname A character scalar conforming to the IDname rules.
value An arbitrary character string containing the new value. Only the first element is
used.
Details

Netica contains a mechanism for associating user data with networks. In the Netica documen-
tation, they note that only strings are really supported as only strings are portable across imple-
mentations. This meachnism can be used to store arbitrary values, but the user is responsible for
encoding/decoding them as strings.

Value

A character string with the value stored in the field fieldname, or NA if no such field exists.

The function NetworkA1l1UserFields returns a character vector containing all user data stored
with the network. The names of the result are the names of the fields.

Author(s)
Russell Almond

References

http://norsys.com/onLineAPIManual/index.html GetNetUserField_bn()*°, SetNe-
tUserField_bn()®', GetNetNthUserField_bn()®?

80nttp://norsys.com/onLineAPIManual/functions/GetNetUserField_bn.html
8lnttp://norsys.com/onLineAPIManual/functions/SetNetUserField_bn.html
$http://norsys.com/onLineAPIManual/functions/GetNetNthUserField_bn.html

NewDiscreteNode 123

See Also

NeticaBN, NetworkComment ()

Examples

userNet <- CreateNetwork ("UserNet")
NetworkUserField (userNet, "Author") <- "Russell Almond"

NetworkUserField (userNet, "Status") <- "In Progress"
stopifnot (NetworkUserField (userNet, "Author")=="Russell Almond")
stopifnot (NetworkUserField (userNet, "Status")=="In Progress")

fields <— NetworkAllUserFields (userNet)

stopifnot (length (fields)==2)

stopifnot (all(!is.na(match(c("Russell Almond","In Progress"), fields))))
stopifnot (all(!is.na (match(c("Author", "Status"),names (fields)))))

stopifnot (is.na (NetworkUserField (userNet, "gender")))

DeleteNetwork (userNet)

NewDiscreteNode Creates (or destroys) a node in a Netica Bayesian network.

Description

Creates a new node in the NeticaBN net. Netica Nodes can be either discrete, in which case a
list of states must be given, or continuous, where states are not given. The function DeleteNodes ()
deletes a single node or a list of nodes.

Usage

NewDiscreteNode (net, names, states = c("Yes","No"))
NewContinuousNode (net, names)
DeleteNodes (nodes)

Arguments

net A NeticaBN object point to the network where the nodes will be created.

names A character vector containing the name or names of the new nodes to be created.
The names must follow the IDname rules.

states Either or character vector, or a list of character vectors. If it is a list, its length
should be the same as the length of names. The character vectors give the
names of the states for the corresponding node. The entries should all corre-
spond to the TDname rules.

nodes A NeticaNode or list of NeticaNode objects to be deleted. If a list of

nodes, all must be from the same network.

124 NewDiscreteNode

Details

Both NewDiscreteNode () and NewContinuousNode () both create new nodes in the net-
work net. If names has length greater than 1, multiple nodes are created.

Netica currently supports two types of nodes. Discrete nodes represent nominal variables. Contin-
uous nodes represent real variables. Continuous nodes cannot be changed to discrete nodes (or vise
versa) using calls to the API [this is a different from the GUI]. However, a continus node can be
made to behave like a discrete node (or vise versa) by setting the NodeLevels () attribute.

NewDiscreteNode () additionally requires the st ates argument to set the initial set of states.
(These can be changed later through calls to NodeStates ()). If states is a character vector,
it is used for the state names. If names has length greater than one, all nodes are created with the
same set of states. The default values create a collection of binary variables. If states is a list,
then each entry should be a character vector providing the list of states for the corresponding new
node.

The function DeleteNode () deletes a single node or a group of nodes. If multiple nodes are to
be deleted in a single call, they must all belong to the same network. Node that any Net i caNode
objects that referenced the just deleted nodes will become inactive (see is.active ()).

Value
For NewDiscreteNode () or NewContinuousNode (), this returns either a single object of
class Net icaNode or a list of such objects (depending on the length of names).

ForDeleteNodes () alistof inactive Net icaNode objects corresponding to the recently deleted
nodes. If a node was not found, a value of NULL will be returned instead.

Note

Netica nodes internally contain a pointer back to the net they are associated with (see NodeNet ()),
so most functions involving nodes don’t require the net to be named. The node creation functions
are an exception.

Most functions involving lists of nodes, assume that all nodes come from the same network. Netica
will generate an error if this is not the case.

Internally, node objects character vectors giving the name of the node with special properties rep-
resenting the node. Thus, as.character (node) will usually return the name of the node.
However, if the node is renamed, that might not work properly. Using NodeName (node) is
generally safer.

Author(s)
Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: NewNode_bn()%’, DeleteNode_bn()3*,
GetNodeType_bn()®, SetNodeLevels_bn()%¢

8Bnttp://norsys.com/onLineAPIManual/functions/NewNode_bn.html
8nttp://norsys.com/onLineAPIManual/functions/DeleteNode_bn.html
85nttp://norsys.com/onLineAPIManual/functions/GetNodeType_bn.html
8nttp://norsys.com/onLineAPIManual/functions/SetNodeLevels_bn.html

NewDiscreteNode 125

See Also

CreateNetwork (),NeticaNode, NodeName (),is.discrete(),is.active(),NodeStates (),
NodeLevels ()

Examples

safetyNet <- CreateNetwork ("safetyNet")

nodedl <- NewDiscreteNode (safetyNet, "frayed") ## Yes/No

stopifnot (
NodeName (nodedl) == "frayed",
NodeStates (nodedl) == c("Yes", "No"),

is.discrete (nodedl)

)

Both variables should have the same set of states
noded23 <- NewDiscreteNode (safetyNet,c("TensionNS", "TensionEW"),
c("High", "Med", "Low"))
stopifnot (
all (sapply (noded23, is.active)),
all (sapply (noded23,is.discrete)),
NodeNumStates (noded23[[1]]) == 3,
NodeStates (noded23[[1]])==NodeStates (noded23[[2]1])

noded45 <- NewDiscreteNode (safetyNet,c("MeshSize", "RopeThickness"),
list (c("Coarse","Fine"),c("Thick", "Medium", "Thin")))
stopifnot (
all (sapply (noded45, is.active)),
all (sapply (noded45,is.discrete)),

NodeNumStates (noded45[[1]]) == 2,
NodeNumStates (noded45[[2]]) == 3,
NodeStates (noded45([[1]]) !=NodeStates (noded45[[2]1])

nodec <- NewContinuousNode (safetyNet, "Area")
stopifnot (

is.active (nodec),

is.continuous (nodec),

NodeName (nodec) == "Area"

stopifnot (length (NetworkAllNodes (safetyNet))==6)

DeleteNodes (nodec)
stopifnot (length (NetworkAllNodes (safetyNet))==5)

DeleteNodes (noded4b)
stopifnot (length (NetworkAllNodes (safetyNet))==3)

DeleteNetwork (safetyNet)

126 NodeBeliefs

NodeBeliefs Returns the current marginal probability distribution associated with
a node in a Netica network.

Description

After a network is compiled, marginal probabilities are available at each of the nodes. Entering
findings changes these to probabilities associated with the conditions represented by the findings.
This function returns the marginal probabilities for the variable node conditioned on the findings.

The function IsBeliefUpdated (node) checks to see whether the value of findings have been
propogated to node yet.
Usage

NodeBeliefs (node)
IsBeliefUpdated (node)

Arguments
node An active Net icaNode representing the variable whose marginal distribution
is to be determined.
Details

The function NodeBeliefs () is notavailable until the network has been compiled (CompileNetwork ()).
Asking for the marginal values before the network is compiled will throw an error.

When findings are entered, the marginal probabilities (or beliefs) associated with node will change.
The process of propagating the findings from an evidence node to a query node is known as up-
dating. Depending on the size and topology of the network, the updating process might take
some time. To speed up operations, the Aut oUpdate flag on the network can be cleared using
SetNetworkAutoUpdate ().

If the AutoUpdate flag is not set for the network, then calling NodeBeliefs (node) could
trigger an update cycle and hence take some time. The function IsBeliefUpdated (code)
tests to see whether the marginal probability for node currently incorporates all of the findings. It
returns true if it does and false if not.

Value

The function NodeBeliefs (node) returns a vector of probabilities of length NodeNumStates (node) .
The names of the result are the state names.

The function IsBeliefUpdated (node) returns TRUE if calling NodeBeliefs (node) will
not result in probabilities being updated.

Note

I tend to avoid the term "belief" because I've spent so much time writing about Dempster—Shafer
models (belief functions).

NodeBeliefs 127

Author(s)
Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNodeBeliefs_bn()%’, IsBe-
liefUpdated_bn()%®

See Also

NeticaBN,NodeProbs (),NodeFinding (), JointProbability (),MostProbableConfig(),
FindingsProbability ()

Examples

irt5 <- ReadNetworks (paste(library (help="RNetica") $path,
"sampleNets", "IRT5.dne",
sep=.Platform$file.sep))

irt5.theta <- NetworkFindNode (irt5, "Theta")
irt5.x <- NetworkFindNode (irt5,paste("Item",1:5,sep="_"))

Not run:
NodeBeliefs (irt5.theta) ## This call will produce an errors because irth
is not compiled

End (Not run)
stopifnot (
!TsBeliefUpdated (irt5.theta)
)
CompileNetwork (irt5) ## Ready to enter findings

stopifnot (
irt5 is parent node, so marginal beliefs and conditional
probability table should be the same.
sum (abs (NodeBeliefs (irt5.theta) - NodeProbs (irt5.theta))) < le-6
)
Marginal probability for Node 5
irt5.x5.1init <- NodeBeliefs (irt5.x[[5]1])

SetNetworkAutoUpdate (irt5, TRUE) ## Automatic updateing
NodeFinding (irt5.x[[1]]) <- "Right"
stopifnot (
IsBeliefUpdated (irt5.x[[5]])
)
irt5.x5.timel <- NodeBeliefs (irt5.x[[5]1)
stopifnot (
sum(abs (irt5.x5.init-irt5.x5.timel)) > le-6

)

8'http://norsys.com/onLineAPIManual/functions/GetNodeBeliefs_bn.html
8nttp://norsys.com/onLineAPIManual/functions/IsBeliefUpdated_bn.html

128 NodeChildren

SetNetworkAutoUpdate (irt5, FALSE) ## Automatic updateing
NodeFinding (irt5.x[[2]]) <- "Right"
stopifnot (
!TsBeliefUpdated (irt5.x[[5]11])
)
irt5.x5.time2 <- NodeBeliefs (irt5.x[[5]1)

stopifnot (
sum (abs (irt5.x5.time2-irt5.x5.timel)) > le-6,
IsBeliefUpdated (irt5.x[[5]]) ## Now we have updated it.

DeleteNetwork (irth)

NodeChildren Returns a list of the children of a node in a Netica network.

Description

The children of a node parent are the nodes which are directly connnected to parent with
an edge oriented from parent. The function NodeChildren (parent) returns a list of the
children of parent

Usage

NodeChildren (parent)

Arguments

parent A NeticaNode whose children are to be found.

Details

The function NodeChildren (parent) only returns the immediate decendents of parent. A
list of all decendents can be found using the function GetRelatedNodes (parent, "decendents").

The function 1ink {NodeParents} () returns the opposite end of the link, however, unlike
NodeParents (), NodeChildren () cannot be directly set.

Value

A list (possibly empty) of Net icaNode objects which are the children of parent.

Author(s)

Russell Almond

NodeExperience 129

References

http://norsys.com/onLineAPIManual/index.html: GetNodeChildren_bn()%

See Also

NeticaNode, AddLink (), NodeParents (), GetRelatedNodes ()

Examples

chnet <- CreateNetwork ("ChildcareCenter")

mom <- NewContinuousNode (chnet, "Mother")
stopifnot (
length (NodeChildren (mom)) ==

daughters <- NewDiscreteNode (chnet,paste ("Daughter",1:3, sep=""))
sapply (daughters, function(d) AddLink (mom,d))
stopifnot (

length (NodeChildren (mom)) ==3,
all (match (daughters,NodeChildren (mom) , nomatch=0)) >0

DeleteNetwork (chnet)

NodeExperience Gets or sets the amount of experience associated with a node.

Description

In learning, if the row of the conditional probability table has a Dirichlet distribution, this sets the
sum of the parameters for the row. This is the number of pseudo observations for that row of the
CPT.

Usage

NodeExperience (node)
NodeExperience (node) <- value

Arguments
node An active Net icaNode.
value An array of pseudo counts, these should be positive values. The shape of the

array should match the Parent States (node).

$nttp://norsys.com/onLineAPIManual/functions/GetNodeChildren_bn.html

130 NodeExperience

Details

When learning the conditional probabilities associated with a conditional probability table, the most
general model considers each row of the conditional probability table as an independent Dirichlet
distribution. If there are k states, then the parameters of the Dirichlet distribution are a4, . . . , ax and
the expected value is p; = a1 /n,...,pr = ai/n, where n = a; + ... + aj is the normalization
constant. An alterantive way to represent the Dirichlet parameters is with the probability vector
and the normalization. The experience is the normalization constant. Note that after observing
m additional observations, the normalization constant will become n + m, so the experience can
be thought of as a pseudo-observation count. Finally, the variance of the Dirichlet distribution
decreases, as n increases, so it can also be thought of as a measure of precision.

An unconditional distribution has exactly one normalization constant. A conditional distribution has
on for each row of the conditional probability, that is associated with each possible configuration
of the parent variables. The value of NodeExperience (node) is an array with dimnames
matching ParentStates (node). In particular, this means that specific values of experience
can be accessed by using the names of the parent states.

Value

An array whose dimnames are ParentStates (node) . If the node has no parents, the value is
a scalar.

Note

I tend to refer to this distribution as a "hyper-Dirichlet" distribution, although Speigelhalter and
Laurtizen (1990) used that term to refer to a network in which all of the nodes were parameterized
in that way.

Author(s)
Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: SetNodeExperience_bn()*°, GetN-
odeExperience_bn()°"!

See Also

NeticaNode, NodeParents (), NodeProbs (), CPA

Examples

abc <- CreateNetwork ("ABC")

A <- NewDiscreteNode (abc, "A",c ("A1","A2","A3","A4"))
B <- NewDiscreteNode (abc, "B",c("B1","B2","B3"))

C <- NewDiscreteNode (abc, "C",c("C1","C2"))

Onttp://norsys.com/onLineAPIManual/functions/SetNodeExperience_bn.html
Ihttp://norsys.com/onLineAPIManual/functions/GetNodeExperience_bn.html

NodeFinding 131

AddLink (A, B)
AddLink (A, C)
AddLink (B, C)

Parentless node, only need one value
NodeExperience (A) <- 10
stopifnot (

abs (NodeExperience (A)-10)<.00001

NodeExperience (B) <- c(1,2,3,4)

stopifnot (
length (NodeExperience (B)) ==4,
all (names (NodeExperience (B))==NodeStates (4)),
abs (NodeExperience (B) [2]-2)<.00001

Set them all to the same value.

NodeExperience (C) <- 10

stopifnot (
all (dim (NodeExperience (C))==sapply (ParentStates(C), length)),
all (dimnames (NodeExperience (C)) [[1]]==ParentStates(C) [[1]11]),
all (dimnames (NodeExperience (C)) [[2]]==ParentStates(C) [[2]11),
all (names (dimnames (NodeExperience (C)))==ParentNames (C)),
abs (NodeExperience (C) [3,2]-10)<.00001

)

NodeExperience (C) ["A3","B2"] <- 11

stopifnot (
abs (NodeExperience (C) [3,2]-11)<.00001

DeleteNetwork (abc)

NodeFinding Returns of sets the observed value associated with a Netica node.

Description

A finding is an observed variable in a Bayesian network. The expression NodeFinding (node) <- value
indicates that the observed value of node should be set to value. The function NodeFinding (node)
returns the current value.

Usage

NodeFinding (node)
NodeFinding (node) <- wvalue

132 NodeFinding

Arguments
node An active Net icaNode whose value was observed or hypothesized.
value A character or integer scaler indicating the value which was observed or hypoth-
esized. If a character, it should be one of the values in NodeStates (node).
If an integer it should be a value between 1 and NodeNumStates (node)
inclusive.
Details
Setting NodeFinding (node) <- value essentially asserts that Pr(node = value) = 1.

The value may be either expressed as a character name of one of the states, or an integer giving the
index into the state table.

Note that setting NodeFinding (node) <- value clears any previous findings (including
virutal findings set through NodeLikelihood () or EnterNegativeFinding ()), that may
have been set. The function Ret ractNodeFinding (node) will clear the current finding with-
out setting it to a new value.

The function NodeFinding (node) returns the currently set finding, if there is one. It can also
return one of the three special values:

1. "@NEGATIVE FINDINGS" — Negative findings have been entered using EnterNegativeFinding ().

2. "QLIKELIHOOD" — Uncertiain evidence which provides a likelihood of various states of
the node were entered using NodeLikelihood (node)

3. "@NO FINDING" — No findings, including negative findings or likelihood findings were
entered.

Value

The expression NodeFinding (node) <-value returns the modified node invisibly.

The function NodeFinding (node) returns a string which is either the currently set finding or
one of the special values "@NO FINDING", "QLIKELIHOOD",or "@NEGATIVE FINDINGS".

Note

If SetNetworkAutoUpdate () hasbeen set to TRUE, then this function could take some time as
each finding is individually propagated. Consider wrapping multiple calls setting NodeFinding ()
in WithoutAutoUpdate (net, ...).

Unlike the Netica function EnterFinding_bn () the function "NodFinding<-" internally
calls RetractFindings. So there is no need to do this manually.

Author(s)

Russell Almond

NodeFinding 133

References

http://norsys.com/onLineAPIManual/index.html: GetNodeFinding_bn()92, EnterFind-
ing_bn()*

See Also

NeticaBN,NodeBeliefs (),EnterNegativeFinding(),EnterFindings (),RetractNodeFinding(),
NodeLikelihood (), JointProbability (),MostProbableConfig(),FindingsProbability ()

Examples

irt5 <- ReadNetworks (paste(library (help="RNetica") $path,
"sampleNets", "IRT5.dne",
sep=.Platform$file.sep))

irt5.theta <- NetworkFindNode (irt5, "Theta")
irt5.x <- NetworkFindNode (irt5,paste("Item",1:5,sep="_"))

CompileNetwork (irt5) ## Ready to enter findings

stopifnot (
irt5 is parent node, so marginal beliefs and conditional
probability table should be the same.
sum (abs (NodeBeliefs (irt5.theta) - NodeProbs (irt5.theta))) < le-6
)
Marginal probability for Node 5
irt5.x5.init <- NodeBeliefs (irt5.x[[5]1])

SetNetworkAutoUpdate (irt5, TRUE) ## Automatic updateing
NodeFinding (irt5.x[[1]]) <- "Right"
stopifnot (
IsBeliefUpdated (irt5.x[[5]])
)
irt5.x5.timel <- NodeBeliefs (irt5.x[[5]1)
stopifnot (
sum (abs (1irt5.x5.init-irt5.x5.timel)) > le-6

SetNetworkAutoUpdate (irt5, FALSE) ## Automatic updateing

NodeFinding (irt5.x[[2]]) <- 2 ## Wrong
stopifnot (
!ITsBeliefUpdated (irt5.x[[5]11),
NodeFinding (irt5.x[[2]]) == "Wrong"

)
irt5.x5.time2 <- NodeBeliefs (irt5.x[[5]1)

stopifnot (
sum (abs (irt5.x5.time2-irt5.x5.timel)) > le-o6,
IsBeliefUpdated (irt5.x[[5]]) ## Now we have updated it.

)

2http://norsys.com/onLineAPIManual/functions/GetNodeFinding_bn.html
Bhttp://norsys.com/onLineAPIManual/functions/EnterFinding_bn.html

134 NodelnputNames

Negative finding

EnterNegativeFinding (irt5.theta,c("negl", "neg2")) ## Rule out negatives.
stopifnot (
NodeFinding (irt5.theta) == "Q@NEGATIVE FINDINGS"

Clearing Findings
RetractNodeFinding (irt5.theta)
stopifnot (
NodeFinding (irt5.theta) == "@NO FINDING"

##Virtual findings for X3. Assume judge has said right, but judge has
80% accuracy rate.
NodeLikelihood (irt5.x[[3]]) <- c(.8,.2)
stopifnot (
NodeFinding (irt5.x[[3]]) == "@LIKELIHOOD"

DeleteNetwork (irth)

NodeInputNames Associates names with incomming edges on a Netica node.

Description

The function NodeInputNames () can be used to set or retrieve names for each of the parents of
node. This facilitates operations such as copying and reconnecting the nodes.

Usage

NodeInputNames (node)
NodeInputNames (node) <- value

Arguments
node A NeticaNode object whose parent link names will be retrieved or set.
value A character vector of length 1ength (NodeParents (node) giving the new
names. Names must conform to the ITDname convention.
Details

When a parent node is detached from a child, Netica names the link with the name of the old node.

For example, suppose that the following commands were executed AddLink (A, C) ; AddLink (B, C).
Then if the node B is detacted, via NodeParents (C) [2]<-1ist (NULL), Netica will replace

B with a stub node, and name the link "B". The command NodeParents (C) SB <- D would

then attach the node D where the old node was attached.

NodelnputNames 135

Rather than relying on the automatic naming scheme, the node names can be directly set using
NodeInputNames (node) <-newvals. Netica will not rename a detached link if there already
exists a name for that link. Explicitly naming the links rather than relying on Netica’s naming
scheme is probably good practice. If node input names are set, then they will be used names for the
return value of NodeParents ()

The getter form NodeInputNames () returns the currently set names of the input links. If an
input link whose name has not been set either directly or via inserting a NULL in NodeParents ()
has a name of " ".

Value

The function Node InputNames () returns a character vector of the same length as GetNodeParents ()
giving the current names of the links. If a link has not yet been named, the corresponding entry of
the vector will be the empty string.

The setter function returns the node object invisibly.

Note
To detach a parent, you mustuse 1ist (NULL) on the left hand side of NodeParents (node) [i] <- list (NULL)
and not NULL.

Author(s)
Russell Almond

References
http://norsys.com/onLineAPIManual/index.html: GetNodeInputNames_bn()94, SetN-
odeInputNarnes_bn()95 , SwitchNodeParent_bn()°°

See Also

NeticaNode, AddLink (), NodeParents ()
Examples
abnet <- CreateNetwork ("AB")

anodes <- NewDiscreteNode (abnet, paste("A",1:3,sep=""))
B <- NewDiscreteNode (abnet, "B")

NodeParents (B) <- anodes

stopifnot (
all (NodeInputNames (B)=="")

NodeParents (B) [2] <- 1list (NULL)

“http://norsys.com/onLineAPIManual/functions/GetNodeInputNames_bn.html
Phttp://norsys.com/onLineAPIManual/functions/SetNodeInputNames_bn.html
%http://norsys.com/onLineAPIManual/functions/SwitchNodeParent_bn.html

136 NodeKind

stopifnot (
NOdeInputNameS (B) ==C(" ll, llAz ll, n Il)

Now can use A2 as name
D <- NewDiscreteNode (abnet, "D")
NodeParents (B) SA2 <- D
But name doesn't change
stopifnot (

NodeInputNames (B)==c("","A2","")

##Name the inputs
NodeInputNames (B) <- paste("Input",1:3,sep="")
stopifnot (

names (NodeParents (B)) [2]=="Input2"

Now detaching nodes doesn't change input names.
NodeParents (B) [1] <- 1list (NULL)

stopifnot (
NodeKind (NodeParents (B) [[1]])=="Stub",
NodeInputNames (B) [1]=="Inputl"

DeleteNetwork (abnet)

NodeKind Gets or changes the kind of a node in a Netica network.

Description

Netica supports nodes of four different kinds: "Nature", "Decision", "Utility", and
"Constant". A fifth kind, "Stub" is used for a reference to a node when an edge has been
detacted from a node. The function NodeKind () returns the current kind.

Usage

NodeKind (node)
NodeKind (node) <- value

Arguments
node A NeticaNode object whose kind is to be determined or manipulated.
value A character string with one of the values: "Nature", "Decision", "Utility",

or "Constant". Actually, only the first letter is matched, so this could be one
of N, D, UorC.

NodeKind 137

Details

A "Nature" node (the default when the node is created) is a random variable whose value can be
predicted using the network. Pure Bayesian networks use only "Nature" nodes.

A "Decision" node is one whose value will be chosen by some decision maker. A "Utility"
node is one whose value the decision maker is trying to optimize. A influence diagram contains
decision nodes and utilities in addition to nature nodes. The goal is implicitly to find a setting of
the decision nodes that maximizes the expected utility.

A "Constant" node is a parameter used for building a conditional probability table. Its value is
nominally fixed, but it can be changed to perform sensitivity analysis.

A "Stub" is a reference to a node created by removing a parent node from another node without
changing the table. It is assumed that a real node will later be attached in that location. This kind can
only be set internally to Netica; the expression NodeKind (node) <- "Stub" will generate an
error.

Value
A character vector of length one containing one of the values: "Nature", "Decision","Utility",
"Constant",or "Stub".

Note
Internal to Netica, "Stub"s are called DISCONNECTED_NODES. I changed the name to make
them start with a unique letter.

Author(s)
Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNodeKind_bn()*’, SetNodeKind_bn()*®

See Also

NeticaNode, is.discrete (), NodeParents ()
Examples
knet <- CreateNetwork ("kNet")
skills <- NewContinuousNode (knet,paste ("SkillAtTime",1:2, sep=""))

reward <- NewContinuousNode (knet, "RewardForSkill")
NodeKind (reward) <- "Utility"

placement <-
NewDiscreteNode (knet, "Placement",c("Tierl", "Tier2","Tier3"))

http://norsys.com/onLineAPIManual/functions/GetNodeKind_bn.html
%http://norsys.com/onLineAPIManual/functions/SetNodeKind_bn.html

138 NodeLevels

NodeKind (placement) <- "Decision"

instructionCost <- NewContinuousNode (knet, "CostOfInstruction")
NodeKind (instructionCost) <-— "U"

pretest <- NewDiscreteNode (knet, "PretestDecision",c ("yes", "no"))
NodeKind (pretest) <- "D"

pretestScore <- NewContinuousNode (knet, "PretestScore")
NodeKind (pretestScore) <- "Nature"

pretestCost <- NewContinuousNode (knet, "PretestCost")
NodeKind (pretestCost) <- "u"

pretestR <- NewContinuousNode (knet, "PretestReliability")
NodeKind (pretestR) <- "Constant"

stopifnot (

NodeKind (skills[[1]]) == "Nature",
NodeKind (skills[[2]]) == "Nature",
NodeKind (reward) == "Utility",

NodeKind (placement) == "Decision",
NodeKind (instructionCost) == "Utility",
NodeKind (pretest) == "Decision",
NodeKind (pretestScore) == "Nature",
NodeKind (pretestCost) == "Utility",
NodeKind (pretestR) == "Constant"

)

To make stub node, need links
AddLink (skills[[1]],pretestScore)
NodeInputNames (pretestScore) <- "SkillTested"
Detatch node
NodeParents (pretestScore) $SkillTested <- 1list (NULL)
stopifnot (
NodeKind (NodeParents (pretestScore) $SkillTested) == "Stub"

DeleteNetwork (knet)

Nodelevels Accesses the levels associated with a Netica node.

Description

The levels associate a numeric value with the levels of a discrete Net icaNode, or cut a discrete
node into a number ordered categories. This function fetches or retrieves the levels for node. See
description for more details.

Nodel evels 139

Usage

NodeLevels (node)
NodeLevels (node) <- wvalue

Arguments
node A NeticaNode whose levels are to be accessed.
value A numeric vector of values. For discrete nodes, values should have length
NodeNumStates (node) . For continuous nodes, it can be of any length (ex-
cept 1) should be in either increasing or decreasing order.
Details

The behavior of the levels depends on whether the node is discrete (s . discrete (node) ==TRUE)
or continuous (is.discrete (node)==TRUE).

Discrete. For discrete nodes, the levels are associated with the states and provide a numeric sum-
mary of the states. In particular, if NodeLevels are set, then it is meaningful to calculate an
expected value for the node. The vector returned by NodeLevels () is named with the names
of the states, making the association clear. When setting the NodeLevels, it should have length
equal to the number of states (NodeNumStates (node)).

Note that the first time the NodeLevels () are set, the entire vector must be set. After that point
individual values may be changed.

Continuous. For a continuous node, the levels are used to split the continuous range into intervals
(similar in spirit to the function cut ()). The levels represent the endpoints of the intervals and
should be in either increaseing or decreasing order. The values Inf and —Inf are acceptable for
the endpoints of the interval. There should be one more level than the desired number of states.

The states of a continuous node are defined by the node levels, and it is not meaningful to try to set
NodeStates (), NodeStateTitles () or NodeStateComments ().

Setting NodeLevels (node) <-NULL for a continuous node will clear the levels and the states.

Value

For discrete nodes, a numeric vector of length NodeNumStates (), with names equal to the state
names. If levels have not be set, NAs will be returned.

For continuous nodes, a numeric vector of length NodeNumStates () +1 with no names, or
character (0).
Note

The overloading of node levels is a "feature" of the Netica API. It is not great design, but it probably
will be maintained for backwards compatability.

Author(s)

Russell Almond

140 NodeLevels

References
http://norsys.com/onLineAPIManual/index.html: SetNodeLevels_bn()()*°, GetN-
odeLevels_bn()'%, GetNodeNumberStates_bn()!°!, GetNodeStateName_bn()'?2, SetNodeStateNames_bn()'?
See Also
NewDiscreteNode (), NeticaNode, NodeName (), is.discrete (), is.active (),

NodeStateTitles (), NodeStates (), NodeStateComments (),

Examples

lnet <- CreateNetwork ("LeveledNet")

Discrete Node
vnode <- NewDiscreteNode (lnet, "volt_switch",c("Off", "Reverse", "Forwards"))

stopifnot (
length (NodeLevels (vnode)) ==3,
names (NodeLevels (vnode)) == NodeStates (vnode),

all (is.na (NodeLevels (vnode)))

Not run:

Don't run this until the levels for vnode have been set,
it will generate an error.

NodeLevels (vnode) [2] <= 0

End (Not run)

NodeLevels (vnode) <- 1:3

stopifnot (
length (NodeLevels (vnode)) ==3,
names (NodeLevels (vnode)) == NodeStates (vnode),
Nodelevels (vnode) [2]==2

)

Nodelevels (vnode) ["Reverse"] <- -2

Continuous Node
wnode <- NewContinuousNode (lnet, "Weight")

stopifnot (
length (NodeLevels (wnode)) ==0,
NodeNumStates (wnode) ==0

)

NodeLevels (wnode) <- c(0, 0.1, 10, Inf)
stopifnot (
length (NodeStates (wnode)) ==3,

Phttp://norsys.com/onLineAPIManual/functions/SetNodeLevels_bn () .html
10nttp://norsys.com/onLineAPIManual/functions/GetNodeLevels_bn.html
0lnttp://norsys.com/onLineAPIManual/functions/GetNodeNumberStates_bn.html
12nttp://norsys.com/onLineAPIManual/functions/GetNodeStateName_bn.html
103nttp://norsys.com/onLineAPIManual/functions/SetNodeStateNames_bn.html

NodeLikelihood 141

NodeNumStates (wnode) ==

)
NodeStates (wnode) <- c("Low", "Medium", "High")
stopifnot (

NodeStates (wnode) [3] == "High",

is.null (names (NodeLevels (wnode)))

)

Change number of states
NodeLevels (wnode) <- c(0, 0.1, 10, 100, Inf)
stopifnot (

length (NodeStates (wnode)) ==4,

NodeNumStates (wnode) ==4,

all (nchar (NodeStates (wnode)) ==0)

)

Clear levels
NodeLevels (wnode) <- c()

stopifnot (

NodeNumStates (wnode) ==0,

length (NodeStates (wnode)) ==

)

DeleteNetwork (1lnet)

NodelLikelihood Returns or sets the virtual evidence associated with a Netica node.

Description

The findings associated with a node can be exrpressed as the probability of the evidence occuring
in each of the states of the node. This is the likelihood associated with the node. This function
retrieves or sets the likelihood.

Usage

NodeLikelihood (node)
NodeLikelihood (node) <- value

Arguments
node An active Net icaNode whose evidence is to be queried or set.
value A numeric vector of length NodeNumStates (node) representing the new
likelihood for the node. All values must be between zero and one and there
must be at least one positive value, but the sum does not need to equal 1.
Details

This function retrieves or sets virtual evidence associated with each node. Suppose that some set
of evidence e is observed. The each of the values in the likelihood representes the conditional
probability Pr(e|node == state). Note that the likelihood can be throught of as the message that

142 NodeLikelihood

a new node child which was a child of node with no other parents would pass to node if its
value was set.

As the likelihood values are conditional probabilities, they do not need to add to 1, although they
are still restricted to the range [0,1]. Also, at least one value must be non-zero (or else the evidence
represtents an impossible case) or Netic will generate an error.

Entering findings through NodeFinding (node, state) sets a special likelihood. In this case,
the likelihood value corresponding to st ate will be 1, and all others will be 0. Similarly, EnterNegativeFinding (noc
sets a special likelihood with 0’s corresponding to the states in statelist and 1’s elsewhere.

Setting the likelihood calls RetractNodeFinding (), clearing any previous finding, negative
finding or likelihood.

Value

The function NodeLikelihood (node) returns a vector of likelihoods of length NodeNumStates (node).
The names of the result are the state names.

The expression NodeLikelihood (node) <-value returns the modified node invisibly.

Warning

The documentation for the Netica function MostProbableConﬁg_bn()104 states that likelihood find-
ings are not properly taken into accont in MostProbableConfig (). Some quick tests indicate
that it is doing something sensible, but more extensive testing and/or clarification is needed.

The documentation for the Netica function FindingsProbability_bn()!* also provides a warning
about likelihood evidnece. The function FindingsProbability (net) still gives a result, but
it is the normalization constant for the network, and not necessarily a probability.

Note

If SetNetworkAutoUpdate () has been set to TRUE, then setting the likelihood could take
some time as each finding is individually propagated. Consider wrapping multiple calls setting
NodeLikelihood () inWithoutAutoUpdate (net, ...).

Unlike the Netica function EnterNodeLikelihood_bn () the function "NodFinding<-"
internally calls RetractFindings. So there is no need to do this manually.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNodeLikelihood_bn()!°°, En-
terNodeLikelihood_bn()!"’

104nttp: //norsys.com/onLineAPIManual/functions/MostProbableConfig_bn.html
05nttp://norsys.com/onLineAPIManual/functions/FindingsProbability_bn.html
1060t tp://norsys.com/onLineAPIManual/functions/GetNodeLikelihood_bn.html
107http: //norsys.com/onLineAPIManual/functions/EnterNodeLikelihood_bn.html

NodeLikelihood 143

See Also

NeticaBN, NodeBeliefs (), EnterNegativeFinding (), RetractNodeFinding(),
NodeFinding () JointProbability (),MostProbableConfig(),FindingsProbability ()

Examples

irt5 <- ReadNetworks (paste(library (help="RNetica") $path,
"sampleNets", "IRT5.dne",
sep=.Platform$file.sep))

irt5.theta <- NetworkFindNode (irt5, "Theta")
irt5.x <- NetworkFindNode (irt5,paste ("Item",1:5,sep="_"))

CompileNetwork (irt5) ## Ready to enter findings
Simple finding
NodeFinding (irt5.x[[1]])<-"Wrong"

stopifnot (
NodelLikelihood (irt5.x[[1]]) == c(0,1)

Negative finding

EnterNegativeFinding (irt5.theta,c("negl", "neg2")) ## Rule out negatives.
stopifnot (

NodeLikelihood (irt5.x[[1]]) == c(0,1),

NodeLikelihood (irt5.theta) == c¢(1,1,1,0,0),

NodeFinding (irt5.theta) == "@NEGATIVE FINDINGS"

Clearing Findings
RetractNodeFinding (irt5.theta)
stopifnot (
NodeLikelihood (irt5.theta) == c(1,1,1,1,1)

##Virtual findings for X3. Assume judge has said right, but judge has
80% accuracy rate.
NodeLikelihood (irt5.x[[3]]) <= c(.8,.2)

stopifnot (
sum (abs (NodeLikelihood (irt5.x[[3]1]) - c(.8,.2))) < le-o6,
NodeFinding (irt5.x[[3]]) == "Q@LIKELIHOOD"

Add in virtual likelihood from a second Jjudge

NodeLikelihood (irt5.x[[3]]) <- NodelLikelihood(irt5.x[[3]]) * c(.75,.25)
stopifnot (
sum (abs (NodeLikelihood (irt5.x[[3]]) - c(.6,.05))) < le-6

DeleteNetwork (irth)

144 NodeName

NodeName Gets or set of a Netica node.

Description

Gets or sets the name of the node. Names must conform to the IDname rules.

Usage

NodeName (node)
NodeName (node) <- value

Arguments
node An active Net i caNode object that references the node.
value An character vector of length 1 giving the new name.
Details

Node names must conform to the IDname rules for Netica identifiers. Trying to set the node to a
name that does not conform to the rules will produce an error, as will trying to set the node name to
a name that corresponds to a different node in the network.

On a call to the setting method, if a node of the given name already exists, a warning will be issued
and the node argument will be returned unchanged.

The NodeTitle () function provides another way to name a node which is not subject to the
IDname restrictions.

Value

The name of the node as a character vector of length 1.

The setter method returns the Net icaNode object

Note

Net icaNode objects are internally implemented as character vectors giving the name of the net-

work. If a node is renamed, then it is possible that R will hold onto an old reference that still using

the old name. In this case, NodeName (node) will give the correct name, and NetworkFindNode (net, NodeName (nc
will return a reference to a corrected object.

Author(s)

Russell Almond

NodeName 145

References

http://norsys.com/onLineAPIManual/index.html: GetNodeName bn()!%®, SetN-
odeName_bn()!%°

See Also

NewDiscreteNode (), NeticaNode, NetworkFindNode (), NodeTitle ()

Examples
net <- CreateNetwork ("funNet")

pnode <- NewDiscreteNode (net, "play")
nodecached <- pnode

stopifnot (NodeName (pnode)=="play")

NodeName (pnode) <-"work"
stopifnot (as.character (pnode)=="work")

##Warning, the following expression is true!

as.character (nodecached) != NodeName (nodecached)
But this one holds
stopifnot (NodeName (pnode)==NodeName (nodecached))

And this one
stopifnot (pnode==nodecached)

This fixes the problem
NodeName (nodecached) <- NodeName (nodecached)

stopifnot (as.character (nodecached) == NodeName (nodecached))

snode <- NewContinuousNode (net, "sleep")

NodeName (snode) <- "work" ## This should issue a warning
And not change the name.
stopifnot (NodeName (snode)=="sleep")

allNodes <- NetworkAllNodes (net)
NodeName (allNodesS$Swork) <- "effort"

DeleteNetwork (net)

18nttp://norsys.com/onLineAPIManual/functions/GetNodeName_bn.html
19http: //norsys.com/onLineAPIManual/functions/SetNodeName_bn.html

146 NodeNet

NodeNet Finds which Netica network a node comes from.

Description

Each active NeticaNode object lives inside of a NeticaBN object. This function finds the
network corresponding to a node.

Usage

NodeNet (node)

Arguments

node A NeticaNode object.

Details

Two nodes with the same details in different networks are not identical inside of Netica.

This function only works for active nodes. If is.active (node) returns false, this function will
return NULL.

The functions NetworkAllNodes () and NetworkFindNode () provide pseudo-inverses for
this function.

Value

A NeticaBN object which contains node, or NULL if node is not active.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNodeNet_bn()!'°

See Also

NeticaBN,NeticaNode,is.active (),NetworkAllNodes (), NetworkFindNode ()

http://norsys.com/onLineAPIManual/functions/GetNodeNet_bn.html

NodeParents

Examples

neta <- CreateNetwork ("Net_A")
netb <- CreateNetwork ("Net_B")

nodea <- NewContinuousNode (neta, "Node")
nodeb <- NewContinuousNode (netb, "Node")

stopifnot (NodeNet (nodea)==neta)
stopifnot (NodeNet (nodeb)==netb)

Note

stopifnot (nodea != nodeb)

But:

stopifnot (as.character (nodea) == as.character (nodeb))

DeleteNodes (nodeb)

stopifnot (is.null (NodeNet (nodeb)))

DeleteNodes (nodea)

Now:

stopifnot (nodea == nodeb)

DeleteNetwork (list (neta, netb))

147

NodeParents

Gets or sets the parents of a node in a Netica network.

Description

A parent of a Net i caNode is another node which has a link (created through AddLink () from
that node to child. This function returns the list of parents. It also allows the list of parents for

the node to be set, altering

Usage

NodeParents (child)
NodeParents (child)

the topology of the network (see details).

<- value

Arguments
child An active Net i caNode object whose parents are of interest.
value A list of Net 1 caNode objects (or NULLs) which will become the new parents.

Order of the nodes is important. See details.

148 NodeParents

Details

At its most basic level, NodeParents () reports on the topology of a network. Suppose we add
the links A1 —--> B, A2 ——> B, and A3 ——> B to the network. Then NodeParents (B)
should return 1ist (A1, A2, A3). The order of the inputs is important, because that this deter-
mines the order of the dimensions in the conditional probability table (NodeProbs ()).

The parent list can be set. This can accomplishes a number of diffent goals: it can replace a par-
ent variable, it can add additional parents, it can remove extra parents, and it can reorder parents.
Changing the parents alters the topology of the network. Note that Netica networks must always be
acyclic directed graphs. In particular, if is . NodeRelated (child, "decendent", parent)
returns true for any prospective parent, Netica will generate an error (new parents must node be de-
cendents of the child as that would produce a cycle).

Setting an element of the parent list to 1ist (NULL) has special semantics. In this case, the parent
node becomes a special stub node (or DISCONNECTED_TYPE, see NodeKind ()). This creates
a Bayesian network fragment which can later be connected to another Bayesian network (using
SetParents () with the new parent.

The function Node InputNames (child), returns a list of names for the parent variables. Nam-
ing the parent variables facilitates disconnecting the node and reconnecting it. Whenever a node is
disconnected, the corresponding input is named after the disconnected node, unless it already has
an input name.

Value

A list of Net icaNode objects representing the parents in the order that they will be used to es-
tablish dimensions for the conditional probability table. If NodeInputNames (child) has been
set, the names of the result will be the input names.

The setting variant returns the modified chi1d object.

Note

Much of the checking for this function is done internally in the Netica API, and not in the RNet-
ica interface layer. In particular, creating directed cycles will produce errors in Netica and not in
RNetica.

This is actually an attempt to make the RNetica interface more R-like, covering the common
cases of NodeParents (child) <- wvalue. Under the hood it is using the Netica function
SwitchNodeParent_bn () to produce the expected behavior.

The fact that if x is a list x [[2]] <-NULL deletes the second element rather than replacing it
with NULL is a serious design flaw in R. However, it is documented in the FAQ and it is unlikely
to change, so we need to workaround it. We do this by setting the element we want to delete to
list (NULL). Nominally, we would do this through x [2] <-1ist (NULL), which is the official
workaround for the design flaw. NodeParents<- will accept 1ist (NULL) in place of NULL
because nobody who isn’t part of the R Core Development Team will ever remember which form
they are suppose to use here.

Author(s)
Russell Almond

NodeParents 149

References

http://norsys.com/onLineAPIManual/index.html: GetNodeParents_bn()'!', SwitchN-
odeParent_bn()!!?

See Also

NeticaNode, AddLink (),NodeChildren (),NodeKind (),NodeInputNames (),is.NodeRelated ()

Examples

abnet <- CreateNetwork ("AB")

anodes <- NewDiscreteNode (abnet, paste("A",1:3,sep=""))
B <- NewDiscreteNode (abnet, "B")

Should be empty list
stopifnot (length (NodeParents (B))==0)

NodeParents (B) <- anodes

stopifnot (
length (NodeParents (B)) ==3,
NodeParents (B) [[2]] == anodes[[2]]

Reorder nodes
NodeParents (B) <- anodes[c(2:3,1)]
stopifnot (
length (NodeParents (B))==3,
NodeName (NodeParents (B) [[2]])=="A3",
all (nchar (names (NodeParents (B)))==0)

Remove a node.
NodeParents (B) <- anodes[2:1]

stopifnot (
length (NodeParents (B))==2,
NodeName (NodeParents (B) [[2]])=="A1",

all (nchar (names (NodeParents (B)))==0)

Add a node
NodeParents (B) <- anodes[3:1]

stopifnot (
length (NodeParents (B)) ==3,
NodeName (NodeParents (B) [[3]])=="A1",

all (nchar (names (NodeParents (B)))==0)

##Name the inputs

Wnttp://norsys.com/onLineAPIManual/functions/GetNodeParents_bn.html
2http://norsys.com/onLineAPIManual/functions/SwitchNodeParent_bn.html

150 NodeProbs

NodeInputNames (B) <- paste ("Input",1:3,sep="")
stopifnot (
names (NodeParents (B)) [2]=="Input2"

Detach the parent
NodeParents (B) $Input2 <- list (NULL)

stopifnot (
length (NodeParents (B)) ==3,
NodeKind (NodeParents (B) $Input2) == "Stub"

Remove all parents
NodeParents (B) <- 1list ()
stopifnot (

length (NodeParents (B))==0

DeleteNetwork (abnet)

NodeProbs Gets or sets the conditional probability table associated with a Netica
node.

Description

A complete Bayesian networks defines a conditional probability distribution for a node given its
parents. If all the nodes are discrete, this comes in the form of a conditional probability table a
multidimensional array whose first several dimensions follow the parent variable and whose last
dimension follows the child variable.

Usage

NodeProbs (node)
NodeProbs (node) <- wvalue

Arguments
node An active, discrete Net icaNode whose conditional probability table is to be
accessed.
value The new conditional probability table. See details for the expected dimensions.
Details

Let node be the node of interest and parent I, parent2, ..., parentp, where p is the number
of parents. Let pdim sapply (NodeParents (node), NodeNumStates) be a vector
with the number of states for each parent. A parent configuration is defined by assigning each of
the parent values to one of its possible states. Each parent configuration defines a (conditional)
probability distribution over the possible states of node.

NodeProbs 151

The result of NodeProbs (node) will be an array with dimensions ¢ (pdim, NodeNumStates (node)).
The first p dimensions will be named according to the NodeInputNames (node) or the
NodeName (parent) if the input names are not set. The last dimension will be named according

to the node itself. The dimnames for the resulting array will correspond to the state names.

The setter form expects an array of the same dimensions as an argument, although it does not need
to have the dimnames set.

Value

A conditional probability array of class c ("CPA", "array"). See details

Note

All of this assumes that these are discrete nodes, that is is.discrete (node) will return true
for both node and all of the parents. It is unknown what Netica does is this is not right.

This doc file is still pretty lame. Probably need to redo output as a CPT class.

Author(s)
Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNodeProbs_bn()'}, SetN-
odeProbs_bn()!'4

See Also

NeticaNode,NodeParents (),NodeInputNames (),NodeStates (),CPA,CPF,normalize ()

Examples

abc <- CreateNetwork ("ABC")

A <- NewDiscreteNode (abc, "A",c ("A1l","A2","A3","A4"))
B <- NewDiscreteNode (abc, "B",c ("B1","B2","B3"))

C <- NewDiscreteNode (abc, "C",c ("C1","C2"))

AddLink (A, B)
AddLink (&, C)
AddLink (B, C)

NodeProbs (A)<-c(.1,.2,.3,.4)
NodeProbs (B) <- normalize (matrix(1:12,4,3))
NodeProbs (C) <- normalize(array(l:24,c(4,3,2)))

Aprobs <- NodeProbs (A)
Bprobs <- NodeProbs (B)
Cprobs <- NodeProbs (C)

Bpttp://norsys.com/onLineAPIManual/functions/GetNodeProbs_bn.html
4http: //norsys.com/onLineAPIManual/functions/SetNodeProbs_bn.html

152 NodeSets

stopifnot (
is.CPA (Aprobs),
is.CPA (Bprobs),
is.CPA (Cprobs)

DeleteNetwork (abc)

NodeSets Lists or changes the node sets associated with a Netica node.

Description
A node set is a character label associated with a node which provides information about its role in
the models. This function returns or sets the labels associated with a node.

Usage

NodeSets (node, incSystem = FALSE)
NodeSets (node) <- value

Arguments
node An active Net i caNode object.
incSystem A logical flag. If TRUE then built-in Netica node sets are returned as well as the
user defined ones.
value A character vector containing the names of the node sets that node should be
associated with. These names must follow the is.IDname () rules.
Details

Netica node sets are a collection of string labels that can be associated with various nodes in a
network. Node sets do not have any meaning to Netica: node set membership only affect the way
the node is displayed (see NetworkNodeSetColor ()). One purpose of node sets is to label
a set of nodes that play a similar role in the model. For example, "ReportingVariable" or
"Observable".

The expression NodeSet (node) returns the node sets currently associated with node. If incSystem=TRUE,
then the internal Netica system node sets will be included as well. These begin with a colon (‘:”).

The expression NodeSet (node) <-value removes any node sets previously associated with
node and adds node to the node sets named in value. The elements of value need not corre-
spond to existing node sets, new node sets will be created for new values. (Warning: this implies
that if the name of the node set is spelled incorrectly in one of the calls, this will create a new
node set. For example, "Observable" and "Observables" would be two distinct node sets.)
Setting the node set associated with a node only affects user-defined node sets, the Netica system
node sets cannot be set using NodeSet.

NodeSets 153

Value
A character vector giving the names of the node sets node is associated with. The setter form
returns node.

Author(s)
Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: AddNodeToNodeset_bn()l15, Re-
moveNodeFromNodeset_bn()'!°, IsNodeInNodeset_bn()!”

See Also

NeticaNode,NodeKind (),NetworkNodeSets (),NetworkSetPriority(),NetworkNodesInSet (),
NetworkNodeSetColor (), is.IDname ()

Examples

nsnet <- CreateNetwork ("NodeSetExample™)
Ability <- NewContinuousNode (nsnet,"Ability")
EssayScore <- NewDiscreteNode (nsnet, "EssayScore",paste("level",5:0,sep="_"))

Value <- NewContinuousNode (nsnet, "Value")

NodeKind (Value) <- "Utility"

Placement <- NewDiscreteNode (nsnet, "Placement",
c ("Advanced", "Regular", "Remedial"))

NodeKind (Placement) <- "Decision"

stopifnot (
length (NodeSets (Ability)) == 0, ## Nothing set yet
setequal (NodeSets (Ability, TRUE),

c(":Continuous", ":Nature", ":TableIncomplete",
":Parentless", ":Childless", ":Node")),
lis.na(match(":Utility", NodeSets (Value, TRUE))),
lis.na(match (" :Decision",NodeSets (Placement, TRUE)))

NodeSets (Ability) <- "ReportingVariable"
stopifnot (

NodeSets (Ability) == "ReportingVariable"
)
NodeSets (EssayScore) <- "Observable"
stopifnot (

Wnttp://norsys.com/onLineAPIManual/functions/AddNodeToNodeset_bn.html
Wonttp: //norsys.com/onLineAPIManual/functions/RemoveNodeFromNodeset_bn.html
Whttp://norsys.com/onLineAPIManual/functions/IsNodeInNodeset_bn.html

154 NodeStates

NodeSets (EssayScore) == "Observable"
)
Make EssayScore a reporting variable, too
NodeSets (EssayScore) <- c("ReportingVariable",NodeSets (EssayScore))
stopifnot (
setequal (NodeSets (EssayScore), c ("Observable", "ReportingVariable"))

Clear out the node set
NodeSets (Ability) <- character()
stopifnot (

length (NodeSets (Ability)) == 0

DeleteNetwork (nsnet)

NodeStates Accessor for states of a Netica node.

Description

This function returns a list associated with a Netica node. The function NodeNumStates ()
returns the number of states, NodeStates returns or manipulates them.

Usage

NodeStates (node)
NodeNumStates (node)
NodeStates (node) <- wvalue

Arguments
node An active Net i caNode object whose states are to be accessed.
value A character vector of length NodeNumStates (node) giving the names of
the states. State names must conform to the IDname rules.
Details
States behave slightly differently for discrete and continuous nodes (see is.discrete (). For

discrete nodes, the random variable represented by the node can take on one of the values repre-
sented by NodeStates (node) .

Discrete. The number of states for a discrete node is determined when the node is created (through
a call to NewDiscreteNode ()). The number of states may not be changed, but they can be
renamed.

The states are important when building conditional probability tables (CPTs). In particular, the state

names are used to label the columns of the CPT. Thus, state names can be used to address arrays
in the same way that dimnames can. In particular, the state names can be used to index the

NodeStates 155

vectors returned by NodeStates (), NodeStateTitles (), NodeStateTitles (), and
NodeLevels () (for discrete nodes).

Continuous. States for a continuous node are determined by the NodeLevels () of the node,
which describe a series of endpoints for intervals that cut the continuous space into the states. The
function NodeNumStates (node) should return 1ength (NodeLevels (node)) —1 unless
the levels have not been set in which case it will be zero. If NodeStates are set for a continuous
node, they must have length 1ength (NodeLevels (node)) -1.

Value

The function NodeNumStates () returns an integer giving the number of states.

The function NodeStates () returns a character vector of length NodeNumStates (node)
whose values and names are both set to the state names. The setter version of this function invisibly
returns the node object.

Author(s)
Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNodeNumberStates_bn()!'8,
GetNodeStateName_bn()'!?, SetNodeStateNames_bn()'?°, GetNodeLevels_bn()'?' SetNodeLevels_bn()'??

See Also

NewDiscreteNode (), NeticaNode, NodeName (), is.discrete (), is.active (),
NodeStateTitles (), NodelLevels (), NodeStateComments (),

Examples

anet <- CreateNetwork ("Annette")

Discrete Nodes
nodel?2 <- NewDiscreteNode (anet, "TwoLevelNode")
stopifnot (

NodeNumStates (nodel?2)==2,

NodeStates (nodel2)==c("Yes", "No")

NodeStates (nodel2) <- c("True","False")
stopifnot (
NodeStates (nodel2)==c ("True", "False")

B8nttp://norsys.com/onLineAPIManual/functions/GetNodeNumberStates_bn.html
Wnttp://norsys.com/onLineAPIManual/functions/GetNodeStateName_bn.html
20http://norsys.com/onLineAPTManual/functions/SetNodeStateNames_bn.html
2lpttp: //norsys.com/onLineAPIManual/functions/GetNodeLevels_bn.html
12http://norsys.com/onLineAPIManual/functions/SetNodeLevels_bn.html

156 NodeStateTitles

nodel3 <- NewDiscreteNode (anet, "ThreeLevelNode",c ("High", "Med", "Low"))
stopifnot (

NodeNumStates (nodel3)==3,

NodeStates (nodel3)==c ("High", "Med", "Low"),

NodeStates (nodel3) [2]=="Med"

NodeStates (nodel3) [2] <— "Median"
stopifnot (
NodeStates (nodel3) [2]=="Median"

NodeStates (nodel3) ["Median"] <- "Medium"
stopifnot (
NodeStates (nodel3) [2]=="Medium"

Continuous Nodes
wnode <- NewContinuousNode (anet, "Weight")

Not run:

Don't run this until the levels for wnode have been set,
it will generate an error.

NodeStates (vnode) <- c("Low", "Medium", "High")

End (Not run)
First set levels of node.
NodeLevels (wnode) <- c(0, 0.1, 10, Inf)

Then can set States.
NodeStates (wnode) <- c("Low", "Medium", "High")

DeleteNetwork (anet)

NodeStateTitles Accessors for the titles and comments associated with states of Netica
nodes.

Description

Each state of a Net i caNode can have a longer title or comments associated with it. These func-
tions get or set the titles or comments.

Usage

NodeStateTitles (node)
NodeStateTitles (node) <- wvalue

NodeStateTitles 157

NodeStateComments (node)
NodeStateComments (node) <- wvalue

Arguments
node An active Net i caNode object whose state titles or coments will be accessed.
value A character vector of length NodeNumStates (node) which provides the
new state titles or names.
Details

The titles are meant to be a more human readable version of the state names and are not subject
the the IDname restrictions. These are displayed in the Netica GUI in certain display modes. The
comments are meant to be a longer free form notes.

Both titles and comments are returned as a named character vector with names corresponding to the
state names. Therefore one can change a single state title or comment by accessing it either using
the state number or the state name.

Value

Both NodeStateTitles () and NodeStateComments () return a character vector of length
NodeNumStates (node) giving the titles or comments respectively. The names of this vector
are NodeStates (node).

The setter methods return the modified Net i caNode object invisibly.

Author(s)
Russell Almond

References
http://norsys.com/onLineAPIManual/index.html: GetNodeStateTitle_bn()'?},SetNodeStateTitle_bn()'**,
GetNodeStateComment_bn()!?*,SetNodeStateComment_bn()'2°

See Also

NeticaNode, NodeStates (), NodeLevels ()

Examples
cnet <- CreateNetwork ("CreativeNet")
orig <- NewDiscreteNode (cnet,"Originality", c("H","M","L"))

NodeStateTitles (orig) <- c("High", "Medium", "Low")
NodeStateComments (orig) [1] <- "Produces solutions unlike those typically seen."

1Bnttp://norsys.com/onLineAPIManual/functions/GetNodeStateTitle_bn.html
24http://norsys.com/onLineAPTManual/functions/SetNodeStateTitle_bn.html
Bnttp://norsys.com/onLineAPIManual/functions/GetNodeStateComment_bn.html
26http://norsys.com/onLineAPIManual/functions/SetNodeStateComment_bn.html

158 NodeTitle

stopifnot (
NodeStateTitles (orig) == c("High", "Medium", "Low"),
grep ("solutions unlike", NodeStateComments (orig))==1,
NodeStateComments (orig) [3]==""
)

sol <- NewDiscreteNode (cnet,"Solution",
c("Typical", "Unusual", "VeryUnusual"))
stopifnot (
all (NodeStateTitles(sol) == ""),
all (NodeStateComments (sol) == "")
)

NodeStateTitles (sol) ["VeryUnusual"] <- "Very Unusual"
NodeStateComments (sol) <- paste("Distance from typical solution",
c("<1", "1--2", ">2"))

stopifnot (
NodeStateTitles (sol) [3]=="Very Unusual",
NodeStateComments (sol) [1] == "Distance from typical solution <1"

)

DeleteNetwork (cnet)

NodeTitle Gets the title or Description associated with a Netica node.

Description

The title is a longer name for a node which is not subject to the netica IDname restrictions. The
description is a freeform text associated with a node.

Usage

NodeTitle (node)

NodeTitle (node) <- value
NodeDescription (node)
NodeDescription (node) <- value

Arguments

node A NeticaNode object.

value A character object giving the new title or description.
Details

The title is meant to be a human readable alternative to the name, which is not limited to the
IDname restrictions. The title also affects how the node is displayed in the Netica GUI.

The description is any text the user chooses to attach to the node. If value has length greater than
1, the vector is collapsed into a long string with newlines separating the components.

NodeTitle 159

Value

A character vector of length 1 providing the title or description.

Note

Node descriptions are called "Descriptions” in the Netica GUI, but "Comments" in the APL

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNodeTitle_bn()'?’, SetNode-
Title_bn()'?8, GetNodeComments_bn()!?°, SetNodeComments_bn()!3°

See Also

NeticaNode, NodeName ()

Examples
net2 <- CreateNetwork ("secondNet")
firstNode <- NewDiscreteNode (net2, "firstNode")

NodeTitle (firstNode) <- "My First Bayesian Network Node"
stopifnot (NodeTitle (firstNode)=="My First Bayesian Network Node")

now <- date()

NodeDescription (firstNode) <-c ("Node created on",now)

stopifnot (NodeDescription(firstNode) ==
paste (c ("Node created on",now),collapse="\n"))

Print here escapes the newline, so 1s harder to read
cat (NodeDescription (firstNode), "\n")

DeleteNetwork (net2)

127http://norsys.com/onLineAPIManual/functions/GetNodeTitle_bn.html
28nttp://norsys.com/onLineAPIManual/functions/SetNodeTitle_bn.html
nttp://norsys.com/onLineAPIManual/functions/GetNodeComments_bn.html
30http://norsys.com/onLineAPIManual/functions/SetNodeComments_bn.html

160 NodeUserField

NodeUserField Gets user definable fields associated with a Netica node.

Description

Netica provides a mechanism for associating user defined values with a node as a series of key/value
pairs. The key must be a IDname and the value can be an aribtrary string.

Usage

NodeUserField (node, fieldname)
NodeUserField (node, fieldname) <- value
NodeAllUserFields (node)

Arguments
node A Net icaBN object indicating the node.
fieldname A character scalar conforming to the IDname rules.
value An arbitrary character string containing the new value. Only the first element is
used.
Details

Netica contains a mechanism for associating user data with nodes. In the Netica documentation,
they note that only strings are really supported as only strings are portable across implementa-
tions. This meachnism can be used to store arbitrary values, but the user is responsible for encod-
ing/decoding them as strings.

Value

A character string with the value stored in the field fieldname, or NA if no such field exists.

The function NodeAllUserFields returns a character vector containing all user data stored
with the node. The names of the result are the names of the fields.

Author(s)
Russell Almond

References

http://norsys.com/onLineAPIManual/index.html GetNodeUserField_bn()'3', SetN-
odeUserField_bn()'3?, GetNodeNthUserField_bn()'3>

Blpttp://norsys.com/onLineAPIManual/functions/GetNodeUserField_bn.html
32nttp://norsys.com/onLineAPIManual/functions/SetNodeUserField_bn.html
Bhttp://norsys.com/onLineAPIManual/functions/GetNodeNthUserField_bn.html

NodeVisPos 161

See Also

NeticaBN, NodeDescription ()
Examples
usedNet <- CreateNetwork ("UsedNet")

userNode <- NewContinuousNode (usedNet, "UserNode")
NodeUserField (userNode, "Author") <- "Russell Almond"

NodeUserField (userNode, "Status") <- "In Progress"
stopifnot (NodeUserField (userNode, "Author")=="Russell Almond")
stopifnot (NodeUserField (userNode, "Status")=="In Progress")

fields <- NodeAllUserFields (userNode)

stopifnot (length(fields)==2)

stopifnot (all(!is.na(match(c("Russell Almond","In Progress"), fields))))
stopifnot (all(!is.na(match(c("Author", "Status"),names (fields)))))

stopifnot (is.na (NodeUserField (userNode, "gender")))

DeleteNetwork (usedNet)

NodeVisPos Gets, sets the visual position of the node on the Netica display.

Description
When displayed in the GUI, Netica nodes have a position. The NodeVisPos () attribute controls
where the node will be displayed.

Usage

NodeVisPos (node)
NodeVisPos (node) <- value

Arguments
node A NeticaNode object whose position is to be determined.
value A numeric vector of length 2 giving the x and y coordinates.
Details

The visual position of the node doesn’t make much different in RNetica, as R does not display the
node. However, it will control the appearence when the node is loaded into the Netica GUIL.

Value

A numeric vector of length 2 with names "x" and "y".

162 NodeVisPos

Note

The minimum possible node position appears to be (0,0) and the maximum is never stated. Netica
appears to round positions to the nearest integer. Also, if the position appears too close to the
boarder (Netica positions the center of the node), Netica will move it away from the edge.

Author(s)
Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNodeVisPosition_bn()'**, SetN-
odeVisPosition_bn()!3?,

See Also

NeticaNode, NodeVisPos ()

Examples

pnet <- CreateNetwork ("PositionNet")
pnode <- NewDiscreteNode (pnet, "PlaceMe")

NodeVisPos (pnode) <- c¢(100,300)
pos <- NodeVisPos (pnode)

stopifnot (
pos["x"] ==100,
pos["y"] ==300

Netica rounds nonitenger positions.
NodeVisPos (pnode) <- c(74.3,88.8)
pos <- NodeVisPos (pnode)

stopifnot (
pos["x"] ==74,
pos["y"] ==88

Warning, setting a node too close to the edge can cause Netica to
reposition the node
NodeVisPos (pnode) <- c(1,1)
pos <- NodeVisPos (pnode)
stopifnot (
pos["x"] >1,
pos["y"] >1

DeleteNetwork (pnet)

B4nttp://norsys.com/onLineAPIManual/functions/GetNodeVisPosition_bn.html
Bnttp://norsys.com/onLineAPIManual/functions/SetNodeVisPosition_bn.html

NodeVisStyle 163

NodeVisStyle Gets/sets the nodes visual appearence in Netica.

Description

Netica internally has a number of styles it can use to draw a node, thes including, "Default", "Ab-
sent", "Shape", "LabeledBox", "BeliefBars", "BeliefLine", and "Meter". The function NodeVisStyle ()
returns how the node will be displayed, or sets how it will be displayed.

Usage

NodeVisStyle (node)
NodeVisStyle (node) <- value

Arguments
node A NeticaNode object whose style is to be determined.
value A character string giving the new style. Must be one of "Default”", "Absent",
"Shape", "LabeledBox", "BeliefBars", "BeliefLine", or "Meter".
Details

The visual style of the node doesn’t make much different in RNetica, as R does not display the
node. However, it will control the appearence when the node is loaded into the Netica GUI.
Value

A character string which is one of the values "Default", "Absent", "Shape", "LabeledBox", "Belief-
Bars", "BeliefLine", or "Meter", or NA if an error occured.

The setter method returns the modified node object.

Note
The Netica documentation indicates that in the future additionl parameters can be added to the style,
for example: "LabeledBox,CornerRoundingRadius=3,LineThickness=2"

Author(s)
Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNodeVisStyle_bn()!, SetN-
odeVisStyle_bn()'%,

Bénttp://norsys.com/onLineAPIManual/functions/GetNodeVisStyle_bn.html
B7http://norsys.com/onLineAPIManual/functions/SetNodeVisStyle_bn.html

164 normalize

See Also

NeticaNode, NodeVisPos ()

Examples

snet <- CreateNetwork ("StylishNet")

snode <- NewDiscreteNode (snet, "StyleMe")
stopifnot (NodeVisStyle (snode)=="Default")

NodeVisStyle (snode) <- "Meter"
stopifnot (NodeVisStyle (snode)=="Meter")

DeleteNetwork (snet)

normalize Normalizes a conditional probability table.

Description

A conditional probability table (CPT) represents a collection of probability distribution, one for
each configuration of the parent variables. This function normalizes the CPT, insuring that the
probabilities in each conditional distribution sum to 1.

Usage

normalize (cpt)

S3 method for class 'CPF'
normalize (cpt)

S3 method for class 'data.frame'
normalize (cpt)

S3 method for class 'CPA'
normalize (cpt)

S3 method for class 'array'
normalize (cpt)

S3 method for class 'matrix'
normalize (cpt)

Default S3 method:

normalize (cpt)

Arguments

cpt A conditional probability table stored in either array (CPA format) or data frame
(CPF format). A general data vector is treated like an unconditional probability
vector.

normalize 165

Details

The normalize function is a generic function which attempts to normalize a conditional proba-
bility distribution.

A conditional probability table in RNetica is represented in one of two ways. In the conditional
probability array (CPA) the table is represented as a p + 1 dimensional array. The first p di-
mensions correspond to configurations of the parent variables and the last dimension the child
value. The normalize.CPA method adjusts the data value so that the sum across all of the
child states is 1. Thus, apply (result, 1:p, sum) should result in a matrix of 1’s. The method
normalize.array first coerces its argument into a CPA and then applies the normalize.CPA
method.

The second way to represent a conditional probability table in RNetica is to use a data frame (CPF).
Here the factor variables correspond to a configuration of the parent states, and the numeric columns
correspond to states of the child varaible. Each row corresponds to a particular configuration of
parent variables and the numeric values should sum to one. The normalize.CPF function makes
sure this constraint holds. The method normalize.data.frame first applies as.CPF () to
make the data frame into a CPF.

The method normalize.matrix ensures that the row sums are 1. It does not change the class.
The default method only works for numeric objects. It ensures that the total sum is 1.

NA’s are not allowed and will produce a result that is all NAs.

Value

An object with similar properities to cpt, but adjusted so that probabilities sum to one.
For normalize.CPA and normalize.array an normalized CPA array.

For normalize.CPF and normalize.data.framan normalized CPF data frame.
For normalize.matrix an matrix whose row sums are 1.

For normalize.default anumeric vector whose values sum to 1.

Note

May be other functions for CPTs later.

Author(s)
Russell Almond

See Also

NodeProbs ()

Examples

nl4d <- normalize(l:4)
stopifnot (abs(sum(nl4)-1.0) <.0001)

normalize (matrix (1:6,2,3))

166 ParentStates

normalize (array(1:24,c(4,3,2)))
arr <- array(l:24,c(4,3,2),
list (a=c("A1","A2","A3","A4"),
b=c("B1","B2", "B3"),
c=c("Cc1i","Cc2")))
arr <- as.CPA(arr)
narr <- normalize(arr)
stopifnot (
is(narr, "CPA"), is(narr,"array"),
all (abs (apply (narr,1:2,sum)-1) <.0001)

arf <- as.CPF (arr)
narf <- normalize (arf)
stopifnot (
is (narf,"CPF"), is(narf,"data.frame"),
all (abs (apply (narf[sapply (narf,is.numeric)],1l,sum)-1) <.0001)

df2 <- data.frame (parentval=c("a","b"),
prob.true=c(1l,1),prob.false=c(1l,1))
ndf2 <- normalize (df2)
stopifnot (
is (ndf2,"CPF"), is(ndf2,"data.frame"),
all (abs (apply (ndf2[2:3],1,sum)-1) <.0001)

ParentStates Returns a list of the names of the states of the parents of a Netica node.

Description

This function returns a list each of whose elements is a character vector giving the states of the par-

ent variables (i.e., the result of calling NodeStates) on each of the elements of NodeParents (node)).
The names of this list are the names assiged to the edges through NodeInputNames (node), or

the names of the parent variables if edge names were not supplied.

Usage

ParentStates (node)
ParentNames (node)

Arguments

node An active Net i caNode object whose parent states are to be determined.

ParentStates 167

Value

For ParentStates (node), named list where each element correponds to the states of a parent
variable. If node has no parents, it returns a list of length 0.

The function ParentName (node) returns names (ParentNames (node), only is faster.

Note

This is a slightly more sophisticated version of lapply (NodeParents (node), NodeStates).
It does minimal checking so that it can be fast.

Author(s)
Russell Almond

See Also

NodeStates (), NodeParents (), NodeInputNames ()

Examples

abcl <- CreateNetwork ("ABC1")

A <- NewDiscreteNode (abcl, "A",c ("A1","A2","A3","A4"))
B <- NewDiscreteNode (abcl,"B",c("B1","B2","B3"))

C <- NewDiscreteNode (abcl,"C",c("C1","C2"))

stopifnot (
length (ParentStates(A)) == 0

AddLink (A, B)

Bpars <- ParentStates (B)
stopifnot (
length (Bpars) == 1,
names (Bpars) == "A",
Bpars$A==NodeStates (A)

AddLink (A, C)
AddLink (B, C)

NodeInputNames (C) <- c("A_type","B_type")

Cpars <- ParentStates (C)

stopifnot (
length (Cpars) == 2,
names (Cpars) == c("A_type","B_type"),
Cpars[[1l]]==NodeStates (4),
Cpars$B_type==NodeStates (B)

168 ReadFindings

DeleteNetwork (abcl)

ReadFindings Retrieves a record from a Netica Case Stream

Description

This function reads a row from a netica case stream and instantiates the values of the listed nodes
to the values found in that row of the case stream.

Usage
ReadFindings (nodes, stream, pos = "NEXT", add = FALSE)
Arguments
nodes The a list of active NeticaNode objects to be read. The findings of these
nodes will be modified by this call.
stream A NeticaCaseStream object which references the file or string object to be
read from.
pos A character or integer scalar. This should almost certainly be one of the two
string values “FIRST” or “NEXT". It also can be an integer giving the position
(in characters) where to start the machine. This is likely to produce surprizing re-
sults unless the integer value is a value obtained from calling getCaseStreamPos
on this stream earlier after a call to either ReadFindings orWriteFindings.
add A logical scalar. If true, the findings from the case stream are added to the
existing node. If false, they are ignored.
Details

A case file is a table where the rows represent cases, and the columns represent variables. ReadFindings
reads a row out the table and instantiates (NodeF inding) the nodes in nodeset to those values.

If a the value corresponding a node is the value of CaseFileMissingCode (), then it is not
instantiated. The values in the columns are separated by the value of CaseFileDelimiter ().

If add is false, it will first retract any findings assocated with the nodes in nodeset. If a finding
is associated with a node, the the case file would cause it to be set to an inconsistent value, then an
error will be generated.

The argument pos determines which record will be read next. If the value is "NEXT" the next
code will be read. If the value is "FIRST" the first code will be read. If the value is a pos-
itive integer, then the record which starts at that character will be read. On completion of the
read, the value of getCaseStreamPos (stream) is set to the starting position of the last read
stream. This is also true when WriteFindings is called. It is almost certainly an error to
set the pos argument to anything but either one of the special string constants or a value which
was previously cached after calling getCaseStreamPos. If the case stream is at the end, then
getCaseStreamPos (stream) will be set to NA.

ReadFindings 169

There are two special columns in the file. The column “IDnum” contains ID numbers for the cases.
The value of getCaseStreamLastId (stream) is setto the value of this column if it is present
in the case stream, otherwise it will be set to —1. The value of the column “NumCases” contains a
weight to give to the current row. The value of getCaseStreamLastFreq (stream) is setto
this value, if it is present. The returned stream object will have these updated properties, otherwise
it will be set to —1.

Value

Returns the caseOr St ream argument invisibly. Note that the values of getCaseStreamPos (stream)
will return the position of the next record or NA if there are no records left in the stream. The

values of getCaseStreamLastId (stream),and getCaseStreamlLastFreq (stream)

will be updated to reflect the values from the last read record, or will be -1 if these values are not
provided in the stream.

Note

The first time that ReadFindings is called on a stream it must be called with pos="FIRST".
Failing to do so produces a fatal error in Netica.

The value of case_posn returned by the Netica ReadNetFindings2_bn function (which is
the value to which getCaseStreamPos (stream)) is undocumented. I confirmed with Brent
that this is in fact the position in characters from the start of the stream to the record. It is not
recommended, however, that program rely on that fact.

The fact that the case positions are difficult to compute makes random access difficult. If it is
needed, programmers will need to save the values of getCaseStreamPos on previous calls to
ReadFindings or WriteFindings. Fetching cases by the ID requires scanning through the
case file (see WithOpenCaseStream for an example).

Author(s)
Russell G. Almond

References

http://norsys.com/onLineAPIManual/index.html: ReadNetFindings2_bn()'3}

See Also

CaseFileDelimiter,CaseFileMissingCode,NodeFinding, RetractNetFindings
ReadFindings, NeticaCaseStream, WithOpenCaseStream

Examples

abc <- CreateNetwork ("ABC")

A <- NewDiscreteNode (abc, "A",c ("A1","A2","A3","A4"))
B <- NewDiscreteNode (abc, "B",c("B1","B2","B3"))

C <- NewDiscreteNode (abc, "C",c("C1","C2"))

3B8http://norsys.com/onLineAPIManual/functions/ReadNetFindings2_bn.html

170 ReadFindings

AddLink (A, B)
AddLink (A, C)
AddLink (B, C)

Input filename
Note, this is a cached copy of the file written in the WriteFindings
documentation.
casefile <- paste(library (help="RNetica") $path,
"testData", "abctestcases.cas",
sep=.Platform$file.sep)
filestream <— CaseFileStream(casefile)

Case 1
filestream <- ReadFindings(list(A,B,C),filestream, "FIRST")
stopifnot (NodeFinding(A) == "Al",

NodeFinding (B) == "B1",

NodeFinding(C) == "C1",

getCaseStreamLastId(filestream)==1001,
abs (getCaseStreamLastFreqg(filestream)-1.0) < .0001)

posl <- getCaseStreamPos (filestream)

Case 2
filestream <- ReadFindings(list (A,B,C),filestream, "NEXT")
stopifnot (NodeFinding (A) == "A2",

NodeFinding (B) == "B2",

NodeFinding (C) == "C2",

getCaseStreamLastId(filestream)==1002,

abs (getCaseStreamLastFreg(filestream)-2.0) < .0001)
Case 3
filestream <- ReadFindings(list (A,B,C), filestream, "NEXT")
stopifnot (NodeFinding (A) == "A3",

NodeFinding (B) == "B3",

NodeFinding (C) == "@NO FINDING",

getCaseStreamLastId(filestream)==1003,
abs (getCaseStreamLastFreqg(filestream)-1.0) < .0001)

At end of file
filestream <- ReadFindings(list (A,B,C), filestream, "NEXT")
stopifnot (is.na(getCaseStreamPos (filestream)))

Restart from Case 1
filestream <- ReadFindings(list(A,B,C),filestream, "FIRST")

stopifnot (NodeFinding (A) = "Al",
NodeFinding (B) == "B1",
NodeFinding(C) == "C1",

getCaseStreamlLastId(filestream)==1001,
abs (getCaseStreamlLastFreqg(filestream)-1.0) < .0001,
posl == getCaseStreamPos (filestream))

##Clean Up

RetractNodeFinding 171

CloseCaseStream(filestream)
DeleteNetwork (abc)

RetractNodeFinding Clears any findings for a Netica node or network.

Description

The function RetractNodeFinding (node) clears any findings or virtual findings set with
NodeFinding (),EnterNegativeFinding () orNodeLikelihood () and associated with
node. The function RetractNetFindings (net) clears any findings associated with any
node in the network.

Usage

RetractNodeFinding (node)
RetractNetFindings (net)

Arguments
node An active Net i caNode whose findings are to be retracted.
net An active Net i caBN whose findings are to be retracted.
Details

This is an undo function for NodeFinding () ,EnterNegativeFinding () orNodeLikelihood ().
In particular, it allows for entering hypothesized findings for various calculations.
Value

Returns its argument invisibly.

Note

If SetNetworkAutoUpdate () has been set to TRUE, then this function could take some time as
each finding is individually propagated. Consider wrapping multiple calls setting NodeFinding ()
in WithoutAutoUpdate (net, ...).

The Netica functions for setting node findings require the programmer to call Ret ractNodeFindings_bn ()
before setting values to clear out old findings. The RNetica functions do this internally, so the user
does not need to worry about this.

Author(s)

Russell Almond

172 RetractNodeFinding

References

http://norsys.com/onLineAPIManual/index.html: RetractNetFindings_bn()!*, Re-
tractN odeFindings_bn()140

See Also

NeticaBN,NodeBeliefs (),EnterNegativeFinding (),NodeFinding (),NodeLikelihood ()

Examples

irt5 <- ReadNetworks (paste (library (help="RNetica") $path,
"sampleNets", "IRT5.dne",
sep=.Platform$file.sep))

irt5.theta <- NetworkFindNode (irt5, "Theta")
irt5.x <- NetworkFindNode (irt5,paste("Item",1:5,sep="_"))

CompileNetwork (irt5) ## Ready to enter findings

stopifnot (NodeFinding (irt5.x[[1]]) == "@NO FINDING")
NodeFinding (irt5.x[[1]]) <- "Right"
stopifnot (NodeFinding (irt5.x[[1]]) == "Right")

RetractNodeFinding (irt5.x[[1]1])

stopifnot (NodeFinding (irt5.x[[1]]) == "@NO FINDING")
NodeFinding (irt5.x[[1]]) <- "Wrong"
NodeFinding (irt5.x[[2]]) <- 1
NodeFinding (irt5.x[[3]]) <- 2
stopifnot (
NodeFinding (irt5. == "Wrong",
NodeFinding (irt5. == "Right",
NodeFinding (irt5. "Wrong",

NodeFinding (irt5.
NodeFinding (irt5.

"@NO FINDING",
"@NO FINDING"

XX X X X
[E SR
|

RetractNetFindings (irth5)

stopifnot (
NodeFinding (irt5.
NodeFinding (irt5.
NodeFinding (irt5.
NodeFinding (irt5.
NodeFinding (irt5.

== "@NO FINDING",
"@NO FINDING",
"@NO FINDING",
"@NO FINDING",
"@NO FINDING"

XX X X X
[E ISR
|

DeleteNetwork (irth)

39nttp://norsys.com/onLineAPIManual/functions/RetractNetFindings_bn.html
Whttp://norsys.com/onLineAPIManual/functions/RetractNodeFindings_bn.html

ReverseLink 173

ReverseLink Reverses a link in a Netica network.

Description

This reverses the link between parent and child so that it now points from child to parent.
If child has additional parents, they are connected to parent and the conditional probality tables
are adjusted so that the joint probability distribution across all nodes in the network remains the
same.

Usage

Reverselink (parent, child)

Arguments
parent An active Net i caNode which is currently a parent of child and which will
be the child after the transformation.
child An active Net icaNode which is currently a child of parent and which will
be the parent after the transformation.
Details

This is not just a simple reversal of a single edge, but rather the influence diagram operation of arc
reversal. Netica will add additional links to enforce any conditional probability relationship. For
example, Consider a net where A and B are both parents of C, but A is not directly connecte to C.
After reversing the arc between B and C, A will also become a parent of B to maintain the joint
distribution.

Value

Returns NULL if successful and NA if there was a problem.

Author(s)
Russell Almond

References
http://norsys.com/onLineAPIManual/index.html: ReverseLink_bn()!*!

Shachter, R. D. (1986) "Evaluating Influence Diagrams." Operations Research, 34, 871-82.

See Also

NeticaNode, AddLink (),NodeChildren (),NodeParents (),AbsorbNodes (), 1s.NodeRelated ()

Whttp://norsys.com/onLineAPIManual/functions/ReverseLink_bn.html

174 StartNetica

Examples

abcnet <- CreateNetwork ("ABC")

A <- NewDiscreteNode (abcnet, "A")
B <- NewDiscreteNode (abcnet, "B")
C <- NewDiscreteNode (abcnet, "C")

AddLink (A, C)

AddLink (B, C)

stopifnot (
is.NodeRelated(A,C, "parent"),
is.NodeRelated (C,B, "child"),
'is.NodeRelated (A,B, "parent")

ReverselLink (B, C)

stopifnot (
is.NodeRelated (A, C, "parent"),
is.NodeRelated(C,B, "parent"),
is.NodeRelated (A,B, "parent")

DeleteNetwork (abcnet)

StartNetica Starting and stopping the Netica shared library.

Description

This function creates (or destroys) a Netica environment. The StartNet ica function also allows
you to set various parameters associated with the Netica environment.

Usage
StartNetica(license = LicenseKey, checking = NULL, maxmem = NULL)
StopNetica ()
Arguments
license A string containing a license key from Norsys. If this is NULL the limited stu-
dent/demonstration version of Netica is used rather than the full version. If
the variable NeticalLicenceKey is set before RNet ica is loaded, then the
value of that variable at the time the package is loaded will become the deafult
for 1icense.
checking A character string containing one of the keywords: "NO_CHECK", "QUICK_CHECK",

"REGULAR_CHECK", "COMPLETE_CHECK", or "QUERY_CHECK", which
controls how rigorous Netica is about checking errors. A value of NULL uses
the Netica default which is "REGULAR_CHECK".

StartNetica 175

maxmemn An integer containing the maximum amount of memory to be used by the Netica
shared library in bytes. If supplied, this should be at least 200,000.

Details

The function StartNetica () calls the Netica functions NewNeticaEnviron_ns () and
InitNetica2_bn () to create and set up a Netica environment.

Netica is commercial software. The RNetica package downloads and installs the demonstration
version of Netica which is limited in its functionality (particularly in the size of the networks it
handles). Unlocking the full version of Netica requires a license key which can be purchased from
Norsys (http://www.Norsys.com/). They will send a license key which unlocks the full
capabilities of the shared library. This can be passed as the first argument to StartNetica ().
If the value of the first argument is NULL then the demonstration verison is used instead of the
licensed version (could be useful for testing).

If you set the value of a variable Net icalicenseKey, then when RNetica is loaded, then its
value at the time the package is loaded is used as the default value for 1icense. If no value for
as NeticalicenseKey, the default value for 1icense is set to NULL, which loads the demo
version of Netica.

The checking argument, if supplied, is used to call the Netica function ArgumentChecking_ns ().
See the documentation of that function for the meaning of the codes. The default value, "REGULAR_CHECK"
is appropriate for most development situations.

The maxmem argument, if supplied, is used to limit the amount of memory used by Netica. This
is passed in a call to the Netica function LimitMemoryUsage_ns (). Netica will complain if
this value is less than 200,000. Leaving this as NULL will not place limits on the size of Netica’s
memory for tables and things.

The function StopNetica () calls the Netica function CloseNetica_bn (). It is mainly used
when one wants to stop Netica and restart it with other parameters.

The function StartNetica is called when the package is attached (in the . onAttach () func-
tion. The function StopNetica () iscalledby .Last.1ib (), Normally, users should not need
to call these functions, but they may wish to do so if they need to restart Netica with different
arguments.

Value

These functions are called for side effects and do not return meaningful values.

License

The Netica API is not free-as-in-speech software, the use of the Netica shared library makes you
subject to the Netica License agreement (which can be found in the RNetica folder in your R library.
If you do not agree to the terms of that license, please uninstall RNetica.

The Netica API is also not free-as-in-beer software. The demonstration version of the Netica API,
however, is. In order for you to make full use of the RNetica API, you must purchase a Netica API
license from Norsys (http://norsys.com/).

RNetica itself (the glue layers between R and Netica) is free (in both the speech and beer senses)
software. Suggestions for improvements and bug fixes are welcome.

176

Implementation Notes

WithOpenCaseStream

I’m looking into a way to burry the license key into RNetica during the installation process. Proba-
bly will happen in a future version. Until then, best bet is to save a value for Net icaLicenseKey
in the workspace.

The Netica environment pointer, which is used by the Netica shared library is defined inside of the
RNetica shared library, and not visible at the R level.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: NewNeticaEnviron_ns()'*?, Init-
Netica2_bn()!*}, CloseNetica_bn()'**, LimitMemoryUsage_ns()'4’, ArgumentChecking_ns()'4®

See Also

NeticaVersion (), CreateNetwork ()

Examples

Not run:
Restart licensed version

StopNetica ()

StartNetica ("License key from Norsys")
Get the version of Netica.
print (NeticaVersion())

Commonly done next step is to create a network.
1 <- CreateNetwork ("myNet")

net

End (Not run)

WithOpenCaseStream Evaluate an expression and then close the Netica Case Stream.

Description

This function evaluates expr in a context where the Net icaCaseStream is open. The stream is
closed when the evaluation is complete. The evaluation of expr is surrounded with a tryCatch
so that the stream is closed whether or not the expression is successfull executed.

42p ¢t
WBhitp
Wh g
W5t tp
46h ¢ £

://norsys.
://norsys.
://norsys.
://norsys.
://norsys.

com/onLineAPIManual/functions/NewNeticaEnviron_ns
com/onLineAPIManual/functions/InitNetica2_bn.html
com/onLineAPIManual/functions/CloseNetica_bn.html
com/onLineAPIManual/functions/LimitMemoryUsage_ns
com/onLineAPIManual/functions/ArgumentChecking_ns

.html

.html
.html

WithOpenCaseStream 177

Usage

WithOpenCaseStream(stream, expr)

Arguments
stream A NeticaCaseStream object. This can be open or closed. If closed it is
reopened.
expr An arbitrary R expression to be executed.
Value

Either the result of evaluating expr unless executing expr results in an error in which case it
returns a try—error.

Author(s)
Russell Almond

See Also

NeticaCaseStream,ReadFindings
Examples

This function reads findings from a stream until it finds one
matching a certain case ID.
ReadCase <- function (stream,nodes,caselID) {
WithOpenCaseStream(stream,
{stream <- ReadFindings (nodes, stream, "FIRST")
while(!is.na(getCaseStreamPos (stream)) &&
getCaseStreamlLastId(stream) != caselID) {
ReadFindings (nodes, stream, "NEXT")
t
if (is.na(getCaseStreamPos (stream))) {
warning ("Case ID:",caseID," not found in stream.")
t
stream

b

Test it.

abc <- CreateNetwork ("ABC")

A <- NewDiscreteNode (abc, "A",c("A1l","A2","A3","A4"))
B <- NewDiscreteNode (abc, "B",c ("B1","B2","B3"))

C <- NewDiscreteNode (abc, "C",c("C1","C2"))

AddLink (A, B)
AddLink (A, C)
AddLink (B, C)

178 write.CaseFile

Input filename
Note, this is a cached copy of the file written in the WriteFindings
documentation.
casefile <- paste(library (help="RNetica") Spath,
"testData", "abctestcases.cas",
sep=.Platform$file.sep)

filestream <- ReadCase (CaseFileStream(casefile),list (A,B,C),1002)

stopifnot (!isCaseStreamOpen (filestream),
NodeFinding (A) == "A2",
NodeFinding (B) == "B2",
NodeFinding(C) == "C2",

getCaseStreamlLastId(filestream)==1002,
abs (getCaseStreamlLastFreqg(filestream)-2.0) < .0001)

##Clean Up
DeleteNetwork (abc)

write.CaseFile Read or write data frame in Netica Case File format.

Description

These functions our wrapper around read.table and write.table to format the file in the
expected Netica case file format.

Usage
write.CaseFile (x, file, ...)
read.CaseFile(file, ...)
Arguments
X A data frame to be written to the file. See details.
file A file name or a connection object. By convention, Netica expects case files to
end in the “.cas” suffix.
.. Other arguments to read.table orwrite.table
Details

A Netica case file has a format that very much resembles the output of write.table. The first
row is a header row, which contains the names of the variables, the second and subsequent rows con-
tain a set of findings: an assignment of values to the nodes indicated in the columns. There are no
row numbers, and the separator and missing value codes are the values of CaseFileDelimiter (),
and CaseFileMissingCode () respectively.

WriteFindings 179

In addition to columns representing variables, two special columns are allowed. The column named
“IDnum”, if present should contain integers which correspond to ID numbers for the cases (this cor-
respond to the id argument of WriteFindings). The column named “NumCases” should con-
tain number values and this allows rows to be differentially weighted (this correspond to the freqg
argument of WriteFindings). If these special arguments are present, write.table permutes
the columns if necessary to make them first in the order (as Netica does in WriteFindings).

The function read . CaseF1ile overrides following arguments of read.table: header = TRUE,

sep = CaseFileDelimiter (),andna.strings = CaseFileMissingCode ().
The function write.CaseFile overrides following arguments of write.table: col.name =
TRUE, row.names = FALSE,quote = FALSE,sep = CaseFileDelimiter (),and
na = CaseFileMissingCode ().

Value

The function read.CaseFile returns a data frame containing the information in the case file.
The function write.CaseFile returns the output of the write.table call (which is undocu-
mented).

Author(s)
Russell Almond

See Also

CaseFileDelimiter,CaseFileMissingCode,WriteFindings, ReadFindings,MemoryCaseStream,Ca
MemoryStreamContents, read.table,write.table

Examples

casefile <- paste(library (help="RNetica") $path,
"testData", "abctestcases.cas",
sep=.Platform$file.sep)

CaseFileDelimiter ("\t")

CaseFileMissingCode ("x")

cases <— read.CaseFile(casefile)

outfile <- tempfile("testcase",fileext=".cas")
write.CaseFile (cases,outfile)

WriteFindings Appends the current findings to a Netica case file.

Description

This function writes the current findings for a network as a row in a Netica case file. If filename
already exists, the new row is appended on the end of the file. Variables that are not instantiated are
written out using the missing code.

180 WriteFindings

Usage

WriteFindings (nodes, pathOrStream, id = -1L, freq = -1.0)
Arguments

nodes The a list of active Net i caNode objects to be written out.

pathOrStream Either a character scaler giving the path name of the file to which the results
are to be written, or a Net icaCaseStream object. It is recommended that it
have the extension “.cas”.

id An integer scalar giving the case ID. The default value of —1 suppresses the
writing of cases. If an ID is supplied for the first case, it should be supplied for
all cases.

freq An integer scalar giving the number of cases with the currently instantiated set of

findings. The default value -1 suppresses writing the cases, implicitly assuming
that all cases have weight 1. If supplied for the first row, this should be supplied
for all rows.

Details

A case file is a table where the rows represent cases, and the columns represent variables. WriteFindings
writes out the currently instantiated value of the nodes in nodeset. If a node in nodeset does

not currently have a finding attached, then the value of CaseFileMissingCode () is printed

out instead. The values in the columns are separated by the value of CaseFileDelimiter ().

There are two special columns in the file. The column “IDnum” is set to the value id, which should
contain an integer case number. The column “NumCases” is set to the value of £req which should
give a weight to assign to the case (in various algorithms when freq is supplied, it is treated as if
that case was repeated weight times). Assigning either of these fields a value of —1 means the
corresponding column is appended to the output.

The function WriteFindings will create a new file associated with £ilename if it does not ex-
ist. In that case it will write out a header row containing the variable names followed by the current
findings as the first case row. Subsequent calls to WriteFindings with the same filename
append additional rows to the end of the file. In such cases, the nodelist should be the same,
and if 1d or freq was —1, it should be in the following calls as well.

Value

Returns the caseOrSt ream argument invisibly. Note that the values of get CaseStreamPos (stream),
getCaseStreamLastId(stream), and getCaseStreamLastFreq (stream) will be
updated to reflect the values from the last read record.

Author(s)
Russell G. Almond

References

http://norsys.com/onLineAPIManual/index.html: WriteNetFindings_bn()'4’

Whttp://norsys.com/onLineAPIManual/functions/WriteNetFindings_bn.html

WriteNetworks

See Also

181

CaseFileDelimiter,CaseFileMissingCode, NodeFinding, RetractNetFindings
ReadFindings, NeticaCaseStream

Examples

abc <- CreateNetwork ("ABC")

A <- NewDiscreteNode (abc, "A",c ("A1","A2","A3","A4"))
B <- NewDiscreteNode (abc, "B",c ("B1","B2","B3"))

C <- NewDiscreteNode (abc, "C",c("C1","C2"))

AddLink (A, B)
AddLink (A, C)
AddLink (B, C)

Outputfilename

casefile <- tempfile("testcase",fileext=".cas")

filestream <- CaseFileStream(casefile)

stopifnot (is.CaseFileStream(filestream),
isCaseStreamOpen (filestream))

Case 1

NodeFinding (A) <-
NodeFinding (B) <-
NodeFinding (C) <-—

Ly
"gl"
neln

WriteFindings (list (A,B,C),casefile, 1)
RetractNetFindings (abc)

Case 2

NodeFinding (A) <-
NodeFinding (B) <-—
NodeFinding (C) <-

nppn
npo"
neomn

WriteFindings (list (A,B,C),casefile, 2)
RetractNetFindings (abc)

Case 3
NodeFinding (A) <-—
NodeFinding (B) <-

np3M
n"p3n

C will be missing
WriteFindings (list (A,B,C),casefile, 3)
RetractNetFindings (abc)

DeleteNetwork (abc)

WriteNetworks

Reads or writes a Netica network from a file.

182 WriteNetworks

Description

This function writes a Netica network to a . neta or . dne file or reads a network written by such
a file. This allows networks created with RNetica to be shared with other Netica users.

Usage

WriteNetworks (nets, paths)
ReadNetworks (paths)
GetNetworkFileName (net)

Arguments
nets A single Net i caBN object or a list of such objects.
net A single Net i caBN object.
paths A character vector of pathnames to .neta files. For ReadNetworks (), the
pathnames must exist. For WriteNetworks (), the length (paths) must
equal length (nets). ForWriteNetworks () if paths are missing, then
GetNetworkFileName () will be called to try and determine any path asso-
ciated with the node.
Details

This method invokes the native Netica open and save functions to read and write networks to . neta
or .dne files. The . neta format is binary and more compact, while the . dne format is ascii and
may be safer in some circumstances (such as when used with a source control system). Netica
figures out which format to use based on the extension of the file, elments of paths should end
with .neta or .dne.

The function GetNetworkFileName () returns the name of the last file this network was saved
to or read from. It cannot be set other than through the WriteNetworks () or ReadNetworks ()
functions.

To facilitate saving and restoring files across R sessions, both ReadNetworks () and WriteNetworks ()

attacha "Filename" attribute to the object, which records the file just read or written. GetNetworkFileName (net)
will not work after quitting and restarting Netica, but attr (net, "Filename") should contain

the same pathname. If ReadNetworks () is passed a NeticaBN object (or a list of such ob-

jects), it will attempt to read from the file referenced by the "Filename" attribute. Thus, calling

net <- WriteNetworks (net, path) rightbefore shutting downR andnet <- ReadNetworks (net)

right after the call to 1ibrary (RNetica), should restore the network.

Value

Both ReadNetworks () and WriteNetworks () return a list of Net icaBN objects corre-
sponding to the new networks. In the case of a problem with one of the networks, the corresponding
entry will be set to NULL. If the return list has length 1, a single Net i caBN object will be returned
instead of a list.

A "Filename" attribute is added to the Net icaBN object that is returned. This can be used to
restore Net i caBN objects after an R session is restarted.

WriteNetworks 183

Note

The demonstration version of Netica is limited to the size of the networks it will write (the limit is
somewhere around 10 nodes). If you are running across errors saving large networks, you need to
purchase a Netica API license from Norsys (http://norsys.com/).

ReadNetworks () and WriteNetworks () are vectorized, and can take either scalars or vec-
tors as arguments (thus, a whole collection of networks can be read or written at once). When
the argument is a scalar, a scalar is returned. This is probably the 80% case, but may produce
unexpected behavior in certain coding circumstances.

Author(s)
Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: WriteNet_bn()'*%, ReadNet_bn()'*°

See Also

NeticaBN, CreateNetwork (), NetworkFindNode () (for recreating links to nodes after
restoring a net)

Examples

peanut <- CreateNetwork ("peanut")

NetworkTitle (peanut) <- "The Peanut Network"
peanutFile <- tempfile ("peanut",fileext=".dne")
WriteNetworks (peanut, peanutFile)

stopifnot (GetNetworkFileName (peanut)==peanutFile)

pecan <- CreateNetwork ("pecan")

NetworkTitle (pecan) <- "The Pecan Network"

pecanFile <- tempfile ("pecan", fileext=".dne")

almond <- CreateNetwork ("almond")

NetworkTitle (almond) <- "The Almond Network"

almondFile <- tempfile("almond", fileext=".neta")
WriteNetworks (list (pecan,almond), c(pecanFile,almondFile))

DeleteNetwork (peanut)
DeleteNetwork (pecan)
DeleteNetwork (almond)
stopifnot (!is.active (almond))

peanut <- ReadNetworks (peanutFile)
stopifnot (is.active (peanut))

stopifnot (NetworkTitle (peanut)=="The Peanut Network")

nets <- ReadNetworks (c(pecanFile,almondFile))

48nttp://norsys.com/onLineAPIManual/functions/WriteNet_bn.html
Wnttp://norsys.com/onLineAPIManual/functions/ReadNet_bn.html

184 WriteNetworks

stopifnot (length (nets)==2)

stopifnot (all (sapply (nets,is.active)))

stopifnot (NetworkTitle (nets[[1]])=="The Pecan Network")
almond <- GetNamedNetworks ("almond")

stopifnot (is.NeticaBN (almond),is.active (almond))

DeleteNetwork (peanut)
DeleteNetwork (nets[[1]1])
DeleteNetwork (almond)

Not run:

Safe way to preserve node and network objects across R sessions.
tnet <- WriteNetworks (tnet, "Tnet.neta")

d(save="yes")

R

library (RNetica)

tnet <- ReadNetworks (tnet)

nodes <- NetworkFindNodes (tnet,as.character (nodes))

End(Not run)

