
Package ‘RNetica’
November 24, 2012

Version 0.2-6

Date 2012/11/22

Title R interface to Netica Bayesian Network Engine

Author Russell Almond

Maintainer Russell Almond <ralmond@fsu.edu>

Depends R (>= 2.0), methods, utils, grDevices

Description This provides an R interface to the Netica

(http //norsys.com/) Bayesian network library API

License Artistic-2.0 + file LICENSE

URL http://ralmond.net/RNetica

R topics documented:
RNetica-package . 3
AbsorbNodes . 11
AddLink . 12
AdjoinNetwork . 14
CompileNetwork . 17
CopyNetworks . 19
CopyNodes . 20
CPA . 23
CPF . 25
CreateNetwork . 27
DeleteNodeTable . 29
EliminationOrder . 30
EnterFindings . 32
EnterNegativeFinding . 33
Extract.NeticaNode . 35
FindingsProbability . 49

1

http://ralmond.net/RNetica

2 R topics documented:

GetNamedNetworks . 50
GetNetworkAutoUpdate . 52
GetNthNetwork . 53
HasNodeTable . 55
IDname . 56
is.active . 57
is.discrete . 58
is.NodeRelated . 60
IsNodeDeterministic . 62
JointProbability . 64
JunctionTreeReport . 65
MakeCliqueNode . 66
MostProbableConfig . 69
NeticaBN . 71
NeticaNode . 73
NeticaVersion . 75
NetworkFindNode . 76
NetworkFootprint . 78
NetworkName . 79
NetworkNodeSetColor . 81
NetworkNodeSets . 83
NetworkNodesInSet . 85
NetworkSetPriority . 86
NetworkTitle . 88
NetworkUndo . 89
NetworkUserField . 91
NewDiscreteNode . 92
NodeBeliefs . 94
NodeChildren . 97
NodeFinding . 98
NodeInputNames . 101
NodeKind . 103
NodeLevels . 105
NodeLikelihood . 107
NodeName . 110
NodeNet . 112
NodeParents . 113
NodeProbs . 116
NodeSets . 118
NodeStates . 120
NodeStateTitles . 122
NodeTitle . 124
NodeUserField . 125
NodeVisPos . 126
NodeVisStyle . 128
normalize . 129
ParentStates . 132
RetractNodeFinding . 133

RNetica-package 3

ReverseLink . 135
StartNetica . 136
WriteNetworks . 139

Index 142

RNetica-package R interface to Netica Bayesian Network Engine

Description

This provides an R interface to the Netica, in particular, it binds many of the functions in the Netica
C API into the R langauge. RNetica can create and modify networks, enter evidence and extract the
conditional probabilities from a Netica network.

Details

Package: RNetica
Version: 0.2-6
Date: 2012/11/22
Depends: R (>= 2.0), methods, utils, grDevices
(http: //norsys.com/) Bayesian network library API
License: Artistic-2.0 + file LICENSE
URL: http://ralmond.net/RNetica
Built: R 2.15.2; x86_64-pc-linux-gnu; 2012-11-22 19:38:18 UTC; unix

License

While RNetica (the combination of R and C code that connects R and Netica) is free software, as
is R, Netica is a commercial product. Users of RNetica will need to purchase a Netica API license
key (which is different from the GUI license key) from Norsys (http://www.norsys.com/).

Once you have a license key, you can use it in one of two ways. First, it can be used as an argument
to the function StartNetica(). As this function is called when RNetica is loaded, you may need
to call StopNetica() first and restart the licensed version. Alternatively, if you set the variable
NeticaLicenseKey in the R top-level environment before the call to library(RNetica), RNetica
will pick up the license key from that location.

Without the license key, the Netica shared library will be restricted to a student/demonstration mode
with limited functionality. Note that all of the example code (and hence R CMD check RNetica)
can be run using the limited version.

Index

AbsorbNodes Delete a Netica nodes in a way that maintains
the connectivity.

http://www.norsys.com/

4 RNetica-package

AddLink Adds or removes a link between two nodes in a
Netican network.

AdjoinNetwork Links an evidence model network to a system
model netwok.

CPA Representation of a conditional probability
table as an array.

CPF Representation of a conditional probability
table as a data frame.

CompileNetwork Builds the junction tree for a Netica Network
CopyNetworks Makes copies of Netica networks.
CopyNodes Copies or duplicates nodes in a Netica network.
CreateNetwork Creates (destroys) a new Netica network.
DeleteNodeTable Deletes the conditional probability table of a

Netica node.
EliminationOrder Retrieves or sets the elimination order used in

compiling a Netica network.
EnterFindings Enters findings for multiple nodes in a Netica

network.
EnterNegativeFinding Sets findings for a Netaca node to a list of

ruled out values.
Extract.NeticaNode Extracts portions of the conditional

probability table of a Netica node.
FindingsProbability Finds the probability of the findings entered

into a Netica network.
GetNamedNetworks Finds a Netica network (if it exists) for the

name.
GetNetworkAutoUpdate Turns Netica automatic updating on or off for a

network.
GetNthNetwork Fetch a Netica network by its position in the

Netica list.
HasNodeTable Tests to see if a Netica node has a conditional

probability table.
IDname Tests to see if a string is a valid as a Netica

Identifier.
IsNodeDeterministic Determines if a node in a Netica Network is

deterministic or not.
JointProbability Calculates the joint probability over several

network nodes.
JunctionTreeReport Produces a report about the junction tree from

a compiled Netica network.
MakeCliqueNode Forces a collection of nodes in a Netica

network to be in the same clique.
MostProbableConfig Finds the configuration of the nodes most likel

to have lead to observed findings.
NeticaBN An object referencing a Bayesian network in

Netica.
NeticaNode An object referencing a node in a Netica

Bayesian network.

RNetica-package 5

NeticaVersion Fetches the version number of Netica.
NetworkFindNode Finds nodes in a Netica network.
NetworkFootprint Returns a list of names of unconnected edges.
NetworkName Gets or Sets the name of a Netica network.
NetworkNodeSetColor Returns or sets a display colour to use with a

netica node.b
NetworkNodeSets Returns a list of node sets associated with a

Netica network.
NetworkNodesInSet Returns a list of node labeled with the given

node set in a Netica Network.
NetworkSetPriority Changes the priority order of the node sets.
NetworkTitle Gets the title or comments associated with a

Netica network.
NetworkUndo Undoes (redoes) a Netica operation on a

network.
NetworkUserField Gets user definable fields associated with a

Netica network.
NewDiscreteNode Creates (or destroys) a node in a Netica

Bayesian network.
NodeBeliefs Returns the current marginal probability

distribution associated with a node in a Netica
network.

NodeChildren Returns a list of the children of a node in a
Netica network.

NodeFinding Returns of sets the observed value associated
with a Netica node.

NodeInputNames Associates names with incomming edges on a
Netica node.

NodeKind Gets or changes the kind of a node in a Netica
network.

NodeLevels Accesses the levels associated with a Netica
node.

NodeLikelihood Returns or sets the virtual evidence associated
with a Netica node.

NodeName Gets or set of a Netica node.
NodeNet Finds which Netica network a node comes from.
NodeParents Gets or sets the parents of a node in a Netica

network.
NodeProbs Gets or sets the conditional probability table

associated with a Netica node.
NodeSets Lists or changes the node sets associated with

a Netica node.
NodeStateTitles Accessors for the titles and comments

associated with states of Netica nodes.
NodeStates Accessor for states of a Netica node.
NodeTitle Gets the title or Description associated with a

Netica node.
NodeUserField Gets user definable fields associated with a

6 RNetica-package

Netica node.
NodeVisPos Gets, sets the visual position of the node on

the Netica display.
NodeVisStyle Gets/sets the nodes visual appearence in

Netica.
ParentStates Returns a list of the names of the states of

the parents of a Netica node.
RetractNodeFinding Clears any findings for a Netica node or

network.
ReverseLink Reverses a link in a Netica network.
StartNetica Starting and stopping the Netica shared

library.
WriteNetworks Reads or writes a Netica network from a file.
is.NodeRelated Computes topological properities of a ’Netica’

network.
is.active Check to see if a Netica network or node object

is still valid.
is.discrete Determines whether a Netica node is discrete or

continuous.
normalize Normalizes a conditional probability table.

RNetica Environment and Netica Objects

Netica exists in both as a stand alone graphical tool for building and manipulating Bayesian net-
works (the Netica GUI) and as a shared library for manipulating Bayesian networks (the Netica
API). The RNetica package binds the API version of Netica to a series of R functions which do
much of the work of manipulating the network. The file format for the GUI and API version of
Netica is identical, so analysts can easily move back and forth between the two.

The function StartNetica() (invoked automatically when library(RNetica)) builds a Netica
environment which can be accessed from R. Networks created and loaded into the RNetica envi-
ronment can then be manipulted from inside of R. Note that the RNetica environment is separate
from other Netica environments that may be created using the Netica GUI (or API invoked from
a different program); RNetica can only manipulate the networks that are currently loaded into its
environment.

The key to this process is that the two most common functions for creating networks, CreateNetwork()
and ReadNetworks() both return a special object of class NeticaBN which encapsulates a pointer
back to the Bayesian network in the RNetica environment. This object can be manipulated with the
functions in this package.

Netica nodes (created through NewDiscreteNode() or NewContinuousNode(), or retrieved from
the network using NetworkFindNode(), NetworkAllNodes(), NetworkNodesInSet(), or one of a
variety of other functions that return nodes) are represented as special objects of class NeticaNode
which contain pointers to the node in a Netica network. Netica nodes know which network they
belong to, so each node implicitly references its network.

Note that if more than one network is loaded they may have identically named nodes that are not
identical. For example, net1 and net2 may both have a node named “Proficiency”. If the R variable
Proficiency is bound to the NeticaNode object correspoinding to the variable “Proficiency” in
net1, it can only be used to access the instance of that variable in net1, not the one in net2.

RNetica-package 7

Because of the way R likes to hang onto references to objects, it is quite possible for a NeticaBN or
NeticaNode object to hang around after it has been deleted, renamed or otherwise rendered invalid.
The function is.active() does a quick check to make sure that the pointer to the object in the
RNetica environment has not be set to NULL.

Note that unlike ordinary R objects, NeticaBN and NeticaNode objects only last as long as the
RNetica environment lasts. In particular, if StopNetica() is called to close the RNetica environ-
ment, or the R session is exited (either cleanly or through a crash), then all of the NeticaBN and
NeticaNode objects should become inactive. It is an error to execute RNetica functions with the
old objects.

For networks, the simplest solution is to save each network to a file using WriteNetworks(). If a
NeticaBN object net is used in either a net <- ReadNetworks() or WriteNetworks(net) call,
then the R object will be badged with the name of the last used filename. Thus, after saving and
restoring a R session, the expression net <- ReadNetworks(net) will recreate net as an object
pointing to a new network that is identical to the last saved version.

For nodes, the best solution is to use a query function to return a list of the desired nodes, in
particular, NetworkFindNode() or NetworkAllNodes(). If a particular subset of nodes should be
loaded every time the network is loaded, then they can be placed in a node set, and the function
NetworkNodesInSet() can be used to retrieve just the interesting nodes. All of these functions
return a list of NeticaBN objects, which can be used to provide convenient access. For example, if
net was previously saved and “Proficiency” is a node in net, then:

net <- ReadNetworks(net)
net.nodes <- NetworkAllNodes(net)

will load all of the nodes in net, and the expression net.nodes$Proficiency will access the
“Proficiency” node.

Creating and Editing Networks

Operations with Bayesian networks generally proceed in two phases: Building network, and con-
ducting inference. This section describes the most commonly used options for building networks.
The following section describes the most commonly used options for inference.

First, the function CreateNetwork() is used to create an empty network. Multiple networks can be
open within the RNetica environment, but each must have a unique name. Names must conform to
Netica’s IDname rules.

Nodes can be added to a network with the functions NewDiscreteNode() and NewContinuousNode().
Note that Netica makes an internal distinction between these two types of nodes and a node cannot
be changed from one type to another. Nodes must all have a unique (within the network) name
which must conform to the IDname rules.

Edges between nodes are created using the AddLink(parent,child) function. This forms a di-
rected graph which must be acyclic (that is it must not be possible to follow a path along the
direction of the arrows and return to the starting place). The function NodeParents(child) returns
the current set of parents for the node child (nodes which have edges pointing towards child).
NodeParents(child) may be set, which serves several purposes. First, it allows connections to be
added and removed. Second, setting one of the parent locations to NULL produces a special Stub
node, which serves as a placeholder for a later connection. Third, it allows one to reorder the nodes,
which determines the order of the dimensions of the conditional probability table.

8 RNetica-package

A completed Bayesian network has a conditional probability table (CPT) associated with each node.
The CPT provies the conditional probability distributions of the node given the states of its parents
in the graph. RNetica provides two functions for accessing and setting this CPT. The function
NodeProbs() returns (or sets) the conditional probability table as a multi-dimensional array. How-
ever, using the array extractor [.NeticaNode allows the conditional probability table to be manip-
ulated as a data frame, where the first several columns provide the states of the parent variables,
and the remaining columns the probabilities of the the node being in each of thoses states given the
parent configurations. This latter approach has a number of features for working with large tables
and tables with complex structure.

Finally, when the network is complete, the function WriteNetworks() can be used to save it to
a file, which can either be later read into RNetica, or can be used with the Netica GUI or other
applications that use the Netica API.

Inference

The basic purpose for building a Bayesian network is to raplidly calculate conditional probabilities.
In Netica language, one enters “findings” (conditions) on the known or hypothesized variables and
then calculates “beliefs” (conditional probalities) on certain variables of interest.

Netica, like most Bayesian network software, uses two different graphical representations, one for
model construction and one for inference. The acyclic directed graph is use for model construction
(previous section). The function CompileNetwork() builds the second graphical representation:
the junction tree. The function JunctionTreeReport() provides information about the compiled
representation.

While compiling can take a long time (depending on the size and connectivity of the network),
repeated compilations appear to be harmless. There is an UncompileNetwork() function, but per-
forming any editing operation (adding or removing nodes or edges) will automatically return the
network to an uncompiled state. Netica tries to preserve finding information. In particular the func-
tion AbsorbNodes() provides a mechanism for removing nodes from a network without changing
the joint probability (including influence of findings) of the remaining nodes. (The network must
be recompiled after a call to AbsorbNodes() though.)

The principle way to enter observed evidence is setting NodeFinding(node) <- value. The
function NodeLikelihood() can be used to enter “virtual evidence”, however, some care must be
taken as it alters the meanings of several of the other functions.

The conditional (given the entered findings and likelihoods) probability distribution can be queried
at any time using the function NodeBeliefs(). The function JointProbability() calculates the
joint distribution over a collection of nodes, and the function FindingsProbability() calculates
the prior probability of the observed findings. The function MostProbableConfig() finds the mode
of the joint probability distribution (given the current findings and likelihood).

Note that in the default state, when findings are entered, the beliefs about all other nodes in the net-
work are then updated. This can be time consuming in large networks. The function SetNetworkAutoUpdate()
can be used to change this to a lazy updating mode, when the evidence from the findings are
only propagated when required for a call to NodeBeliefs() or a similar function. The function
WithoutAutoUpdate(net,expr) is useful for setting findings in a large number of nodes in net
without the overhead of belief updating.

RNetica-package 9

Node Sets

The function NodeSets() allows the modeller to attach labels to the nodes in the network. For the
most part, Netica ignores these labels, except that it will colour nodes from various sets different
colours (NetworkNodeSetColor()). Aside from a few internal labels used by Netica, these node
sets are reserved for user programming.

RNetica provides some functions that make node sets incredibly convenient ways to describe the
indended usage of the nodes. In particular, the function NetworkNodesInSet() returns a list of all
nodes which are tagged as being in a particular node set. For example, suppose that the modeller
has marked a number of nodes as being in the node set "ReportingVar". Then the following code
would generate a report about the network:

net.ReportingVars <- NetworkNodesInSet(net, "ReportingVar")
lapply(net.ReportingVars, NodeBeliefs)

Warning

The current status of RNetica is that of a late alpha to early beta release. The code base is stable
enough to do useful work, but more testing is still required. Users are advised to work in such a
way that they can easily recover from problems.

In particular, because RNetica calls C code, there is a possiblity that it will crash R. There is also a
possibility that pointers embedded in NeticaBN and NeticaNode objects will become corrupted. If
such problems occur, it is best to restart R and reload the networks.

Please send information about both serious and not-so-serious problems to the maintainer.

Author(s)

Russell Almond
Maintainer: Russell Almond <almond@acm.org>

References

The Netica API documentation can be found at http://norsys.com/onLineAPIManual/index.
html.

Almond, R. G. & Mislevy, R. J. (1999) Graphical models and computerized adaptive testing. Ap-
plied Psychological Measurement, 23, 223–238.

Examples

###
Network Construction:

abc <- CreateNetwork("ABC")
A <- NewDiscreteNode(abc,"A",c("A1","A2","A3","A4"))
B <- NewDiscreteNode(abc,"B",c("B1","B2","B3"))
C <- NewDiscreteNode(abc,"C",c("C1","C2"))

AddLink(A,B)

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/index.html

10 RNetica-package

NodeParents(C) <- list(A,B)

NodeProbs(A)<-c(.1,.2,.3,.4)
NodeProbs(B) <- normalize(matrix(1:12,4,3))
NodeProbs(C) <- normalize(array(1:24,c(4,3,2)))
abcFile <- tempfile("peanut",fileext=".dne")
WriteNetworks(abc,abcFile)

DeleteNetwork(abc)

###
Inference using the EM-SM algorithm (Almond & Mislevy, 1999).
System/Student model
EMSMSystem <- ReadNetworks(paste(library(help="RNetica")$path,

"sampleNets","System.dne",
sep=.Platform$file.sep))

Evidence model for Task 1a
EMTask1a <- ReadNetworks(paste(library(help="RNetica")$path,

"sampleNets","EMTask1a.dne",
sep=.Platform$file.sep))

Evidence model for Task 2a
EMTask2a <- ReadNetworks(paste(library(help="RNetica")$path,

"sampleNets","EMTask2a.dne",
sep=.Platform$file.sep))

Task 1a has a footprint of Skill1 and Skill2 (those are the
referenced student model nodes. So we want joint the footprint into
a single clique.
MakeCliqueNode(NetworkFindNode(EMSMSystem, NetworkFootprint(EMTask1a)))
The footprint for Task2 a is already a clique, so no need to do
anything.

Make a copy for student 1
student1 <- CopyNetworks(EMSMSystem,"student1")
Monitor nodes for proficiency
student1.prof <- NetworkNodesInSet(student1,"Proficiency")

student1.t1a <- AdjoinNetwork(student1,EMTask1a)
We are done with the original EMTask1a now
DeleteNetwork(EMTask1a)

Now add findings
CompileNetwork(student1)
NodeFinding(student1.t1a$Obs1a1) <- "Right"
NodeFinding(student1.t1a$Obs1a2) <- "Right"

student1.probt1a <- JointProbability(student1.prof)

Done with the observables, absorb them
AbsorbNodes(student1.t1a)
CompileNetwork(student1)

AbsorbNodes 11

student1.probt1ax <- JointProbability(student1.prof)

Now Task 2
student1.t2a <- AdjoinNetwork(student1,EMTask2a,"t2a")
DeleteNetwork(EMTask2a)

Add findings
CompileNetwork(student1)
NodeFinding(student1.t2a$Obs2a) <- "Half"

AbsorbNodes(student1.t2a)
CompileNetwork(student1)
student1.probt1a2ax <- JointProbability(student1.prof)

DeleteNetwork(list(student1, EMSMSystem))

AbsorbNodes Delete a Netica nodes in a way that maintains the connectivity.

Description

This function deletes NeticaNode connecting the parents of the deleted node to its children. If
multiple nodes are passed as the argument, then all of the nodes are absorbed. The joint probability
distribution over the remaining nodes should be the same as the marginal probalility distribution
over the remaining nodes before the nodes were deleted.

Usage

AbsorbNodes(nodes)

Arguments

nodes A NeticaNode or list of NeticaNodes to be deleted.

Details

This function provides a way of removing a node without affecting the connectivity, or the joint
probability of the remaining nodes. In particular, all of the relationship tested by is.NodeRelated()
among the remaining nodes should remain true (or false) when we are done.

Value

Returns NULL.

Author(s)

Russell Almond

12 AddLink

References

http://norsys.com/onLineAPIManual/index.html: AbsorbNodes_bn()

See Also

NeticaNode, AddLink(), NodeChildren(), NodeParents(), ReverseLink(), is.NodeRelated()

Examples

anet <- CreateNetwork("Absorbant")

xnodes <- NewDiscreteNode(anet,paste("X",1:5,sep="_"))
AddLink(xnodes[[1]],xnodes[[2]])
AddLink(xnodes[[2]],xnodes[[3]])
AddLink(xnodes[[3]],xnodes[[4]])
AddLink(xnodes[[3]],xnodes[[5]])

stopifnot(
all(match(xnodes[4:5],NodeChildren(xnodes[[3]]),nomatch=0)>0),
is.NodeRelated(xnodes[[2]],xnodes[[3]],"parent"),
is.NodeRelated(xnodes[[2]],xnodes[[1]],"child")

)

These are leaf nodes, shouldn’t change topology, except locally.
AbsorbNodes(xnodes[4:5])
stopifnot(

Nodes 4 and 5 are now deleted
all(!is.active(xnodes[4:5])),
length(NodeChildren(xnodes[[3]]))==0,
is.NodeRelated(xnodes[[2]],xnodes[[3]],"parent"),
is.NodeRelated(xnodes[[2]],xnodes[[1]],"child")

)

This should connect X1->X3
AbsorbNodes(xnodes[[2]])
stopifnot(

Node 2 is now deleted
!is.active(xnodes[[2]]),
length(NodeChildren(xnodes[[3]]))==0,
is.NodeRelated(xnodes[[1]],xnodes[[3]],"parent"),
is.NodeRelated(xnodes[[3]],xnodes[[1]],"child")

)

DeleteNetwork(anet)

AddLink Adds or removes a link between two nodes in a Netican network.

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/AbsorbNodes_bn.html

AddLink 13

Description

Add link adds an edge from Parent to Child. Delete Link removes that edge. This states that the
distribution of child will be specified conditional on the value of parent. Consequently, adding or
removing edges with affect the conditional probability tables associated with the Child node (see
NodeProbs().)

Usage

AddLink(parent, child)
DeleteLink(parent, child)

Arguments

parent A NeticaNode representing an independent variable to be added to the condi-
tioning side of the relationship. The nodes parent and child must both be in
the same network.

child A NeticaNode representing dependent variable to be added to the conditioning
side of the relationship.

Details

After adding a link parent --> child, it be the case that parent is in NodeParents(child)
and child is a member of NodeChildren(parent). If child already has other parents, then the
new parent will be added to the end of the list. The order of the parents can be set by setting
NodeParents(child).

In general, the Bayesian network must always be an acyclic directed graph. Therefore, if parent
is a decendent of child (that is if is.NodeRelated(child), "decendent", child is TRUE), then
Netica will generate an error.

The function DeleteLink() removes the relationship, and the parent and child nodes should no
longer be in each other parent and child lists. The parent list of the child node is shortened (a stub
node for later reconnection is not created as when NodeParents(child)[i] <- list(NULL)).

Value

The function AddLinK invisibly returns the index of the new parent in the parent list.

The function DeleteLink invisibly returns the child node.

Note

The Netica API specifies the first argument to DeleteLink_bn() as an index into the parent list.
RNetica maps from the node to the index.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: AddLink_bn(), DeleteLink_bn()

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/AddLink_bn.html
http://norsys.com/onLineAPIManual/functions/DeleteLink_bn.html

14 AdjoinNetwork

See Also

NeticaNode, NodeParents(), NodeChildren(), is.NodeRelated()

Examples

abnet <- CreateNetwork("AABB")
A <- NewDiscreteNode(abnet, "A")
B <- NewDiscreteNode(abnet, "B")

AddLink(A,B)

stopifnot(
match(A,NodeParents(B),nomatch=0)>0,
match(B,NodeChildren(A),nomatch=0)>0

)

DeleteLink(A,B)

stopifnot(
match(A,NodeParents(B),nomatch=0)==0,
match(B,NodeChildren(A),nomatch=0)==0

)

DeleteNetwork(abnet)

AdjoinNetwork Links an evidence model network to a system model netwok.

Description

This function assumes that the two arguments are networks that were designed to be connected to
one another. It copies the nodes from em into sm and then tries to resolve any stub links in the copied
nodes by connecting them to nodes in sm.

Usage

AdjoinNetwork(sm, em, setname = character())

Arguments

sm An active NeticaBN which contains the system state variables.

em An active NeticaBN which contains variables that provide evidence about the
system state.

setname An optional character vector containing names of node sets (see NodeSets()).
If supplied, all of the newly created nodes are added to the node sets.

AdjoinNetwork 15

Details

This follows the System Model–Evidence Model protocol laid out in Almond et al (1999) and
Almond and Mislevy (1999). The idea is that the network sm is a complete network that encodes
beliefs about the current status of a system. In particular, it often encodes the state of knowledge
about a student and is then called a student model.

The second network em is an incomplete network: a fragment of a network, some of whose nodes
could be stub nodes referring to nodes in the sm (see NodeInputNames() and NodeKind()). The
idea is that the evidence model provides a set of observable values associated with some diagnostic
proceedure, in particular, a task on an assessment.

The function AdjoinNetwork(sm,em) copies all of the nodes from em to sm, modifying sm in the
process (copy it first using CopyNetworks(sm) if this is not the intention). It then the parents of
each node, emnode, in em looking for stub nodes (cases where NodeParents(emnode)[j] has been
set to NULL for some parent. AdjoinNetworks(sm,em) then tries to find a matching parent by
searching for a system model node, smnode named NodeInputNames(emnode)[j]. If it finds one,
it sets NodeParents(emnode)[j] <- smnode; if not, it issues a warning.

The function AdjoinNetwork(sm,em) also copies node set information from the nodes in em to
their copies in sm. The value of setname is concatenated with the current node sets of the nodes in
em. This provides a handy way of identifying the evidence model from which the nodes came.

After findings are entered on the nodes in the evidence model, the can be eliminated using AbsorbNodes().

Value

A list containing the newly copied nodes (the instances of the em nodes now in sm).

Author(s)

Russell Almond

References

Almond, R. G. & Mislevy, R. J. (1999) Graphical models and computerized adaptive testing. Ap-
plied Psychological Measurement, 23, 223–238.

Almond, R., Herskovits, E., Mislevy, R. J., & Steinberg, L. S. (1999). Transfer of information
between system and evidence models. In Artificial Intelligence and Statistics 99, Proceedings (pp.
181–186). Morgan-Kaufman

See Also

NeticaNode, AbsorbNodes(), JointProbability(), NodeSets(), CopyNodes(),NetworkFootprint()

Examples

System/Student model
EMSMSystem <- ReadNetworks(paste(library(help="RNetica")$path,

"sampleNets","System.dne",
sep=.Platform$file.sep))

16 AdjoinNetwork

Evidence model for Task 1a
EMTask1a <- ReadNetworks(paste(library(help="RNetica")$path,

"sampleNets","EMTask1a.dne",
sep=.Platform$file.sep))

Evidence model for Task 2a
EMTask2a <- ReadNetworks(paste(library(help="RNetica")$path,

"sampleNets","EMTask2a.dne",
sep=.Platform$file.sep))

Evidence model for Task 2b
EMTask2b <- ReadNetworks(paste(library(help="RNetica")$path,

"sampleNets","EMTask2b.dne",
sep=.Platform$file.sep))

Task 1a has a footprint of Skill1 and Skill2 (those are the
referenced student model nodes. So we want joint the footprint into
a single clique.
MakeCliqueNode(NetworkFindNode(EMSMSystem, NetworkFootprint(EMTask1a)))
The footprint for Task2 a is already a clique, so no need to do
anything.

Make a copy for student 1
student1 <- CopyNetworks(EMSMSystem,"student1")
Monitor nodes for proficiency
student1.prof <- NetworkNodesInSet(student1,"Proficiency")

student1.t1a <- AdjoinNetwork(student1,EMTask1a)
We are done with the original EMTask1a now
DeleteNetwork(EMTask1a)

Now add findings
CompileNetwork(student1)
NodeFinding(student1.t1a$Obs1a1) <- "Right"
NodeFinding(student1.t1a$Obs1a2) <- "Right"

student1.probt1a <- JointProbability(student1.prof)

Done with the observables, absorb them
AbsorbNodes(student1.t1a)
CompileNetwork(student1)
student1.probt1ax <- JointProbability(student1.prof)

This should be the same
stopifnot(

sum(abs(student1.probt1a-student1.probt1ax)) <.0001
)

Now Task 2
student1.t2a <- AdjoinNetwork(student1,EMTask2a,"t2a")
stopifnot(

setequal(names(student1.t2a),names(NetworkNodesInSet(student1,"t2a")))

CompileNetwork 17

)
DeleteNetwork(EMTask2a)

Add findings
CompileNetwork(student1)
NodeFinding(student1.t2a$Obs2a) <- "Half"

student1.probt1a2a <- JointProbability(student1.prof)

AbsorbNodes(student1.t2a)
CompileNetwork(student1)
student1.probt1a2ax <- JointProbability(student1.prof)

This should be the same
stopifnot(

sum(abs(student1.probt1a2a-student1.probt1a2ax)) <.0001
)

Adjoining networks twice should result in copies with incremented
numbers.
AdjoinNetwork(student1,EMTask2b)
AdjoinNetwork(student1,EMTask2b)

DeleteNetwork(student1)
DeleteNetwork(EMTask2b)
DeleteNetwork(EMSMSystem)

CompileNetwork Builds the junction tree for a Netica Network

Description

Before Netica performs inference in a network, it needs to compile the network. This process con-
sists of building a junction tree and conditional probability tables for the nodes of that tree. The
function CompileNetwork() compiles the network and UncompileNetwork() undoes the compi-
lation and frees the associated memory.

Usage

CompileNetwork(net)
UncompileNetwork(net)
is.NetworkCompiled(net)

Arguments

net An active NeticaBN which will be compiled.

18 CompileNetwork

Details

Usually Bayesian network projects operate in two phases. In the construction phase, new nodes are
added to the network, new connections made and conditional probabilty tables are set.

In the inference phase, findings are added to nodes and other nodes are queried about their current
conditional probability tables.

The functions CompileNetowrk() and UncompileNetwork() move the networks between the two
phases. The documentation for EliminationOrder() and JunctionTreeReport() provide more
details about the compilation process. The function NetworkCompiledSize() provides information
about the amount of storage used by the compiled network, but only after the network is compiled.

The function is.NetworkCompiled() tests to see if a network is compiled or not.

Value

The NeticaBN object net is returned invisibly.

Note

Calling NetworkCompiledSize() on an uncompiled network produces, an error, but also the sensi-
ble value of -1. The function is.NetworkCompiled() calls the same internal function as NetworkCompiledSize,
but clears the error. This means it also clears any other errors that might be lurking in the system
(see ReportErrors().

I think calling CompileNetwork() twice on the same network is harmless. Adding a node to a
network will automatically uncompile it.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: CompileNet_bn(), UncompileNet_bn(), Size-
CompiledNet_bn(),

See Also

NeticaBN, HasNodeTable(), NodeFinding(), NodeBeliefs(), EliminationOrder(), JunctionTreeReport(),
JointProbability(), MostProbableConfig(), FindingsProbability()

Examples

irt5 <- ReadNetworks(paste(library(help="RNetica")$path,
"sampleNets","IRT5.dne",
sep=.Platform$file.sep))

stopifnot (!is.NetworkCompiled(irt5))

CompileNetwork(irt5) ## Ready to enter findings
stopifnot (is.NetworkCompiled(irt5))

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/CompileNet_bn.html
http://norsys.com/onLineAPIManual/functions/UncompileNet_bn.html
http://norsys.com/onLineAPIManual/functions/SizeCompiledNet_bn.html
http://norsys.com/onLineAPIManual/functions/SizeCompiledNet_bn.html

CopyNetworks 19

UncompileNetwork(irt5) ## Ready to add more nodes
stopifnot (!is.NetworkCompiled(irt5))

DeleteNetwork(irt5)

CopyNetworks Makes copies of Netica networks.

Description

Makes a copy of the networks in the list nets giving them the names in newnamelist. The options
argument controls how much information is copied.

Usage

CopyNetworks(nets, newnamelist, options = character(0))

Arguments

nets A list of NeticaBN objects.

newnamelist A character vector of the same length as nets which gives the names for the
newly created copies.

options A character vector containing information about what to copy. The elements
should be one of the values "no_nodes", "no_links", "no_tables", "no_visual".

Details

Copies each of the networks in the nets lists, giving it a new name from the newnamelist. It
returns a list of the new networks. If the specified net does not exist, then a warning is issued and a
NULL is returned instead of the corresponding NeticaBN object.

The options argument is passed to the options argument of the Netica API function CopyNet_bn().
Meanings for the various arguments can be found in the documentation for that function. Note that
Netica expects a list of comma separated values. RNetica will collapse the options argument
into a comma separated list, so the argument can be given either as a character vector of length 1
containing a comma separated list, or the elements of that list in separate elements of a character
vector.

Value

A list of NeticaBN objects corresponding to the new networks, or if the length of nets is one, a
single NeticaBN object is returned instead. A NULL is returned instead of the NeticaBN object if the
corresponding element of nets does not exit.

Author(s)

Russell Almond

20 CopyNodes

References

http://norsys.com/onLineAPIManual/index.html: CopyNet_bn()

See Also

DeleteNetwork()

Examples

net1 <- CreateNetwork("Original")
nets <- CreateNetwork(paste("Original",2:3,sep=""))

copy1 <-CopyNetworks(net1,"Copy1")
stopifnot(is(copy1,"NeticaBN"))
stopifnot(as.character(copy1) == "Copy1")
stopifnot(copy1 != net1)

netc <- CopyNetworks(nets,paste("Copy",2:3,sep=""))
stopifnot(all(sapply(netc,is,"NeticaBN")))
stopifnot(as.character(netc) == c("Copy2","Copy3"))

DeleteNetwork(c(netc,nets,list(copy1,net1)))

CopyNodes Copies or duplicates nodes in a Netica network.

Description

This function either copies nodes from one net to another or duplicates nodes within the same
network.

Usage

CopyNodes(nodes, newnamelist = NULL, newnet = NULL, options = character(0))

Arguments

nodes A list of active NeticaNode objects all from the same network.
newnamelist If supplied, this should be character vector with the same lenght as nodes giving

the new names for the nodes.
newnet If supplied, it should be an active NeticaBN which is the destination for the new

nodes. If this argument is NULL the nodes will be duplicated within the original
network.

options A character vector of options, with each element being one of the options. Cur-
rently, the only supported options are "no_tables" (do not copy the conditional
probability tables for the nodes) and "no_links" (do not duplicate the links,
which implies do not copy tables).

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/CopyNet_bn.html

CopyNodes 21

Details

The nodes in the first argument will be copied into a new network as specified by newnet. If
newnet is not specified or if it the same as the network from which nodes come, then the nodes will
be duplicated instead of copied.

If the nodes are duplicated, then will be given new names. The default Netica behavior for new
names is to append a number to the end of the node name, or to increment an existing number.
If newnamelist is supplied, these names will be used instead of the add a number convention.
Supplying newnamelist will change the names of the nodes when copying from one network to
another.

When nodes are copied links going into the node are copied as well. Thus if there is a link A -> B in
the network and B is copied into the same network, then there will a link A -> B1 to the new node.
If B is copied into a new network, the link will be there but not attached, as if NodeParents(B1)[A]
<- NULL had been called.

The argument options allows control over what is copied. The currently supported options are:

• "no_tables" — The conditional probability tables of the nodes (see NodeProbs()) will not
be copied, and new tables will need to be set in the new network.

• "no_links" — The links going into the nodes will not be copied. Note that the "no_links"
option implies the "no_tables" option, so both do not need to be specified.

Value

A list containing the new nodes (or just the new node, if there is only one).

Note

There may be some information that is not copied. For example, the NodeSets() information is not
copied.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: CopyNodes_bn()

See Also

CopyNetworks(), NeticaNode, NeticaBN(), NodeProbs(), NodeParents(), AbsorbNodes(), DeleteNodes()

Examples

System <- ReadNetworks(paste(library(help="RNetica")$path,
"sampleNets","System.dne",
sep=.Platform$file.sep))

EMTask1a <- ReadNetworks(paste(library(help="RNetica")$path,
"sampleNets","EMTask1a.dne",

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/CopyNodes_bn.html

22 CopyNodes

sep=.Platform$file.sep))

student1 <- CopyNetworks(System, "Student1")
student1.sysnodes <- NetworkAllNodes(student1)

student1.t1anodes <- CopyNodes(NetworkAllNodes(EMTask1a),newnet=student1)

Copied, new nodes have the same names as the old nodes.
stopifnot(

setequal(names(NetworkAllNodes(EMTask1a)),
names(student1.t1anodes))

)

The nodes in the evidence model have stub connections to the nodes in
the system model. Need to link them up.
stopifnot(

any(sapply(NodeParents(student1.t1anodes[[1]]),NodeKind) == "Stub"),
any(sapply(NodeParents(student1.t1anodes[[2]]),NodeKind) == "Stub")

)

student1.allnodes <- NetworkAllNodes(student1)
for (node in student1.t1anodes) {

stubs <- sapply(NodeParents(node),NodeKind) == "Stub"
NodeParents(node)[stubs] <- student1.allnodes[NodeInputNames(node)[stubs]]

}
stopifnot(

sapply(NodeParents(student1.t1anodes[[1]]),NodeKind) != "Stub",
sapply(NodeParents(student1.t1anodes[[2]]),NodeKind) !="Stub"

)

Duplicate these nodes.
student1.t1xnodes <- CopyNodes(student1.t1anodes)

Autonaming increments the numbers.
stopifnot(

setequal(names(student1.t1xnodes),c("Obs1a3","Obs1a4"))
)

Duplicate and rename.
student1.t1cnodes <- CopyNodes(student1.t1anodes,c("Obs1c1","Obs1c2"))

stopifnot(
setequal(names(student1.t1cnodes),c("Obs1c1","Obs1c2"))

)
Duplicated nodes have real not stub connections.
stopifnot(

sapply(NodeParents(student1.t1cnodes[[1]]),NodeKind) != "Stub",
sapply(NodeParents(student1.t1cnodes[[2]]),NodeKind) !="Stub"

)

DeleteNetwork(list(System,student1,EMTask1a))

CPA 23

CPA Representation of a conditional probability table as an array.

Description

A conditional probability table for a node can be represented as a array with the first p dimensions
representing the parent variables and the last dimension representing the states of the node. Given
a set of values for the parent variables, the values in the last dimension contain the conditional
probabilities corresponding conditional probabilities. A CPF is a special data.frame object which
represents a conditional probability table.

Usage

is.CPA(x)
as.CPA(x)

Arguments

x Object to be tested or coerced into a CPF.

Details

One way to store a conditional probability table is as an array in which the first p dimensions
represent the parent variables, and the p + 1 dimension represents the child variable. Here is an
example with two parents variables, A and B, and a single child variable, C:

, , C=c1

b1 b2 b3
a1 0.07 0.23 0.30
a2 0.12 0.25 0.31
a3 0.17 0.27 0.32
a4 0.20 0.29 0.33

, , C=c2

b1 b2 b3
a1 0.93 0.77 0.70
a2 0.88 0.75 0.69
a3 0.83 0.73 0.68
a4 0.80 0.71 0.67

[Because R stores (and prints) arrays in column-major order, the last value (in this case tables) is

24 CPA

the one that sums to 1.]

The CPA class is a subclass of the array class (formally, it is class c("CPA","array")). The CPA
class interprets the dimnames of the array in terms of the conditional probability table. The first p
values of names(dimnames(x)) are the input names of the edges (see NodeInputNames() or the
variable names (or the parent variable, see NodeParents(), if the input names were not specified),
and the last value is the name of the child variable. Each of the elements of dimnames(x) should
give the state names (see NodeStates()) for the respective value. In particular, the conversion
function as.CPF() relies on the existance of this meta-data, and as.CPA() will raise a warning if
an array without the appropriate dimnames is suppled.

Although the intended interpretation is that of a conditional probability table, the normalization
constraint is not enforced. Thus a CPA object could be used to store likelihoods, probability poten-
tials, contingency table counts, or other similarly shaped objects. The function normalize scales
the values of a CPA so that the normalization constraint is enforced.

The method NodeProbs() returns a CPA object.

The function as.CPA() is designed to convert between CPFs (that is, conditional proability tables
stored as data frames) and CPAs. It assumes that the factors variables in the data frame represent
the parent variables, and the numeric values represent the states of the child variable. It also as-
sumes that the names of the numeric columns are of the form varname.state , and attempts to derive
variable and state names from that.

If the argument to as.CPA(x) is an array, then it assumes that the dimnames(x) and names(dimnames(x))
are set to the states of the variables and the names of the variables respectively. A warning is issued
if the names are missing.

Value

The function is.CPA() returns a logical value indicating whether or not the is(x,"CPA") is true.

The frunction as.CPA returns an object of class c("CPA","array"), which is essentailly an array
with the dimnames set to reflect the variable names and states.

Note

The obvious way to print a CPA would be to always show the child variable as the rows in the
individual tables, with the parents corresponding to rows and tables. R, however, internally stores
arrays in column-major order, and hence the rows in the printed tables always correspond to the
second dimension. A new print method for CPA would be nice.

Author(s)

Russell Almond

See Also

NodeProbs(), Extract.NeticaNode, CPF, normalize()

CPF 25

Examples

arf <- data.frame(A=rep(c("a1","a2"),each=3),
B=rep(c("b1","b2","b3"),2),
C.c1=1:6, C.c2=7:12, C.c3=13:18, C.c4=19:24)

arfa <- as.CPA(arf)
stopifnot(

is.CPA(arfa),
all(dim(arfa)==c(2,3,4))

)

arr1 <- array(1:24,c(4,3,2),
dimnames=list(A=c("a1","a2","a3","a4"),B=c("b1","b2","b3"),

C=c("c1","c2")))
arr1a <- as.CPF(arr1)
stopifnot(

is.CPA(as.CPA(arr1a))
)

Not run:
as.CPF(node[])

End(Not run)

CPF Representation of a conditional probability table as a data frame.

Description

A conditional probability table for a node can be represented as a data frame with a number of
factor variables representing the parent variables and the remaining numeric values representing
the conditional probabilities of the states of the nodes given the parent configuration. Each row
represents one configuration and the corresponding conditional probabilities. A CPF is a special
data.frame object which represents a conditional probability table.

Usage

is.CPF(x)
as.CPF(x)

Arguments

x Object to be tested or coerced into a CPF.

Details

One way to store a conditional proability table is a table in which the first severl columns indicate
the states of the parent variables, and the last several columns indicate probabilities for several child
variables. Consider the following example:

26 CPF

A B C.c1 C.c2 C.c3 C.c4
[1,] a1 b1 0.03 0.17 0.33 0.47
[2,] a2 b1 0.05 0.18 0.32 0.45
[3,] a1 b2 0.06 0.19 0.31 0.44
[4,] a2 b2 0.08 0.19 0.31 0.42
[5,] a1 b3 0.09 0.20 0.30 0.41
[6,] a2 b3 0.10 0.20 0.30 0.40

In this cas the first two columns correspond to parent variables A and B. The variable A has two
possible states and the variable B has three. The child variable is C and it has for possible states.
The numbers in each row give the conditional proabillities for those states give the state of the child
variables.

The class CPF is a subclass of data.frame (formally, it is class c("CPF","data.frame")). Al-
though the intended interpretation is that of a conditional probability table, the normalization con-
straint is not enforced. Thus a CPF object could be used to store likelihoods, probability potentials,
contingency table counts, or other similarly shaped objects. The function normalize scales the
numeric values of CPF so that each row is normalized.

The method "[.NeticaNode" returns a CPF (if the node is not deterministic).

The function as.CPF() is designed to convert between CPAs (that is, conditional proability ta-
bles stored as arrays) and CPFs. In particular, as.CPF is designed to work with the output of
NodeProbs() or a similarly formatted array. It assumes that names(dimnames(x)) are the names
of the variables, and dimnames(x) is a list of character vectors giving the names of the states of the
variables. (See CPA for details.) This general method should work with any numeric array for which
both dimnames(x) and names(dimnames(x)) are specified.

The argument x of as.CPF() could also be a data frame, in which case it is permuted so that the
factor variable are first and the class tag "CDF" is added to its class.

Value

The function is.CPF() returns a logical value indicating whether or not the is(x,"CDF") is true.

The frunction as.CPF returns an object of class c("CPF","data.frame"), which is essentailly a
data frame with the first couple of columns representing the parent variables, and the remaining
columns representing the states of the child variable.

Note

The parent variable list is created with a call expand.grid(dimnames(x)[1:(p-1)]). This pro-
duces conditional probabilty tables where the first parent variable varies fastest. The Netica GUI
displays tables in which the last parent variable varies fastest.

Author(s)

Russell Almond

See Also

NodeProbs(), Extract.NeticaNode, CPA, normalize()

CreateNetwork 27

Examples

arf <- data.frame(A=rep(c("a1","a2"),each=3),
B=rep(c("b1","b2","b3"),2),
C.c1=1:6, C.c2=7:12, C.c3=13:18, C.c4=19:24)

arf <- as.CPF(arf)
stopifnot(is.CPF(arf))

arr <- array(1:24,c(2,3,4),
dimnames=list(A=c("a1","a2"),B=c("b1","b2","b3"),

C=c("c1","c2","c3","c4")))
arrf <- as.CPF(arr)
stopifnot(

is.CPF(arrf),
all(levels(arrf$A)==c("a1","a2")),
all(levels(arrf$B)==c("b1","b2","b3")),
nrow(arrf)==6, ncol(arrf)==6

)

##Warning, this is not the same as arf, rows are permuted.
as.CPF(as.CPA(arf))

Not run:
as.CPF(NodeProbs(node))

End(Not run)

CreateNetwork Creates (destroys) a new Netica network.

Description

CreateNetwork() makes a new empty network in Netica. DeleteNetwork() frees the memory
associated with the named network inside of Netica.

Usage

CreateNetwork(names)
DeleteNetwork(nets)

Arguments

names A character vector giving the name or names of the network to be created.

nets A list of NeticaBN objects to be destroyed.

28 CreateNetwork

Details

The CreateNetwork method creates a new network for each of the names. Names must follow the
IDname rules. It returns a NeticaBN object, or a list of such objects if the argument names has length
greater than 1.

The DeleteNetwork method frees the Netica memory associated with each net in its argument.
Note that the network will not be available for use after it is deleted. It returns the NeticaBN
objects, but modified so that they are no longer active.

The function link{is.active}(), checks to see if the network associated with a NeticaBN object
still corresponds to a network loaded into Netica’s memory.

These functions wrap the Netica API functions NewNet_bn() and DeleteNet_bn().

Value

A single NeticaBN object if the length of the argument is 1, and a list of suct objects if the argument
has length greater than 1. For DeleteNets() if a specified network does not exist, the corresponding
element in the return list will be NULL.

Implementation Note

Currently, the NeticaBN object uses the name of the networks as the pointer into the network. Thus
either a character vector of names or a list of NeticaBN objects is mostly equivalent.

Future versions may actually use pointers to the Netica objects.

Note

The function DeleteNetwork() implicitly deletes any nodes assocaited with the network. There-
fore, any nodes associated with this network will become inactive (see is.active()).

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: NewNet_bn(), DeleteNet_bn()

See Also

CopyNetworks(), is.active()

Examples

net1 <- CreateNetwork("EmptyNet")
stopifnot(is(net1,"NeticaBN"))
stopifnot(as.character(net1)=="EmptyNet")
stopifnot(is.active(net1))

netd <- DeleteNetwork(net1)

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/NewNet_bn().html
http://norsys.com/onLineAPIManual/functions/DeleteNet_bn().html

DeleteNodeTable 29

stopifnot(!is.active(netd))
stopifnot(!is.active(net1))
stopifnot(as.character(netd)=="EmptyNet")

DeleteNodeTable Deletes the conditional probability table of a Netica node.

Description

This function completely removes the conditional probability table (CPT) associated with a node.

Usage

DeleteNodeTable(node)

Arguments

node An active NeticaNode whose conditional probability table is to be tested.

Value

Returns the modified node invisibly.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: DeleteNodeTables_bn()

See Also

NeticaNode, NodeParents(), NodeInputNames(), HasNodeTable()

Examples

a1 <- CreateNetwork("AB1")
A <- NewDiscreteNode(a1,"A",c("A1","A2"))

NodeProbs(A) <- c(0,1)
stopifnot(

all(HasNodeTable(A))==TRUE
)

DeleteNodeTable(A)
stopifnot(

all(HasNodeTable(A))==FALSE

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/DeleteNodeTables_bn.html

30 EliminationOrder

)

DeleteNetwork(a1)

EliminationOrder Retrieves or sets the elimination order used in compiling a Netica net-
work.

Description

The compilation process involves eliminating the nodes in the network one-by-one, different orders
will produce junction trees of different sizes. The function EliminationOrder(net) returns the
current elimination order associated with a network. The expression EliminationOrder(net) <- value
sets the elimination order.

Usage

EliminationOrder(net)
EliminationOrder(net) <- value

Arguments

net An active NeticaBN/
value Either NULL (to clear the elimination order) or a list of every node in net with

no duplicates.

Details

Large cycles create problems for propagating probabilities in Bayesian networks. A solution to this
problem is to fill-in chords (short cuts) in the cycles and then transform the network to a tree shape
with the nodes of the tree representing cliques of the graph. This is commonly called a junction tree
(although a junction tree additionally has nodes separating the cliques, called sepsets in Netica).

Finding the optimal pattern of fill-ins is an NP hard problem. A common way of approaching it is to
eliminate the nodes from the network one-by-one and connect the neighbors of the eliminated node
(if they were not already connected). In this case, the sequence of eliminated nodes will determine
which edges are filled in, and hence the size of the final junction tree. Finding an optimal eliminator
order is also NP hard, but simple heuristics (like the greedy algorithm) tend to do reasonably well in
practice. (See Almond, 1995, for a complete description of the algorithm and heuristics solutions).

When Netica compiles a network (CompileNetwork(net)), it picks an elimination order, unless
one has already been set. Unless the network has a particular difficult structure, then the Netica
defaults should work pretty well. The function JunctionTreeReport(net) gives a report about
the existing tree.

If the analyst has some clue about the structure of the network and wants to manually select the
elimination order, this can be set through the form EliminationOrder(net)<-nodelist. Here
nodelist should be a complete list of all of the nodes in net with no duplication. Alternatively, it
can be set to NULL.

Setting the elimination order does not affect an already compiled network, it is only is applied when
the network is next compiled.

EliminationOrder 31

Value

A list of all of the nodes in the network in elimination order if the elimination order is currently set,
otherwise NULL.

The setter form returns net invisibly.

Note

The Netica documentation does not specify the heuristics for selecting the elimination order if no
order is specified. I suspect it is some variation on the greedy algorithm, which works well in many
cases.

Author(s)

Russell Almond

References

Almond, R.G. (1995) Graphical Belief Modeling. Chapman and Hall.

http://norsys.com/onLineAPIManual/index.html: GetNetElimOrder_bn(), SetNetElimOrder_bn(),

See Also

NeticaBN, NetworkAllNodes(), CompileNetwork(), JunctionTreeReport()

Examples

EMSMMotif <- ReadNetworks(paste(library(help="RNetica")$path,
"sampleNets","EMSMMotif.dne",
sep=.Platform$file.sep))

Should be null before we do anything.
stopifnot(
is.null(EliminationOrder(EMSMMotif))

)

CompileNetwork(EMSMMotif)
Now should have an elimination order.
stopifnot(
length(EliminationOrder(EMSMMotif)) ==
length(NetworkAllNodes(EMSMMotif)),
NetworkCompiledSize(EMSMMotif) == 84

)
JunctionTreeReport(EMSMMotif)

EMSMMotif is partitioned into observable and proficiency variables.
Tell Netica to eliminate observable varaibles first.
EliminationOrder(EMSMMotif) <- c(NetworkNodesInSet(EMSMMotif,"Observable"),

NetworkNodesInSet(EMSMMotif,"Proficiency"))
UncompileNetwork(EMSMMotif)

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNetElimOrder_bn.html
http://norsys.com/onLineAPIManual/functions/SetNetElimOrder_bn.html

32 EnterFindings

CompileNetwork(EMSMMotif)
stopifnot(
length(EliminationOrder(EMSMMotif)) ==
length(NetworkAllNodes(EMSMMotif)),
NetworkCompiledSize(EMSMMotif) == 84

)
JunctionTreeReport(EMSMMotif)

Clear elimination order.
EliminationOrder(EMSMMotif) <- NULL
stopifnot(
is.null(EliminationOrder(EMSMMotif))

)

DeleteNetwork(EMSMMotif)

EnterFindings Enters findings for multiple nodes in a Netica network.

Description

This function takes two arguments, a network and a list of nodes and the correspoinding findings.
It sets all of the findings at once.

Usage

EnterFindings(net, findings)

Arguments

net An active and compiled NeticaBN.

findings An integer or character vector giving the findings. The names(findings) should
be names of nodes in net. The values of findings should be corresponding
states either expressed as a character string or as an integer index into the list of
states for that node. (See NodeFinding(node).

Details

This function enters findings for multiple nodes at the same time. It offers two improvements over
repeated calls to NodeFinding(). First, it finds the nodes by name in the network, making it easier
to work with data in the form of key–value pairs that might come from other systems. Second, it
wraps the calls to NodeFinding() in a call to WithoutAutoUpdate() which should only propagate
the new findings after all values have been entered.

Value

The value of net is returned invisibly.

EnterNegativeFinding 33

Author(s)

Russell Almond

See Also

NeticaBN, NodeBeliefs(), EnterNegativeFinding(), EnterFindings(), RetractNodeFinding(),
NodeLikelihood(), JointProbability(), MostProbableConfig(), FindingsProbability()

Examples

Motif <- ReadNetworks(paste(library(help="RNetica")$path,
"sampleNets","EMSMMotif.dne",
sep=.Platform$file.sep))

CompileNetwork(Motif)
obs <- c(Obs1a1="Right",Obs1a2="Wrong",

Obs1b1="Right",Obs1b2="Wrong",
Obs2a="Half", Obs2b="Half")

EnterFindings(Motif,obs)
JointProbability(NetworkNodesInSet(Motif,"Proficiency"))

DeleteNetwork(Motif)

EnterNegativeFinding Sets findings for a Netaca node to a list of ruled out values.

Description

This is conceptually equivalent to setting NodeFinding{node}<-not(eliminatedVals) (although
this will not work as NodeFinding does not accept set values). It essentially eliminates any of the
eliminatedVals as possible values (assigns them zero probability).

Usage

EnterNegativeFinding(node, eliminatedVals)

Arguments

node An active NeticaNode whose value was observed or hypothesized.

eliminatedVals A character or integer vector indicating the values to be ruled out. Character
values should be one of the values in NodeStates(node). Integer values should
be between 1 and NodeNumStates(node) inclusive.

34 EnterNegativeFinding

Details

This function essentially assers that Pr(node ∈ eliminatedV als) = 0. Thus, it rules out the
values in the eliminatedVals set. Note that the length of this set should be less than the number
of states, or all possibilities will have been eliminated.

Note calling EngerNegativeFining(node, ...) clears any previous findings (including virutal
findings set through NodeLikelihood() or simplie findinding set through NodeFinding(node)<-value).
The function RetractNodeFinding(node) will clear the current finding without setting it to a new
value.

Value

This function returns node invisibly.

Note

If SetNetworkAutoUpdate() has been set to TRUE, then this function could take some time as each
finding is individually propagated. Consider wrapping multiple calls setting NodeFinding() in
WithoutAutoUpdate(net, ...).

Unlike the Netica function EnterFindingNot_bn() the function EnterNegativeFinding() inter-
nally calls RetractFindings. So there is no need to do this manually. Also, the internal Netica
function multiplies multiple calls to EnterFindingNod_bn() add to the list of negative findings,
while in the R version takes the entire list.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: EnterFindingNot_bn()

See Also

NeticaBN, NodeBeliefs(), NodeFinding(), RetractNodeFinding(), NodeLikelihood()

Examples

irt5 <- ReadNetworks(paste(library(help="RNetica")$path,
"sampleNets","IRT5.dne",
sep=.Platform$file.sep))

irt5.theta <- NetworkFindNode(irt5,"Theta")
irt5.x <- NetworkFindNode(irt5,paste("Item",1:5,sep="_"))

CompileNetwork(irt5) ## Ready to enter findings

Calculated new expected beliefs
renormed <- NodeProbs(irt5.theta)
renormed[c("neg1","neg2")] <- 0
renormed <- renormed/sum(renormed)

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/EnterFindingNot_bn.html

Extract.NeticaNode 35

Negative finding
EnterNegativeFinding(irt5.theta,c("neg1","neg2")) ## Rule out negatives.
stopifnot(

NodeFinding(irt5.theta) == "@NEGATIVE FINDINGS",
sum(abs(NodeLikelihood(irt5.theta) - c(1,1,1,0,0))) < 1e-6,
sum(abs(NodeBeliefs(irt5.theta) - renormed)) < 1.e-6

)

DeleteNetwork(irt5)

Extract.NeticaNode Extracts portions of the conditional probability table of a Netica node.

Description

Provides an efficient mechansim for extracting or setting portions of large conditional probability
tables. In particular, allows setting many rows a CPT to the same value.

Usage

S3 method for class ’NeticaNode’
x[..., drop=FALSE]
S3 method for class ’NeticaNode’
x[[...]]
S3 replacement method for class ’NeticaNode’
x[...] <- value
EVERY_STATE

Arguments

x An active, discrete NeticaNode whose conditional probability table is to be ac-
cessed.

... Indices specifying rows of the table to extract or replace. If a single index,
i, is given, it should be a data frame selecting the parent states, or an integer
pointing at a configuration. If multiple indexes are given, the number of indexes
should correspond to the number of parent states of the variable. The values
should either be character strings (corresponding to parent variable states), or
numeric (indexes to parent states). In character strings, the special value "*" is
allowed to select all values of that variable. In numeric indexes, the special value
EVERY_STATE indicates that all states are selected. Leaving the index position
blank is the same as specifying "*" or EVERY_STATE.

drop If true and a single row is selected, that row will be returned as a numeric vector
instead of a conditional probability frame (CPF).

36 Extract.NeticaNode

value Either a numeric vector with length NodeNumStates(x) giving the conditional
probabilities for the specified rows in the table or a character scaler (discrete
node) or numeric scaler (continuous node) giving the value that should be given
probability 1.

Details

The function NodeProbs(node) allows one to access the entire conditional probability at once as
a conditional probability array (CPA). Although the built-in R array replacement mechanisms allow
one to make various kinds of edits, it is relatively inefficient. In particular, to set a single row of an
array, the entire table is read into R and then written back to Netica.

This funciton allows the syntax node[...] to be used to access only a portion of the table. Ther
are many different ways ... can be interpreted, which are described below.

In this access model the value EVERY_STATE or the character value "*" has a special meaning of
match every level of that state variable. Netica supports this as a shortcut method for specifying
conditional probability tables with many similar values. However, when reading the conditional
probability tables from Netica they are expanded and no attempt is made to collapse over identical
rows.

A second difference is that node[...] returns the conditional probability table in data frame (CPF)
format. This is particularly convenient becasue that format does not need to cover every parent
configuration, thus it is ideal for holding subset of the complete table.

A third difference is that a number of special values are allowed for the probability table. First, if
the node is deterministic, the value of a parent configuration can be set to the state name instead of
a probabity vector. This creates a deterministic conditional probability table full of 1’s and 0’s. For
continuous nodes, the nodes value for a parent configuration (assuming all discrete or discritized
parents) can be set directly. Finally, if the last column of the conditional probabilities is not supplied,
it will be computed. This is particularly handy for binary nodes.

Normally, the expression node[...] produces a data frame either in CPF format, or with the prob-
abilities replaced by a single column of values. If drop==TRUE or equivalently if node[[...]]
was the expression, only the matrix of probabilities or the vector of values will be returned. The
expression node[[...]] <- value is not supported.

The sections below describe the various indexing options.

Value

For the form node[...] the return value is a data frame in the CPF format giving the conditional
probability table. If the node is deterministic (IsNodeDetermistic(node)==TRUE), then the pro-
bilities will be replaced with a single column giving the value of the node. If the node is discrete,
then the value will be a factor. If the node is continuous, then the value will be a real vector.

If drop==TRUE or an expression of the form node[[...]] was called, then the return value will be
a matrix of probabilities (the last several columns of the data frame). If the node is deterministic,
then the result will instead be either a factor (discrete node) or real vector (continuous node) giving
the value of the node for each parent configuration.

The form node[...]<-value returns node invisibly.

Extract.NeticaNode 37

Selecting Rows Using Data Frames

This selection uses the syntax node[df] or node[df]<-value, wheree df is a data frame or a
matrix. It is assumed that the columns represent the variables, and the rows represent the selected
configurations of the parent variables.

In this configuration, the number of rows of df and value should match (or the length of value
should equal the number of rows if one of the special values is used). When the value is being
queried rather than set, the number of rows in the result may be greater than the number of rows in
df because of EVERY_STATE expansion.

There are three different ways that df could be represented:

1. It can be a data frame filled with factor variables whose levels correspond to the states of the
corresponding parent node.

2. It can be a matrix or data frame of type character whose values correspond to the state names
of the corresponding parent variables, or possibly the special value "*" meaning that all values
of that parent should be matched.

3. It can be a matrix of data frame of integers whose values correspond to the state indexes of the
parent variables. In this case the special value EVERY_STATE can be supplied indicating that
all values should be matched. Otherwise, it should be a number between 1 and the number of
states of that variable, inclusive.

The number of columns in df should be the same as the number of parent variables for node. If
df has column names, then all columns should be named. In this case the parent variables will be
match by the NodeInputNames(node) if they exist, or the names of the parent varaibles if they do
not (see ParentStates(node) for more details). Otherwise, positional selection is used.

Selecting Rows Using Array-type Selection

The second way that rows from the conditional probability table can be selected is using an analogue
of the selection mechansims supported by R for selecting cells from an array. Essentially, the rows
of the conditional probability table are treated as if they are the elements of an array whose dim-
names correspond to ParentStates{node}. In particular the number of dimensions corresponds
to the number of parent variables, and the extent of each dimension corresponds to the number of
states of the corresponding parent variable.

In this selection mode, the length of ... should correspond to the number of parent variables (that
is, there should be one fewer comma, than parent variables). Each element can be one of three
things:

1. A character or factor vector selecting the appropriate states of the parent variable.
2. An integer vector selecting the appropriate states of the parent variable by position.
3. One of the special values EVERY_STATE, "*" or blank indicating that all values of the appro-

priate variable should be selected.

The order of the entries should be the same as the order of the parent variables in NodeParents{node}.
The selection looks very similar to selection using a data frame, where the data frame consists of
applying expand.grid(...).

Once again EVERY_STATE or "*" entries are treated specially inside of Netica, which allows every
matching row of the table to be simultaneously set to the same probabilities.

Note that negative selections and logical selections are not currently supported.

38 Extract.NeticaNode

Selecting Rows Using Named Parents

As with R array index selection, the dimensions of the selection in the ... argument can be specified
using named arguments. If one of the elements of ... is named, they all should be named. The
names should correspond to ParentNames(node), that is the NodeInputNames(node) are used if
available, and the names of the parent nodes are used as a fallback.

As before the value for a parent variable can be set to a value or a vector of possible values as
either an integer, factor or character value. The special values EVERY_STATE and "*" are interpreted
as before. If the value of a parent variable is unspecified, this is equivalent to using the value
EVERY_STATE.

Selecting Rows Using a Single Integer

If ... is a single integer, it is treated as an index into the possible configurations. These are
defined by expand.grid(ParentStates(node). Each index refers to a row in that table. This is
particularly meant for running through loops on all values, although working with value as a data
frame or using NodeProbs may be faster in those cases.

There is some ambiguity when there is a single parent variable about whether the array-type selec-
tion or the index was intended, but both are identical, so there should be no conflict.

Special Meanining for NULL selection

If ... is NULL, that is if the calling expression looks like node[] then the intention is that all
rows of the conditional probability table are to be selected. This is the only meaningful selection
type if there are no parent variables. It also provides a fast and convenient way to set all rows of
the conditional probabillity table to the same value (if value) has a single row, or to retrieve the
complete conditional probability table in CPF format.

If value is a data frame with both factor and numeric variables, then it takes on a different meaning.
In this case, the factor variables are used as if they were the selection argument (the ...) and the
remaining numeric values the probabilities.

Setting Value to a Probability Matrix

In general the replacement value should be a matrix. The number of columns should match the
number of states of node (see below for the behavior if the number of columns is one less than the
number of states). It should have the same number of rows as the number of rows in the selection
after any expansion has been applied for vector valued arguments, but not counting the special
values EVERY_STATE or "*" (or blank entries in the list).

Netcia has a special shortcut for EVERY_STATE and all matching rows are set to the same probability
value. This means that the number of rows in the value must match the selection counting the
special values as if they selected a single row. In particular, if node has one or more parent variables
and value is a matrix with more than one row, node[] <- value will generate a error, because the
selection has only one row (with every value set to EVERY_STATE.

When value is an undimensioned vector, the function will do its best to figure out if it should be
treated as a row or a column vector. In the case of unusual behavior, expressing value as a matrix
should make the programmers intention clear.

Extract.NeticaNode 39

Setting Deterministic Values

When a node is deterministic, that is all probabilities are 0 or 1, then it is meaningful to talk about the
conditional value of a node instead of the conditional probability table. The expression node[...]
displays the conditional probabililty table in a special way when the node is deterministic. In
this case it displays the value as a single variable giving the state of the child variable given the
configuration of the parents. In the case of discrete nodes, this is a factor variable giving the state.
In the case of continuous nodes, this is a numeric vector giving the value.

The same conventions can be used in setting the conditional probability of a node. In the expression
node[...] <- value if value is a factor or character vector then the selected configurations are
set to deterministic probabilities with the indicated value given probability of 1 and all others with
probability 0. It is possible to set some rows of a conditional probability table to be deterministic
and others to have unrestriced probabilities, however, the deterministic rows will then print out as
unconstrained probabilites with 0 and 1 values.

Continuous nodes (nodes for which is.continuous(node) == TRUE) use a variation of this
system. Here the value is an arbitrary numeric value. For this to be meaningful, it is assumed that
all of the parents of node are either discrete ofr have been discritized.

Warning: Setting an unconditional discrete node to a constant value, that is executing an expression
like node[] <- value is almost certainly a mistake. Probably what is intended by that expression
is NodeFinding(node) <- value. In particular, if the former expression is used and the later
someone attempts to set NodeFinding(node) <- value1, where value1 != value, this will
produce a contradiction (probability zero event) and all kinds of error will follow.

Automatic normalization

If the number of columns in value is one less than the number of states in node, then is assumed that
the probability values should be calculated for the last state via normalization, that is it is assigned
all of the remaining probability not asigned in the first couple of columns. In particular, the value is
internally translated via the expression: value <- cbind(value,1-apply(value,1,sum)).

This is particularly useful when the node is binary (has exactly 2 states). Then the replacement
only needs to specify the probability for the first one. For example node[] <- .5 would set the
probability distribution of node to the uniform distribution if node is binary.

There is some potential for confusion if value is not specified as a matrix. In particular, if the
number of states of the child value is one more than the number of configurations of the parents,
it is unclear whether this is an attempt to set the node value of a discrete node or an unnormalized
probability. It should be possible by specifying value as a matrix or one row or one column to
clarify the intent.

Note

I have tried to anticipate most of the ways that somebody might want to index the conditional
probability table, not to mention all of the peculiar ways that R overloads the extraction operator.
Negative selections are not allowed. I have almost certainly missed some combinations, and some
untested combinations might preform rather strangely. Undoubtedly somebody will come to rely
on that strangeness and it will never get fixed.

Factor variables do not easily handle the use of "*" as a wildcard. To make this work, a construction
like factor(varstates, c(1:3,EVERY_STATE), labels=c("a1","a2","a3","*")).

40 Extract.NeticaNode

Internally R uses 1-based indexing and Netica uses 0-based indexing. RNetica makes the translation
inside of the C layer, so these function should be called with R-style 1-based indexing.

This documentation file is longer than War and Peace.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNodeProbs_bn(), SetNodeProbs_bn(),
GetNodeFuncState_bn(), SetNodeFuncState_bn(), GetNodeFuncReal_bn(), SetNodeFuncReal_bn(),

See Also

NeticaNode, NodeParents(), NodeInputNames(), NodeStates(), ParentStates(), CPF, CPA

Examples

Setup
xnet <- CreateNetwork("X")

A <- NewDiscreteNode(xnet,"A",c("A1","A2","A3","A4"))
Aalt <- NewDiscreteNode(xnet,"Aalt",c("A1","A2","A3","A4"))
B <- NewDiscreteNode(xnet,"B",c("B1","B2","B3"))
B2 <- NewDiscreteNode(xnet,"B2",c("B1","B2"))
Balt <- NewDiscreteNode(xnet,"Balt",c("B1","B2","B3"))
C2 <- NewDiscreteNode(xnet,"C2",c("C1","C2"))
C3 <- NewDiscreteNode(xnet,"C3",c("C1","C2","C3"))
C4 <- NewDiscreteNode(xnet,"C4",c("C1","C2","C3","C4"))
Cont <- NewContinuousNode(xnet,"Cont")
CC <- NewContinuousNode(xnet,"CC")
CCC <- NewContinuousNode(xnet,"CCC")

Tests for various setting modes.

Null before we set any probabilities anything
stopifnot(

all(is.na(C2[])), length(C2[]) == 2,
all(is.na(Cont[])), length(Cont[])==1

)

NodeProbs(C2) <- c(1,0)
stopifnot(

C2[]=="C1"
)
This is just a demonstration of the syntax, in practice
the expression NodeFinding(C2) <- "C2" is usually better.
C2[] <- "C2"
stopifnot(

NodeProbs(C2)==c(0,1)

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNodeProbs_bn.html
http://norsys.com/onLineAPIManual/functions/SetNodeProbs_bn.html
http://norsys.com/onLineAPIManual/functions/GetNodeFuncState_bn.html
http://norsys.com/onLineAPIManual/functions/SetNodeFuncState_bn.html
http://norsys.com/onLineAPIManual/functions/GetNodeFuncReal_bn.html
http://norsys.com/onLineAPIManual/functions/SetNodeFuncReal_bn.html

Extract.NeticaNode 41

)
C3[] <- 3
stopifnot(

C3[] == "C3"
)

Setting value of continuous node
Cont[] <- 145.4
stopifnot(abs(Cont[] - 145.4) < .0001)

Setting value with probabilities
C2[] <- c(.3,.7)
stopifnot(sum(abs(NodeProbs(C2)-c(.3,.7))) < .0001)
C3[] <- c(1,2,1)/4
stopifnot(sum(abs(NodeProbs(C3)-c(.25,.5,.25))) < .0001)

Automatic normalization
C2[] <- .25
stopifnot(abs(sum(NodeProbs(C2)-c(.25,.75))) < .0001)
C3[] <- c(1,1)/3
stopifnot(abs(sum(NodeProbs(C3)-1/3)) < .0001)

Now some one parent cases
AddLink(A,B)
AddLink(A,B2)

stopifnot(
nrow(B[])==NodeNumStates(A),
ncol(B[])==1+NodeNumStates(B),
nrow(B[[]])==NodeNumStates(A),
ncol(B[[]])==NodeNumStates(B),
all(is.na(B[][,2:(1+NodeNumStates(B))])),
all(is.na(B[[]]))

)

NodeProbs(B) <- normalize(matrix(1:12,4))
Brow1 <- B[1]
stopifnot(

nrow(Brow1)==1,ncol(Brow1)==4,
sum(abs(Brow1[,2:4]-c(1,5,9)/15))<.00001

)
Brow12 <- B[1:2]
stopifnot(

nrow(Brow12)==2,ncol(Brow12)==4,
sum(abs(Brow12[2,2:4]-c(2,6,10)/18))<.00001

)

Brow4 <- B["A4"]
stopifnot(

nrow(Brow4)==1,ncol(Brow4)==4,
sum(abs(Brow4[,2:4]-c(1,2,3)/6))<.00001

)

42 Extract.NeticaNode

Brow34 <- B[c("A3","A4")]
stopifnot(

nrow(Brow34)==2,ncol(Brow34)==4,
abs(sum(Brow4[1,2:4]-c(3,7,11)/21))<.00001

)
Ball <- B["*"]
stopifnot(

nrow(Ball)==4,ncol(Ball)==4
)
Ball <- B[EVERY_STATE]
stopifnot(

nrow(Ball)==4,ncol(Ball)==4
)

Brow24 <- B[data.frame(A=factor(c("A2","A4"),NodeStates(A)))]
stopifnot(

nrow(Brow24)==2,ncol(Brow24)==4,
sum(abs(Brow24[2,2:4]-c(1,2,3)/6))<.00001

)

Set all rows to the same value.
B[] <- matrix(c(1,1,1)/3,1)
stopifnot(

abs(NodeProbs(B)-1/3)<.0001
)
B[EVERY_STATE] <- matrix(c(1,2,1)/4,1)
stopifnot(

abs(NodeProbs(B)[3,]-c(.25,.5,.25))<.0001
)
B["*"] <- matrix(c(1,2,3)/6,1)
stopifnot(

abs(NodeProbs(B)[2,]-c(1/6,1/3,.5))<.0001
)

Setting to exact values
B2[1:2] <- "B1"
B2[3] <- "B2"
B2[4] <- "B2"
B2tab <- B2[]
stopifnot(

IsNodeDeterministic(B2),
nrow(B2tab)==4,ncol(B2tab)==2,
length(B2[[]]) == 4,
B2[[]] == c("B1","B1","B2","B2"),
as.integer(B2tab[,2]) == c(1,1,2,2)

)
Setting one value to non-deterministic changes the way the table is
displayed.
B2[2] <- c(.5,.5)
B2tab <- B2[]
stopifnot(

!IsNodeDeterministic(B2),

Extract.NeticaNode 43

nrow(B2tab)==4,ncol(B2tab)==3,
sum(abs(B2tab[2,2:3]- c(.5,.5))) < .001,
B2tab[1,2:3] == c(1,0),
B2[[3]] == c(0,1)

)

Self-normalizing setting
Not run:
This will generate an error because it is trying to set all four
configurations to the same value but it is given four values.
B2[] <- c(.1,.2,.3,.4)

End(Not run)

B2[1:4] <- c(.1,.2,.3,.4)
stopifnot(

sum(abs(NodeProbs(B2)[,2]-c(.9,.8,.7,.6))) < .001
)
B2[1:2] <- .5 ## Set both values to the same thing
B2[3:4] <- c(.6,.7) ## set to normalizing probs
stopifnot(

sum(abs(NodeProbs(B2)[,2]-c(.5,.5,.4,.3))) < .001
)
Beware! This next form assumes you are setting the rows to the same
thing.
B2[3:4] <- c(.2,.8) ## Ambiguous instructions
stopifnot(

sum(abs(NodeProbs(B2)[,2]-c(.5,.5,.8,.8))) < .001
)
Using a matrix makes intent clear
B2[3:4] <- matrix(c(.2,.8),2) ## set to normalizing probs
stopifnot(

sum(abs(NodeProbs(B2)[,2]-c(.5,.5,.8,.2))) < .001
)

Data frame as value
First do a blank extraction to get general shape.
B2frame <- B2[]
Now manipulate it however
B2frame[,2:3] <- 1:8
And set it back
B2[] <- normalize(B2frame)
stopifnot(

sum(abs(NodeProbs(B2)[,1]-c(1/6,2/8,3/10,4/12))) <.001
)

B2frame1 <-B2frame[B2frame$A=="A3",]
B2frame1[,2:3] <- c(4,6)/10
B2[] <- B2frame1 ## Only row 3 affected
stopifnot(

sum(abs(NodeProbs(B2)[,1]-c(1/6,2/8,4/10,4/12))) <.001
)

44 Extract.NeticaNode

Continuous node with one discrete parent
AddLink(A,Cont) ##Notice how old value is replicated
stopifnot(

nrow(Cont[]) ==4, ncol(Cont[]) == 2,
length(Cont[[]]) == 4,
abs(Cont[][,2]-145.4) <.0001,
abs(Cont[[3]]-145.4) <.0001

)
AddLink(A,CC)
stopifnot(

nrow(CC[]) ==4, ncol(CC[]) == 2,
is.na(CC[][,2])

)

Cont[] <- 7
stopifnot(

abs(Cont[[]]-7) <.0001
)
Cont[2] <- 3.2
stopifnot(

abs(Cont[[]]-c(7,3.2,7,7)) <.0001
)

Cont[1:2] <- 0
Cont[3:4] <- c(8,1)
stopifnot(

abs(Cont[[]]-c(0,0,8,1)) <.0001,
abs(Cont[3:4,drop=TRUE]-c(8,1)) < .0001

)

Two parent case
AddLink(A,C2)
AddLink(B,C2)

C2[] <- c(.5,.5)
stopifnot(

nrow(C2[])==12, ncol(C2[])==4,
sum(abs(C2[[]]-.5)) < .0001

)

AddLink(A,C4)
AddLink(B,C4)
stopifnot(

nrow(C4[])==12, ncol(C4[])==6,
all(is.na(C4[[]]))

)

NodeProbs(C4) <- normalize(array(1:48,c(4,3,4)))

Data Frame/matrix Selection

Extract.NeticaNode 45

dfsel <- data.frame(A=factor(c("A2","A3"),levels=NodeStates(A)),
B=factor(c("B1","B3"),levels=NodeStates(B)))

C21.33 <- C4[dfsel]
stopifnot(

nrow(C21.33)==2, ncol(C21.33)==6,
C21.33[1,1] == "A2",
C21.33[2,2] == "B3",
abs(C21.33[1,3]-2/80) < .0001,
abs(C21.33[2,4]-23/116) < .0001

)

dfselbak <- data.frame(B=factor(c("B3","B2"),levels=NodeStates(B)),
A=factor(c("A1","A4"),levels=NodeStates(A)))

C13.42 <- C4[dfselbak]
stopifnot(

nrow(C13.42)==2, ncol(C13.42)==6,
C13.42[1,1] == "A1",
C13.42[2,2] == "B2",
abs(C13.42[1,3]-9/108) < .0001,
abs(C13.42[2,4]-20/104) < .0001

)

C2[dfsel] <- matrix(c(.7,.6,.3,.4),2)
C2[dfselbak] <- c(.9,.1)
stopifnot(

sum(abs(C2[[]][,1] - c(.5,.7,.5,.5, .5,.5,.5,.9, .9,.5,.6,.5))) < .0001
)

Array-like selection
stopifnot(

sum(abs(C4[[2,3]]-c(10,22,34,46)/112))<.0001,
sum(abs(C4[[B=2,A=4]]-c(8,20,32,44)/104))<.0001

)

C1.23 <- C4[1,2:3]
stopifnot(

nrow(C1.23)==2, ncol(C1.23)==6,
sum(abs(C1.23[,3] - c(5/92 ,9/108))) <.0001

)
C2[] <- .5
C2[1,2:3] <- .99
stopifnot(

sum(abs(C2[[]][,1] - c(.5,.5,.5,.5, .99,.5,.5,.5, .99,.5,.5,.5))) < .0001
)

C1.23 <- C4["A1",c("B2","B3")]
stopifnot(

nrow(C1.23)==2, ncol(C1.23)==6,
sum(abs(C1.23[,3] - c(5/92 ,9/108))) <.0001

)
C2[] <- .5

46 Extract.NeticaNode

C2["A1",c("B2","B3")] <- .99
stopifnot(

sum(abs(C2[[]][,1] - c(.5,.5,.5,.5, .99,.5,.5,.5, .99,.5,.5,.5))) < .0001
)

C34.12 <- C4[3:4,1:2]
stopifnot(

nrow(C34.12)==4, ncol(C34.12)==6,
sum(abs(C34.12[,3] - c(3/84,4/88, 7/100, 8/104))) <.0001

)
C2[] <- .5
C2[3:4,1:2] <- .99
stopifnot(

sum(abs(C2[[]][,1] - c(.5,.5,.99,.99, .5,.5,.99,.99, .5,.5,.5,.5))) < .0001
)

Wildcards

C1. <- C4[1,EVERY_STATE]
stopifnot(

nrow(C1.) == 3, ncol(C1.)==6,
sum(abs(C1.[,3] -c(1/76, 5/92, 9/108))) < .0001

)
C2[] <-.5
C2[1,EVERY_STATE] <- "C1"
stopifnot(

sum(abs(C2[[]][,1] - c(1,.5,.5,.5, 1,.5,.5,.5, 1,.5,.5,.5))) < .0001
)

C.2 <- C4[EVERY_STATE,2]
stopifnot(

nrow(C.2) == 4, ncol(C.2)==6,
sum(abs(C.2[,3] -c(5/92, 6/96, 7/100, 8/104))) < .0001

)
C2[] <-.5
C2[EVERY_STATE,2] <- "C2"
stopifnot(

sum(abs(C2[[]][,1] - c(.5,.5,.5,.5, 0,0,0,0, .5,.5,.5,.5))) < .0001
)

C1. <- C4["A1","*"]
stopifnot(

nrow(C1.) == 3, ncol(C1.)==6,
sum(abs(C1.[,3] -c(1/76, 5/92, 9/108))) < .0001

)
C2[] <-.5
C2["A1","*"] <- "C1"
stopifnot(

sum(abs(C2[[]][,1] - c(1,.5,.5,.5, 1,.5,.5,.5, 1,.5,.5,.5))) < .0001
)

C.2 <- C4["*","B2"]
stopifnot(

Extract.NeticaNode 47

nrow(C.2) == 4, ncol(C.2)==6,
sum(abs(C.2[,3] -c(5/92, 6/96, 7/100, 8/104))) < .0001

)
C2[] <-.5
C2["*","B2"] <- "C2"
stopifnot(

sum(abs(C2[[]][,1] - c(.5,.5,.5,.5, 0,0,0,0, .5,.5,.5,.5))) < .0001
)

Missing parent values

C1. <- C4[1,]
stopifnot(

nrow(C1.) == 3, ncol(C1.)==6,
sum(abs(C1.[,3] -c(1/76, 5/92, 9/108))) < .0001

)
C2[] <-.5
C2[1,] <- "C1"
stopifnot(

sum(abs(C2[[]][,1] - c(1,.5,.5,.5, 1,.5,.5,.5, 1,.5,.5,.5))) < .0001
)

C.2 <- C4[,2]
stopifnot(

nrow(C.2) == 4, ncol(C.2)==6,
sum(abs(C.2[,3] -c(5/92, 6/96, 7/100, 8/104))) < .0001

)
C2[] <-.5
C2[,2] <- "C2"
stopifnot(

sum(abs(C2[[]][,1] - c(.5,.5,.5,.5, 0,0,0,0, .5,.5,.5,.5))) < .0001
)

C1. <- C4[A=1]
stopifnot(

nrow(C1.) == 3, ncol(C1.)==6,
sum(abs(C1.[,3] -c(1/76, 5/92, 9/108))) < .0001

)
C2[] <-.5
C2[A=1] <- "C1"
stopifnot(

sum(abs(C2[[]][,1] - c(1,.5,.5,.5, 1,.5,.5,.5, 1,.5,.5,.5))) < .0001
)

C.2 <- C4[B="B2"]
stopifnot(

nrow(C.2) == 4, ncol(C.2)==6,
sum(abs(C.2[,3] -c(5/92, 6/96, 7/100, 8/104))) < .0001

)
C2[] <-.5
C2[B="B2"] <- "C2"
stopifnot(

sum(abs(C2[[]][,1] - c(.5,.5,.5,.5, 0,0,0,0, .5,.5,.5,.5))) < .0001

48 Extract.NeticaNode

)

Data frame as value

dfset <- data.frame(A=factor(c("A2","A3"),levels=NodeStates(A)),
B=factor(c("B1","B3"),levels=NodeStates(B)),
C.C1=c(1,0), C.C2=c(0,1))

C2[] <- .5
C2[] <- dfset
stopifnot(

sum(abs(C2[[]][,1] - c(.5,1,.5,.5, .5,.5,.5,.5, .5,.5,0,.5))) < .0001
)

Continuous Child node
AddLink(B2,Cont)
stopifnot(

nrow(Cont[])==8, ncol(Cont[])==3,
sum(abs(Cont[[]]-c(0,0,8,1))) < .0001

)

AddLink(A,CCC)
AddLink(B,CCC)
stopifnot(

nrow(CCC[])==12, ncol(CCC[])==3,
all(is.na(CCC[[]]))

)

Cont[] <- 0
Cont[1,1] <- 1.1
Cont[2:3,2] <- c(2.2,3.2)
Cont["A4","*"] <- 4
Not run:
Can’t set to multiple values when using * selection.
Cont["A4","*"] <- c(4.1,4.2) ## Generates an error

End(Not run)
stopifnot(

sum(abs(Cont[[]]-c(1.1,0,0,4,0,2.2,3.2,4))) < .0001,
abs(Cont[["A1","B1"]]-1.1) <.0001,
sum(abs(Cont[[B=2,A=2:3]]-c(2.2,3.2))) < .0001,
sum(abs(Cont[[A=4]] -4)) < .0001

)

Set by integer count
12 rows in A*B combinations
for (i in 1:12) {

CCC[i] <- i
C2[i] <- i/100

}
stopifnot(

sum(abs(CCC[[]]-t(matrix(1:24,3,4)))) <.0001,
sum(abs(C2[[]][,1]-t(matrix(1:24/100,3,4)))) <.001

)

FindingsProbability 49

for (i in 1:12) {
stopifnot(
abs(CCC[[i]] - i) <.0001,
abs(C2[[i]][1] - i/100) <.0001

)
}

DeleteNetwork(xnet)

FindingsProbability Finds the probability of the findings entered into a Netica network.

Description

This function assumes that the network has been compiled and that a number of findinds have
been entered. The function calculates the prior probability for the entered findings (that is, the
normalization constant of the Bayesian network).

Usage

FindingsProbability(net)

Arguments

net An active and compiled Bayesian Network.

Details

In the usual algorithms for propagating probabilities in a Bayesian network the probabilities are
passed unnormalized. When reporting the probabilities, a normalization constant is calculated.
This normalization constant is the probability of all of the findings that have been entered through
NodeFinding(). (See Almond, 1995, for details on the use of normalization constants as probabil-
ities of findings.)

It is not meaningful to call this function before the network has been compiled. Calling it before
findings have been entered will result in a value of 1.0.

Value

A scalar real value representing the probability of the findings, or NA if the network was not found
or not compiled.

Note

Netica gives a warning about the interpretation if likelihood findings have been set (through NodeLikelihood().
In this case, the value is perhaps better though of as a normalization constant.

50 GetNamedNetworks

Author(s)

Russell Almond

References

Almond, R. G. (1995) Graphical Belief Modeling. Chapman and Hall.

http://norsys.com/onLineAPIManual/index.html: FindingsProbability_bn()

See Also

NeticaNode,NodeBeliefs(), EnterNegativeFinding(), RetractNodeFinding(), NodeLikelihood()

Examples

EMSMMotif <- ReadNetworks(paste(library(help="RNetica")$path,
"sampleNets","EMSMMotif.dne",
sep=.Platform$file.sep))

CompileNetwork(EMSMMotif)
norm1 <- FindingsProbability(EMSMMotif)
stopifnot (abs(norm1-1) <.0001)

Find observable nodes
obs <- NetworkNodesInSet(EMSMMotif,"Observable")

NodeFinding(obs$Obs1a1) <- "Right"
NodeFinding(obs$Obs1a2) <- "Wrong"

prob1r2w <- FindingsProbability(EMSMMotif)
stopifnot (prob1r2w < 1, prob1r2w > 0)

Clear it out and try again
RetractNetFindings(EMSMMotif)
NodeLikelihood(obs$Obs2a) <- c(.75,.75,.75)
prob75 <- FindingsProbability(EMSMMotif)
stopifnot(abs(prob75-.75) < .0001)

DeleteNetwork(EMSMMotif)

GetNamedNetworks Finds a Netica network (if it exists) for the name.

Description

This searches through the currently open Netica networks and returns a NeticaBN object pointing to
the networks with the given names. If no network with the name is found NULL is returned instead,
so this provides a way to check whether a network exists.

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/FindingsProbability_bn.html

GetNamedNetworks 51

Usage

GetNamedNetworks(namelist)

Arguments

namelist A character vector giving the name or names of the networks to be found.

Details

GetNamedNetworks() searches the list of network names looking for a network with the appropriate
name. If it is found, a handle to that network is returned as a NeticaBN object. If not, NULL is
returned.

Value

If namelist is of length 1, then a single NeticaBN object or NULL will be returned.

If namelist is of length greater than 1, then a list of the same length as namelist is returned. Each
element is a NeticaBN related to the corresponding name or NULL if the name does not refer to a
network.

Note

This function does a linear search through all networks, so it could be pretty slow if there are a large
number of networks open.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNthNet_bn()

See Also

CreateNetwork(), GetNthNetwork()

Examples

net1 <- CreateNetwork("myNet")
Fetch the network we just created by name.
net2 <- GetNamedNetworks("myNet")
stopifnot(is(net2,"NeticaBN"))
stopifnot(as.character(net1)==as.character(net2))
stopifnot(net1==net2)

No network named "fish", this should return NULL
fish <- GetNamedNetworks("fish")
stopifnot(all(sapply(fish,is.null)))

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNthNet_bn.html

52 GetNetworkAutoUpdate

DeleteNetwork(net2)

GetNetworkAutoUpdate Turns Netica automatic updating on or off for a network.

Description

Netica networks can either propagate the effects of new findings immediately, or they can delay
propagation until the user queries the network. These functions toggle the switch that controls the
autoupdate mechanism

Usage

GetNetworkAutoUpdate(net)
SetNetworkAutoUpdate(net, newautoupdate)
WithoutAutoUpdate(net,expr)

Arguments

net A NeticaBN object to be queried or changed.

newautoupdate A logical values, TRUE to turn automatic updating on. A value NA produces an
error.

expr An R expresssion to be evaluated with automatica updating turned off.

Details

Automatic updating means that queries operate very quickly, however, if a large number of finding
are to be entered before the next query, they can slow the network down. These functions provide a
mechanism for controlling that.

GetNetworkAutoUpdate() returns the current status of the autoupdate flag. SetNetworkAutoUpdate()
sets flag, but returns its current value (to make it easier to restore). The function WithoutAutoUpdate
provides a mechansim for turning updating off while performing a series of operations.

Value

GetNetworkAutoUpdate() and SetNetworkAutoUpdate both returns the current autoupdate flage
as a logical value.

WithoutAutoUpdate() returns the value of executing expr, unless executing expr results in an
error in which case it returns a try-error.

Note

Automatic updating makes a lot of sense when Netica is running under the GUI, but not so much
when it is running as an API. It is probably easiest to just set this to false all the time.

GetNthNetwork 53

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: SetNetAutoUpdate_bn(), GetNetAutoUp-
date_bn()

See Also

NeticaBN, NodeBeliefs(), NodeFinding()

Examples

autoNet <- CreateNetwork("AutomaticTest")

GetNetworkAutoUpdate(autoNet)

SetNetworkAutoUpdate(autoNet,FALSE)
stopifnot(!GetNetworkAutoUpdate(autoNet))
stopifnot(!SetNetworkAutoUpdate(autoNet,TRUE))
stopifnot(GetNetworkAutoUpdate(autoNet))

result <- TRUE
WithoutAutoUpdate(autoNet, result <<-GetNetworkAutoUpdate(autoNet))
stopifnot(!result)

DeleteNetwork(autoNet)

GetNthNetwork Fetch a Netica network by its position in the Netica list.

Description

Fetches networks according to an internal sequence list of networks maintained inside of Netica.
If the number passed is greater than the number of currently defined networks, this function will
return NULL

Usage

GetNthNetwork(n)

Arguments

n A vector of integers greater than 1.

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/SetNetAutoUpdate_bn.html
http://norsys.com/onLineAPIManual/functions/GetNetAutoUpdate_bn.html
http://norsys.com/onLineAPIManual/functions/GetNetAutoUpdate_bn.html

54 GetNthNetwork

Details

The primary use for this function is probably to loop through all open networks. As this function
will return NULL when there are no more networks, that can be used to terminate the loop.

Note that the sequence numbers can change, particularly after functions that open and close net-
works.

This is a wrapper for the Netica function GetNthNet_bn().

Value

If n is of length 1, then a single NeticaBN object or NULL will be returned.

If n is of length greater than 1, then a list of the same length as n is returned. Each element is a
NeticaBN related or NULL if the number is greater than the number of open networks.

Note

The Netica shared library uses a zero-based reference (i.e., the first net is 0), but this function
subtracts 1 from the argument, so it uses a one-based reference system (the first net is 1).

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNthNet_bn()

See Also

CreateNetwork(), GetNamedNetworks()

Examples

count <- 1
while (!is.null(net <- GetNthNetwork(count))) {

cat("Network number ",count," is ",net,".\n")
count <- count +1

}
cat("Found ",count-1," networks.\n")

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNthNet_bn.html

HasNodeTable 55

HasNodeTable Tests to see if a Netica node has a conditional probability table.

Description

This function tests to see if a conditional probability table has been assigned to node. The function
returns two values, the first tests for existence of the table, the second tests for a complete table (no
NAs).

Usage

HasNodeTable(node)

Arguments

node An active NeticaNode whose conditional probability table is to be tested.

Details

This function returns two values. The first is true or false according to whether the conditional
probabilty table has been established, that is has NodeProbs() been set. The second value tests to
see whether the conditional probabilty table is complete, that is, does it have any NAs associated
with it.

In many cases, it is the second value that is of interest, so all(HasNodeTable(node) is often a
useful idiom.

Value

A logical vector with two elements. The first states whether or not the node has any of its conditional
probabilities set. The second tests whether or not the table has been completely specified.

Note

Generating incomplete tables is pretty hard to do in RNetica, a row must be deliberately set to NA.
However, a network read in from a file might have incomplete tables.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: HasNodeTable_bn()

See Also

NeticaNode, NodeParents(), NodeInputNames(), DeleteNodeTable()

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/HasNodeTable_bn.html

56 IDname

Examples

ab1 <- CreateNetwork("AB1")
A <- NewDiscreteNode(ab1,"A",c("A1","A2","A3"))
B <- NewDiscreteNode(ab1,"B",c("B1","B2"))
AddLink(A,B)

##Nodes start undefined.
stopifnot(

HasNodeTable(A)==c(FALSE,FALSE)
)

NodeProbs(A) <- c(0,1,0)
stopifnot(

HasNodeTable(A)==c(TRUE,TRUE)
)

for (node in NetworkAllNodes(ab1)) {
if (!all(HasNodeTable(node))) {
cat("Node ", node, " still needs a conditional probability table.\n")
}

}

DeleteNetwork(ab1)

IDname Tests to see if a string is a valid as a Netica Identifier.

Description

This function returns a logical vector indicating whether or not each element of x is a valid Netica
identifier.

Usage

is.IDname(x)

Arguments

x A character vector of possible identifier names.

Details

Netica identifiers (net names, node names and similar) are limited to 30 characters which must be a
valid letter, number of the character ’_’. The first chacter must be a letter.

Value

A logical vector of the same length of x.

is.active 57

Note

This is primarily a utility for doing argument checking inside of functions that require a Netica
IDname.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html

See Also

CreateNetwork(), NewDiscreteNode(), NodeStates(), NodeName(), NodeInputNames(),

Examples

stopifnot(is.IDname(c("aFish","Wanda1","feed me","fish_food","1more","US$",
"a123456789012345678901234567890"))

==c(TRUE,TRUE,FALSE,TRUE,FALSE,FALSE,FALSE))

is.active Check to see if a Netica network or node object is still valid.

Description

Both NeticaBN and NeticaNode objects contain embedded pointers into Netica’s memory. The
function is.active() checks to see that the corresponding Netica objetct still exists.

Usage

is.active(x)

Arguments

x A NeticaBN or NeticaNode object to test, or a list of such objects.

Details

Internally, both NeticaBN and NeticaNode objects contian pointers to the corresponding Netica ob-
jects. The DeleteNetwork() and DeleteNodes() functions deletes the Netica objects (and clears
the pointers in the R objects). It is difficult to control when R objects are deleted, especially if they
are protected in data structures that are saved in the workspace. The function is.active() is meant
to check if the corresponding object is still valid. In most cases, RNetica will give an error (or at
least a warning) if an inactive object is supplied as an argument.

Note that the function StopNetica() should make all NeticaBN and NeticaNode objects inactive.
Thus, these objects cannot be saved from one R session to another, and should be recreated when
needed.

http://norsys.com/onLineAPIManual/index.html

58 is.discrete

Value

The function is.active() returns TRUE if the argument still points to a network or node loaded in
Netica’s memory, and FALSE if that network or node has been deleted. It returns NA if the argument
is not a NeticaBN or NeticaNode.

If x is a list, then a logical vector of the same length of x is returned with is.active() recursivelly
applied to each one.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html, http://lib.stat.cmu.edu/R/CRAN/doc/
manuals/R-exts.html

See Also

StopNetica(), NeticaBN, DeleteNetwork(), NeticaNode, DeleteNodes()

Examples

anet <- CreateNetwork("ActiveNet")
stopifnot(is.active(anet))

anodes <- NewContinuousNode(anet,paste("ActiveNode",1:2,sep=""))
stopifnot(all(is.active(anodes)))

inode <- DeleteNodes(anodes[[1]])
stopifnot(!is.active(anodes[[1]]))
stopifnot(!is.active(inode))
stopifnot(is.active(anodes[[2]]))

DeleteNetwork(anet)
stopifnot(!is.active(anet))
Node gets deleted along with network
stopifnot(!any(is.active(anodes)))

is.discrete Determines whether a Netica node is discrete or continuous.

Description

A NeticaNode objet can take on either a discrete set of values or an arbitrary real value. These
functions determine which type of node this is.

http://norsys.com/onLineAPIManual/index.html
http://lib.stat.cmu.edu/R/CRAN/doc/manuals/R-exts.html
http://lib.stat.cmu.edu/R/CRAN/doc/manuals/R-exts.html

is.discrete 59

Usage

is.discrete(node)
is.continuous(node)

Arguments

node A NeticaNode object to test.

Details

While in the Netica GUI, one first creates a node and then determines whether it will be discrete or
continuous, in the API this is determined at the time of creation (by calling NewContinuousNode()
or NewDiscreteNode(). These functions determine which type of node the given node is.

Note that setting NodeLevels can make a continuous node behave like a discrete one and vise
versa. For continuous nodes, the levels are cut points for getting a discrete state from the node. For
a discrete node, the levels are real value representing the midpoint of the node.

Value

TRUE or FALSE depedning on whether a node is discrete or continuous.

Note

Currently, this function does not actually look at the internal Netica state, but rather looks at the
attribute "node_discrete" which is set when the node is created.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNodeType_bn(), SetNodeLevels_bn()

See Also

NewDiscreteNode(), NewContinuousNode(), NeticaNode, NodeLevels(), NodeStates()

Examples

netx <- CreateNetwork("netx")

bnode <- NewDiscreteNode(netx,"bool",c("True","False"))
stopifnot(is.discrete(bnode))
stopifnot(!is.continuous(bnode))

rnode <- NewContinuousNode(netx,"real")
stopifnot(!is.discrete(rnode))
stopifnot(is.continuous(rnode))

DeleteNetwork(netx)

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNodeType_bn.html
http://norsys.com/onLineAPIManual/functions/SetNodeLevels_bn.html

60 is.NodeRelated

is.NodeRelated Computes topological properities of a Netica network.

Description

The function is.NodeRelated() tests to see if relation holds between node1 and node2. The
function GetRelatedNodes creates a list of all nodes that satisfy the relation with any node in
nodelist.

Usage

is.NodeRelated(node1, node2, relation = "connected")
GetRelatedNodes(nodelist, relation = "connected")

Arguments

node1 An active NeticaNode whose relationship will be tested.

node2 Another active NeticaNode whose relationship will be tested.

relation A character scalar which should be one of the values: "parents", "children",
"ancestors", "descendents", "connected", "markov_blanket", or "d_connected".
Singular forms and modifiers are also allowed, see details.

nodelist A list of active NeticaNode whose relationship will be tested.

Details

These functions are useful for testing the topology of a network. Each of the functions offers
measure related to the network. The is.NodeRelated() form tests the relationship between node1
and node2. The function GetRelatedNodes() returns a list of any nodes for which the relationship
holds with any of the elements of nodelist. The plural and singular forms of the relationships can
be used with both functions.

"parent", "parents". True if node1 is a parent of node2, or returns a list of parents of the nodes
in nodelist.

"ancestor", "ancestors". True if there is a directed (parent to child) path from node1 to node2,
or returns a list of ancestors of the nodes in nodelist.

"child", "children". True if node1 is a child of node2, or returns a list of children of the nodes
in nodelist.

"decendent", "decendents". True if there is a directed (parent to child) path from node2 to node1,
or returns a list of decendents of the nodes in nodelist.

"connected". True if there is a chain (unordered path) from node1 to node2, or returns a list of all
nodes connected to any of the nodes in nodelist.

"markov_blanket". The Markov blanket of nodeset is the a set of nodes that renders the nodes
in nodeset conditionally independent of the remaining nodes given the ones in the blanket. The
simple form returns true if node2 is in the Markov blanket of node1.

is.NodeRelated 61

"d_connected". The rules for d-connection are somewhat complex (see Pearl, 1988), but basically
node1 and node2 are d-connected if they are not independent given the current findings. The func-
tion returns true if node1 and node2 are d-connected or a list of all nodes that are d-connected to
the nodes in nodelist.

In addition, the relation can be modified in the GetRelatedNodes() form by adding one or more
modifiers to the main relation separated by commas. The two that are useful in RNetica are:

"include_evidence_nodes". For the "markov_boundary" and "d_connected" relations indi-
cates whether nodes with findings should be included in the result (they would normally not be
included in the result).

"exclude_self". For the "ancestors", "descendents", "connected", and "d_connected" re-
lations, the elements of nodelist are not initially added to the result.

Value

For is.NodeRelated() TRUE or FALSE, or NA if one of the input nodes was not active.

For GetNodeRelated() a list of NeticaNode objects which have the target relationship with one of
the nodes in nodelist. There may be duplicates in this list.

Note

GetRelatedNodes() uses GetRelatedNodesMult_bn(), not GetRelatedNode_bn(), but that should
not present any serious issues. Also, it always passes an empty list for the related_nodes argu-
ments. Consequently, the "append", "union", "intersection", and "subtract" options don’t
make much sense. This is only a minor limitation as R provides similar functions.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: IsNodeRelated_bn(), GetRelatedNodes_bn(),
GetRelatedNodesMult_bn()

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems. Morgan–Kaufmann.

See Also

NeticaNode, NodeParents(), NodeChildren(), AddLink()

Examples

testnet <- CreateNetwork("ABCDEFG")
A D
\ / \
C F - G
/ \ /
B E
A <- NewDiscreteNode(testnet,"A")
B <- NewDiscreteNode(testnet,"B")

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/IsNodeRelated_bn.html
http://norsys.com/onLineAPIManual/functions/GetRelatedNodes_bn.html
http://norsys.com/onLineAPIManual/functions/GetRelatedNodesMult_bn.html

62 IsNodeDeterministic

C <- NewDiscreteNode(testnet,"C")
D <- NewDiscreteNode(testnet,"D")
E <- NewDiscreteNode(testnet,"E")
F <- NewDiscreteNode(testnet,"F")
G <- NewDiscreteNode(testnet,"G")

AddLink(A,C)
AddLink(B,C)

AddLink(C,D)
AddLink(C,E)

AddLink(D,F)
AddLink(E,F)

AddLink(F,G)

stopifnot(
is.NodeRelated(A,C,"parent"),
is.NodeRelated(D,C,"child"),
is.NodeRelated(C,G,"ancestor"),
is.NodeRelated(E,C,"descendent"),
is.NodeRelated(A,B), ## Same as connected
is.NodeRelated(D,E,"markov_blanket"),
!is.NodeRelated(A,B,"d_connected"), ## No common ancestor
is.NodeRelated(D,E,"d_connected") ## Common ancestor

)

stopifnot(
setequal(GetRelatedNodes(F,"parents"),list(D,E)),
setequal(GetRelatedNodes(C,"children"),list(D,E)),
setequal(GetRelatedNodes(D,"descendents"),list(D,F,G)),
setequal(GetRelatedNodes(E,"ancestors"),list(E,C,A,B)),
setequal(GetRelatedNodes(E,"ancestors,exclude_self"),

GetRelatedNodes(D,"ancestors,exclude_self")),
setequal(GetRelatedNodes(A),list(A,B,C,D,E,F,G)), ##All nodes connected
setequal(GetRelatedNodes(D,"markov_blanket"),list(C,E,F)),
setequal(GetRelatedNodes(A,"d_connected"),list(A,C,D,E,F,G))

)

DeleteNetwork(testnet)

IsNodeDeterministic Determines if a node in a Netica Network is deterministic or not.

Description

A node in a Bayesian network is all of its conditional probabilities are determined by its parent
states, that is they are all deterministic.

IsNodeDeterministic 63

Usage

IsNodeDeterministic(node)

Arguments

node An active NeticaNode whose conditional probability table is to be tested.

Details

For discrete nodes, this returns TRUE if all the conditional probabilities are zero or one. It returns
FALSE otherwise.

Value

TRUE if the conditional probability table for node is deterministic, FALSE otherwise. If the node is
not active, or there is otherwise an error it returns NA.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: IsNodeDeterministic_bn()

See Also

NeticaNode, NodeParents(), NodeInputNames(), NodeStates()

Examples

ab <- CreateNetwork("AB")
A <- NewDiscreteNode(ab,"A",c("A1","A2","A3"))
B <- NewDiscreteNode(ab,"B",c("B1","B2"))
AddLink(A,B)

##Undefined node is not deterministic.
stopifnot(!IsNodeDeterministic(A))

NodeProbs(A) <- c(0,1,0)
stopifnot(IsNodeDeterministic(A))

NodeProbs(A) <- c(1/3,1/3,1/3)
stopifnot(!IsNodeDeterministic(A))

NodeProbs(B) <- rbind(c(0,1), c(0,1), c(1,0))
stopifnot(IsNodeDeterministic(B))

DeleteNetwork(ab)

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/IsNodeDeterministic_bn.html

64 JointProbability

JointProbability Calculates the joint probability over several network nodes.

Description

The Bayesian network, once compiled, gives the joint probability of all nodes in the network given
the findings. This function caluclates the joint probability over all of the nodes its argument and
returns it as an array.

Usage

JointProbability(nodelist)

Arguments

nodelist A list of active NeticaNode objects from the same network.

Details

This calculates the joint probability distribution over two, three or more variables in the same net-
work. Calculating the joint probability is easy if all of the nodes are in the same clique, so one
might want to use the function MakeCliqueNode(nodelist) before compiling the network to force
the nodes in the same clique. The function can calculate the joint probability table for nodes not in
the same clique, it just takes longer.

Value

A multidimensional array given the probabilities of the various configurations. The dimensions cor-
respond to the variables in nodelist, and the dimnames of the result are the result of sapply(nodelist,NodeStates).

Note

One possible use for the joint probability function is to get a joint likelihood over the footprint
nodes in an evidence model (see Almond et al, 1999; Almond & Mislevy, 1999). However, Netica
currently does not support intserting a likelihood on a clique, just on a single node.

Author(s)

Russell Almond

References

Almond, R. G. & Mislevy, R. J. (1999) Graphical models and computerized adaptive testing. Ap-
plied Psychological Measurement, 23, 223–238.

Almond, R., Herskovits, E., Mislevy, R. J., & Steinberg, L. S. (1999). Transfer of information
between system and evidence models. In Artificial Intelligence and Statistics 99, Proceedings (pp.
181–186). Morgan-Kauphman

http://norsys.com/onLineAPIManual/index.html: JointProbability_bn()

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/JointProbability_bn.html

JunctionTreeReport 65

See Also

NeticaNode,NodeBeliefs() MakeCliqueNode(), AddLink(), JunctionTreeReport(), MostProbableConfig()

Examples

EMSMMotif <- ReadNetworks(paste(library(help="RNetica")$path,
"sampleNets","EMSMMotif.dne",
sep=.Platform$file.sep))

Force Skills 1 and 2 into the same clique.
Skills12 <- NetworkFindNode(EMSMMotif,c("Skill1","Skill2"))
cn <- MakeCliqueNode(Skills12)

CompileNetwork(EMSMMotif)

Prior Joint probability.
prior <- JointProbability(Skills12)
stopifnot (abs(sum(prior)-1) <.0001)

Find observable nodes
obs <- NetworkNodesInSet(EMSMMotif,"Observable")

NodeFinding(obs$Obs1a1) <- "Right"
NodeFinding(obs$Obs1a2) <- "Wrong"

post <- JointProbability(GetClique(cn))
stopifnot (abs(sum(post)-1) <.0001)

DeleteNetwork(EMSMMotif)

JunctionTreeReport Produces a report about the junction tree from a compiled Netica net-
work.

Description

The process of compilation transforms the network into a junction tree – a tree of cliques in the
original graph – that is more convenient computationally. The function JunctionTreeReport(net)
produces a report on the junction tree. The function NetworkCompiledSize(net) reports on the
size of the compiled network. The network must be compiled (CompileNetwork(net) must be
called) before these functions are called.

Usage

JunctionTreeReport(net)
NetworkCompiledSize(net)

Arguments

net An active and compiled NeticaBN object.

66 MakeCliqueNode

Value

For JunctionTreeReport() a character vector giving the report, one element per line.

For NetworkCompiledSize() a scalar value giving the size of the network.

Note

Currently, no attempt is made to parse the report, which has a fairly well structured format. Future
versions may produce a report object instead.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: ReportJunctionTree_bn(), SizeCompiled-
Net_bn()

See Also

NeticaBN, CompileNetwork(), EliminationOrder(),

Examples

EMSMMotif <- ReadNetworks(paste(library(help="RNetica")$path,
"sampleNets","EMSMMotif.dne",
sep=.Platform$file.sep))

CompileNetwork(EMSMMotif)

JunctionTreeReport(EMSMMotif)

NetworkCompiledSize(EMSMMotif)

DeleteNetwork(EMSMMotif)

MakeCliqueNode Forces a collection of nodes in a Netica network to be in the same
clique.

Description

When a junction tree is compiled, if the nodes are in the same clique, it is easier to calculate
their joint probability. The function MakeCliqueNode(nodelist) forces the nodes in nodelist by
making a special one state clique node with all of the nodes in nodelist as a parent.

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/ReportJunctionTree_bn.html
http://norsys.com/onLineAPIManual/functions/SizeCompiledNet_bn.html
http://norsys.com/onLineAPIManual/functions/SizeCompiledNet_bn.html

MakeCliqueNode 67

Usage

MakeCliqueNode(nodelist)
is.CliqueNode(x)
GetClique(cliquenode)

Arguments

nodelist A list of active NeticaNode objects from the same network.

x An object to be tested to see if it is a clique node.

cliquenode A CliqueNode to be queried.

Details

It is substantially easier to calculate the joint probability of a number of nodes if they are all in
the same clique (see JointProbability(nodelist). If it is known that such a query will be
common, the analyst can take steps to force the nodes into the same clique if required. The Student
Model/Evidence Model algorithm of Almond and Mislevy (1999) also requires that the student
model variables that are referenced in an evidence model all be in the same clique (although this
algorithm is not currently supported by Netica).

A node and its parents is always a clique or a subset of a clique in the junction tree (see CompileNetwork()
or JunctionTreeReport()). This function forces nodes into the same clique by creating a new
CliqueNode and making all of the nodes in nodelist parents of the new node.

The CliqueNode is a subclass of NeticaNode (formally, the class is c("CliqueNode", "NeticaNode")).
It has a number of special features. It’s name is always “Clique” followed by a number. It only
has one state. And it has a special "clique" attiribute which records the nodelist used to cre-
ate it. The function is.CliqueNode() tests a node to see if it is a clique node, and the function
GetClique(node) retrieves the nodelist. (This should not be set manually).

The CliqueNode objects should, for the most part, behave like regular nodes. However, it is almost
certainly a mistake to try and set findings on a CliqueNode.

Value

The function MakeCliqueNode(nodelist) returns a new CliqueNode object whose parents are the
variables in nodelist. This behaves in most respects like an ordinary node, but it would almost
certainly be a mistake to try and enter findings for this node. In particular, deleting the clique node
will no longer constrain its parents to be in the same clique (although other connections in the
network may cause the nodes to be placed in the same clique).

The function is.CliqueNode(x) returns a logical value which is true if x is a clique node.

The function GetClique(node) returns the nodelist used to create the clique node.

Note

Clique nodes only last for the R session that was used to create them. After that, they will appear
like ordinary nodes. They will still be present in the newtwork, but the special "clique" attribute
will be lost.

68 MakeCliqueNode

Currently Netica only allows virutal evidence at the node level (NodeLikelihood()). I’m loppy-
ing to get Netica to support it at the clique level as well. At which point, this function becomes
extremely useful.

Author(s)

Russell Almond

References

Almond, R. G. & Mislevy, R. J. (1999) Graphical models and computerized adaptive testing. Ap-
plied Psychological Measurement, 23, 223-238.

Almond, R., Herskovits, E., Mislevy, R. J., & Steinberg, L. S. (1999). Transfer of information
between system and evidence models. In Artificial Intelligence and Statistics 99, Proceedings (pp.
181–186). Morgan-Kauphman

http://norsys.com/onLineAPIManual/index.html: See the NeticaEx function FormCliqueWith
is the documentation for JointProbability_bn()

See Also

NeticaNode, JointProbability(), AddLink(), JunctionTreeReport()

Examples

EMSMSystem <- ReadNetworks(paste(library(help="RNetica")$path,
"sampleNets","System.dne",
sep=.Platform$file.sep))

CompileNetwork(EMSMSystem)
Note that Skill1 and Skill2 are in different cliques
JunctionTreeReport(EMSMSystem)

Skills12 <- NetworkFindNode(EMSMSystem,c("Skill1","Skill2"))
cn <- MakeCliqueNode(Skills12)
cnclique <- GetClique(cn)

stopifnot(
is.CliqueNode(cn),
setequal(sapply(cnclique,NodeName),sapply(Skills12,NodeName))

)

CompileNetwork(EMSMSystem)
Note that Skill1 and Skill2 are in different cliques
JunctionTreeReport(EMSMSystem)

DeleteNodes(cn) ## This clears the clique.

DeleteNetwork(EMSMSystem)

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/JointProbability_bn.html

MostProbableConfig 69

MostProbableConfig Finds the configuration of the nodes most likel to have lead to observed
findings.

Description

Findings a set of values for each of the nodes in nodelist such that the probability of that value
set is highest given the state of any findings entered into the network. This is sometimes called the
“Most Probable Explanation” for the findings.

Usage

MostProbableConfig(net,nth = 0)

Arguments

net An active and compiled NeticaBN.

nth Leave this at its default value of zero, it is for future expansion.

Details

The most probable configuration of the nodes in the Bayesian network is the set of values for each
of the nodes in the network which have the highest joint probability. This may or may not be thee
same as setting the value of each node to the value that maximizes its NodeBeliefs(). Pearl (1988)
describes a special max-propagation algorithm which can calculate the most likely configuration of
nodes in a Bayesian network. This function runs that algorithm. The probability that is maximized
is the posterior probability given the findings.

Note that this produces a configuration over all of the nodes in the network, not just the nodes in
some particular set. The Netica documentation suggests running AbsorbNodes() over the unnec-
ssary nodes first. Another possibility (if the set of interesting nodes is small) is to call JointProbability()
on the affected nodes and then find the max of that.

Value

A character vector whose names are the names of the nodes in the network (see NetworkAllNodes(net))
and whose values are the names of the states that maximize the posterior probabiity given the find-
ings.

Warning

The documentation for the netica function MostProbableConfig_bn() states that likelihood findings
(NodeLikelihood()) are not handled properly in MostProbableConfig(). Seems to indicate that
this works properly, but some caution is still advised.

http://norsys.com/onLineAPIManual/functions/MostProbableConfig_bn.html

70 MostProbableConfig

Note

The Bayesian network literature also discusses algorithms for the 2nd, 3rd, 4th, etc. most likely
findings. These algorithms are slightly more difficult to implement, but are possible on future plans
for the Netica API, as it offers the nth argument to the function MostProbableConfig_bn(). At this
point in time, it is an error to set nth to anything but 0.

Author(s)

Russell Almond

References

Pearl, J. (1988) Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann.

http://norsys.com/onLineAPIManual/index.html: MostProbableConfig_bn()

See Also

NeticaBN, NodeBeliefs(), EnterNegativeFinding(), RetractNodeFinding(), NodeFinding()
JointProbability(), FindingsProbability()

Examples

EMSMMotif <- ReadNetworks(paste(library(help="RNetica")$path,
"sampleNets","EMSMMotif.dne",
sep=.Platform$file.sep))

CompileNetwork(EMSMMotif)
obs <- NetworkNodesInSet(EMSMMotif,"Observable")
prof <- NetworkNodesInSet(EMSMMotif,"Proficiency")

NodeFinding(obs$Obs1a1) <- "Right"
NodeFinding(obs$Obs1a2) <- "Wrong"
NodeFinding(obs$Obs1b1) <- "Right"
NodeFinding(obs$Obs1b2) <- "Wrong"

mpe <- MostProbableConfig(EMSMMotif)

Observed values should be set at their findings level.
stopifnot (

mpe$Obs1a1 == "Right",
mpe$Obs1a2 == "Wrong",
mpe$Obs1b1 == "Right",
mpe$Obs1b2 == "Wrong"

)

MPE for just proficiency variables.
mpe[names(prof)]

DeleteNetwork(EMSMMotif)

http://norsys.com/onLineAPIManual/functions/MostProbableConfig_bn.html
http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/MostProbableConfig_bn.html

NeticaBN 71

NeticaBN An object referencing a Bayesian network in Netica.

Description

This object is returned by various RNetica functions which create or find network objects, and
contain handles to the Bayesian network. A NeticaBN object represents an active network. The
function is.active() tests whether the network is still loaded into Netica’s memory.

Usage

is.NeticaBN(x)
S3 method for class ’NeticaBN’
toString(x, ...)
S3 method for class ’NeticaBN’
print(x, ...)
S3 method for class ’NeticaBN’
Ops(e1, e2)
e1 == e2
e1 != e2

Arguments

x The object to print or test
... Other arguments to print() or toString()
e1 A NeticaBN object to test.
e2 A NeticaBN object to test.

Details

This is an object of class NeticaBN. It consists of a name, and an invisible handle to a Netica net-
work. The function is.active() tests the state of that handle and returns FALSE if the network is no
longer in active memory (usually because of a call to DeleteNetwork()). The printed representa-
tion depends on whether or not it is active (inactive nodes print as "<Deleted Network: Name >").
For active networks, the equality test tests to see if both object point to the same object in Netica
memory. Not that the name of the network is embedded in the object implementation and may get
out of sync with the network, so the printed representations may be unequal even if it points to the
same network. For inactive networks, the objects are compared using the cached names.

Value

For toString() a string. The function print() is usually called for its side effects.
The function is.NeticaBN() returns a logical scalar depending on whether or not its argument is a
NeticaBN.
The function Ops.NeticaBN() returns a logical value dending on whether the objects are equal.

72 NeticaBN

Note

Internally, the NeticaBN objects are character strings with extra attributes. So as.character(net)
will return the name of the network.

Note that if a NeticaBN object is stored in an R object, and the network is subsquently renamed
(with a call to the set method of NetworkName), the old object may persist with the wrong name.
This may result in a situation where the printed names of the objects are different but net1==net2
returns true. This can be fixed with the code NetworkName(net) <- NetworkName(net).

NeticaBN objects are all rendered inactive when StopNetica() is called, therefore they do not per-
sist across R sessions. Generally speaking, the network should be saved, using WriteNetworks()
and then reloaded in the new session using ReadNetworks(). When a network is saved or loaded
the "Filename" attribute is set, to provide a mechanism for storing the filename across R sessions.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIurl/index.html: GetNetUserData_bn(), SetNetUserData_bn()
(these are used to maintain the back pointers to the R object).

See Also

CreateNetwork(),DeleteNetwork(), GetNamedNetworks(),NetworkName(), is.active(), NetworkAllNodes(),
WriteNetworks(), GetNetworkFileName()

Examples

net1 <- CreateNetwork("aNet")
stopifnot(is.NeticaBN(net1))
stopifnot(is.active(net1))
stopifnot(as.character(net1)=="aNet")

net2 <- GetNamedNetworks("aNet")
stopifnot(as.character(net2)=="aNet")
stopifnot(net1==net2)

NetworkName(net1) <- "Unused"
stopifnot(net1==net2)
Warning: The following expression is true!
as.character(net1) != as.character(net2)

netd <- DeleteNetwork(net1)
stopifnot(!is.active(net1))
stopifnot(!is.active(net2))
stopifnot(as.character(netd)=="Unused")
stopifnot(netd == net1)
Warning: The following expression is true!
net1 != net2

http://norsys.com/onLineAPIurl/index.html
http://norsys.com/onLineAPIManual/functions/GetNetUserData_bn.html
http://norsys.com/onLineAPIManual/functions/SetNetUserData_bn.html

NeticaNode 73

NeticaNode An object referencing a node in a Netica Bayesian network.

Description

This object is returned by various RNetica functions which create or find nodes in a NeticaBN
network. A NeticaNode object represents a node object inside of Netica’s memory. The fucntion
is.active() tests whether the node is still a valid reference.

Usage

is.NeticaNode(x)
S3 method for class ’NeticaNode’
print(x, ...)
S3 method for class ’NeticaNode’
print(x, ...)
S3 method for class ’NeticaNode’
Ops(e1, e2)
e1 == e2
e1 != e2

Arguments

x The object to print or test

... Other arguments to print() or toString()

e1 A NeticaNode object to test.

e2 A NeticaNode object to test, or a list of such objects.

Details

This is an object of class NeticaNode. It consists of a name, and an invisible handle to a Netica
node. The function is.active() tests the state of that handle and returns FALSE if the node is no
longer in active memory (usually because of a call to DeleteNode() or DeleteNetwork().

NeticaNodes come in two types: discrete and continuous (see is.discrete()). The two types
give slightly different meanings to the NodeStates() and NodeLevels() attributes of the node.
The printed representation shows whether the node is discrete, continuous or inactive (deleted).

For active nodes, the equality test tests to see if both object point to the same object in Netica
memory. Not that the name of the node is embedded in the R object implementation and may get
out of sync with Netica memory, so the printed representations may be unequal even if it points to
the same node. For inactive nodes, the objects are compared using the cached names.

74 NeticaNode

Value

For toString() a string. The function print() is usually called for its side effects.

The function is.NeticaNode() returns a logical scalar depending on whether or not its argument
is a NeticaBN.

The function Ops.NeticaNode() returns a logical value dending on whether the objects are equal.
If the second argument is a list of NeticaNode objects, then a logical vector is returned, testing e1
against every element of e2.

Note

Internally, the NeticaNode objects are character strings with extra attributes. So as.character(node)
will return the name of the node.

Note that if a NeticaNode object is stored in an R object, and the Node is subsquently renamed
(with a call to the set method of NodeName), the old object may persist with the wrong name. This
may result in a situation where the printed names of the objects are different but node1==node2
returns true. This can be fixed with the code NodeName(net) <- NodeName(net).

NeticaNode objects are all rendered inactive when StopNetica() is called, therefore they do not
persist across R sessions. Generally speaking, the network should be saved, using WriteNetworks()
and then reloaded in the new session using ReadNetworks(). The node objects should then be
recreated via a call to NetworkFindNode().

Note that RNetica is lazy about creating NeticaNode objects for nodes when a network is read from
a file. Probably users should avoid creating or saving NetworkNode objects unless they are going to
use them frequently.

Author(s)

Russell Almond

References

http://norsys.com/onLurl/Manual/index.html: AddNodeToNodeset_bn(), RemoveNodeFromNode-
set_bn(), IsNodeInNodeset_bn() GetNodeUserData_bn(), SetNodeUserData_bn() (these are used to
maintain the back pointers to the R object).

See Also

NeticaBN, NetworkFindNode(), is.active(), is.discrete(), NewContinuousNode(), NewDiscreteNode(),
DeleteNodes(), NodeName(), NodeStates(), NodeLevels()

Examples

nety <- CreateNetwork("yNode")

node1 <- NewContinuousNode(nety,"aNode")
stopifnot(is.NeticaNode(node1))
stopifnot(is.active(node1))
stopifnot(as.character(node1)=="aNode")

http://norsys.com/onLurl/Manual/index.html
http://norsys.com/onLineAPIManual/functions/AddNodeToNodeset_bn.html
http://norsys.com/onLineAPIManual/functions/RemoveNodeFromNodeset_bn.html
http://norsys.com/onLineAPIManual/functions/RemoveNodeFromNodeset_bn.html
http://norsys.com/onLineAPIManual/functions/IsNodeInNodeset_bn.html
http://norsys.com/onLineAPIManual/functions/GetNodeUserData_bn.html
http://norsys.com/onLineAPIManual/functions/SetNodeUserData_bn.html

NeticaVersion 75

node2 <- NetworkFindNode(nety,"aNode")
stopifnot(as.character(node2)=="aNode")
stopifnot(node1==node2)

NodeName(node1) <- "Unused"
stopifnot(node1==node2)
Warning: The following expression is true!
as.character(node1) != as.character(node2)

noded <- DeleteNodes(node1)
stopifnot(!is.active(node1))
stopifnot(!is.active(node2))
stopifnot(as.character(noded)=="Unused")
stopifnot(noded == node1)
Warning: The following expression is true!
node1 != node2

DeleteNetwork(nety)

NeticaVersion Fetches the version number of Netica.

Description

The version number of Netica is returned as both an integer and a string.

Usage

NeticaVersion()

Details

This must be called after the call to StartNetica().

Value

number Netica version number times 100 (to make it an integer).

message String defining Netica version.

Note

RNetica was developed with Netica API 5.04

Author(s)

Russell Almond

76 NetworkFindNode

References

http://norsys.com/onLineAPIManual/index.html: GetNeticaVersion_bn()

See Also

StartNetica()

Examples

print(NeticaVersion()$message)
stopifnot(NeticaVersion()$number > 409) ## Version 4.09 is a popular one.

NetworkFindNode Finds nodes in a Netica network.

Description

The funciton NetworkFindNode finds a node in a NeticaBN with the given name. If no node with
the specified name found, it will return NULL. The function NetworkAllNodes() returns a list of all
nodes in the network.

Usage

NetworkFindNode(net, name)
NetworkAllNodes(net)

Arguments

net The NeticaBN to search.

name A character vector giving the name or names of the desired nodes. Names must
follow the IDname protocol.

Details

Although each NeticaNode belongs to a single network, a network contains many nodes. Within a
network, a node is uniquely identified by its name. However, nodes can be renamed (see NodeName().

The function NetworkAllNodes() returns all the nodes in the network, however, the order of the
nodes in the network could be different in different calls to this function.

Value

The NeticaNode object or list of NeticaNode objects corresponding to names, or a list of all node
objects for NetworkAllNodes(). In the latter case, the names will be set to the node names.

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNeticaVersion_bn.html

NetworkFindNode 77

Note

NeticaNode objects do not survive the life of a Netica session (or by implication an R session). So
the safest way to "save" a NeticaNode object is to recreate it using NetworkFindNode() after the
network is reloaded.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html, GetNodeNamed_bn(), GetNetNodes_bn()

See Also

NodeNet() retrieves the network from the node.

Examples

tnet <- CreateNetwork("TestNet")
nodes <- NewDiscreteNode(tnet,c("A","B","C"))

nodeA <- NetworkFindNode(tnet,"A")
stopifnot (nodeA==nodes[[1]])

nodeBC <- NetworkFindNode(tnet,c("B","C"))
stopifnot(nodeBC[[1]]==nodes[[2]])
stopifnot(nodeBC[[2]]==nodes[[3]])

allnodes <- NetworkAllNodes(tnet)
stopifnot(length(allnodes)==3)
stopifnot(any(nodeA==allnodes)) ## NodeA in there somewhere.

Not run:
Safe way to preserve node and network objects across R sessions.
tnet <- WriteNetworks(tnet,"Tnet.neta")
q(save="yes")
R
library(RNetica)
tnet <- ReadNetworks(tnet)
nodes <- NetworkFindNodes(tnet,as.character(nodes))

End(Not run)
DeleteNetwork(tnet)

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNodeNamed_bn.html
http://norsys.com/onLineAPIManual/functions/GetNetNodes_bn.html

78 NetworkFootprint

NetworkFootprint Returns a list of names of unconnected edges.

Description

When a link is detached through setting a NodeParents() to NULL, or through copying a node but
not its parent to a new network, this leaves a stub node, an unsatisfied connection. This function
runs through the set of nodes in a network and lists the names of all unsatisfied connections.

Usage

NetworkFootprint(net)

Arguments

net An active NeticaBN to be examined.

Details

Stub nodes – unsatisfied links or connections – can happen in two ways. Either one of the values
of NodeParents(node) to NULL, or by copying a node (CopyNodes() without copying its parents.
(This can also be done in the Netica GUI by detaching the link from the parent end). This this case
Netica names the NodeInputNames() accorind to the name of the old node.

The function NetworkFootprint(net) search all of the nodes in net to find stub nodes, and reports
the NodeInputNames() of the stub nodes. This function provies a test for unsatisfied connections,
and should be of assistance when joining two networks together. The function AdjoinNetwork(sm,em)
joins two networks together and attempts to resolve the unsatisfied connections in em.

One particular application of the footprint is in the EM–SM algorithm (Almond et al, 1999; Almond
and Mislevey, 1999). Here it is assumed that nodes in the footprint of an evidence model will be
joined. Making a clique node MakeCliqueNode() ensures that joint information from the evidence
model will find a good home in the system model network.

Value

A character vector giving the input names of the stub nodes in net. Duplicate values are removed.

Author(s)

Russell Almond

References

Almond, R. G. & Mislevy, R. J. (1999) Graphical models and computerized adaptive testing. Ap-
plied Psychological Measurement, 23, 223-238.

Almond, R., Herskovits, E., Mislevy, R. J., & Steinberg, L. S. (1999). Transfer of information
between system and evidence models. In Artificial Intelligence and Statistics 99, Proceedings (pp.
181–186). Morgan-Kaufman

NetworkName 79

See Also

NeticaNode, NodeParents(), MakeCliqueNode(), NodeInputNames(), CopyNodes(),AdjoinNetwork()

Examples

System/Student model
EMSMSystem <- ReadNetworks(paste(library(help="RNetica")$path,

"sampleNets","System.dne",
sep=.Platform$file.sep))

CompileNetwork(EMSMSystem)
JunctionTreeReport(EMSMSystem)

Evidence model for Task 1a
EMTask1a <- ReadNetworks(paste(library(help="RNetica")$path,

"sampleNets","EMTask1a.dne",
sep=.Platform$file.sep))

NetworkFootprint(EMTask1a)
The corresponding clique is not in system model, so force it in.
MakeCliqueNode(NetworkFindNode(EMSMSystem, NetworkFootprint(EMTask1a)))
CompileNetwork(EMSMSystem)
JunctionTreeReport(EMSMSystem)

Evidence model for Task 2a
EMTask2a <- ReadNetworks(paste(library(help="RNetica")$path,

"sampleNets","EMTask2a.dne",
sep=.Platform$file.sep))

NetworkFootprint(EMTask2a)
This is already a clique, so nothing to do.

DeleteNetwork(list(EMSMSystem,EMTask1a,EMTask2a))

NetworkName Gets or Sets the name of a Netica network.

Description

Gets or sets the name of the network. Names must conform to the IDname rules.

Usage

NetworkName(net)
NetworkName(net) <- value

80 NetworkName

Arguments

net A NeticaBN object which links to the network.

value A character scalar containing the new name.

Details

Network names must conform to the IDname rules for Netica identifiers. Trying to set the network
to a name that does not conform to the rules will produce an error, as will trying to set the network
name to a name that corresponds to another different network.

The NetworkTitle() function provides another way to name a network which is not subject to the
IDname restrictions.

Value

The name of the network as a character vector of length 1.

The setter method returns the modified object.

Note

NeticaBN objects are internally implemented as character vectors giving the name of the network. If
a network is renamed, then it is possible that R will hold onto an old reference that still using the old
name. In this case, NetworkName(net) will give the correct name, and GetNamedNets(NetworkName(net))
will return a reference to a corrected object.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNetName_bn(), SetNetName_bn()

See Also

CreateNetwork(), NeticaBN, GetNamedNetworks(), NetworkTitle()

Examples

net <- CreateNetwork("funNet")
netcached <- net

stopifnot(NetworkName(net)=="funNet")

NetworkName(net)<-"SomethingElse"
stopifnot(as.character(net)=="SomethingElse")

##Warning, the following expression is true!
as.character(netcached) != NetworkName(netcached)
But this one holds

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNetName_bn.html
http://norsys.com/onLineAPIManual/functions/SetNetName_bn.html

NetworkNodeSetColor 81

stopifnot(NetworkName(net)==NetworkName(netcached))
And this one
stopifnot(net==netcached)

This fixes the problem
NetworkName(netcached) <- NetworkName(netcached)
stopifnot(as.character(netcached) == NetworkName(netcached))

DeleteNetwork(net)

NetworkNodeSetColor Returns or sets a display colour to use with a netica node.b

Description

Returns the display colour associated with a node set or sets the node set colour to a specified
value. The colour of the node in the Netica GUI will be the colour of the highest priority node set
associated with the node (see NetworkSetPriority().

Usage

NetworkNodeSetColor(net, setname, newcolor)

Arguments

net An active NeticaBN object representing the network.
setname A character scalar giving the name of the node set to be coloured.
newcolor An optional scalar of any of the three kind of R colours, i.e., either a colour

name (an element of colors()), a hexadecimal string of the form "#rrggbb" or
"#rrggbbaa" (see rgb()), or an integer i meaning palette()[i]. Non-string
values are coerced to integer. There are two special values: NA is used to indicate
that the set should not have a colour associated with it. If newcolor is missing,
then the existing colour is returned and not changed.

Details

Netica determines the visual style of a node by stepping through the node sets to which the node
belongs in priority order (see NetworkSetPriority()) . Each node set can either have a colour
set, or a flag set to indicate that the next node in order or priority should be used to determine the
appearance of the node. The expression NetworkNodeSetColor(net,setname,NA) sets the flag so
that membership in setname does not affect the display of the node.

The function NetworkNodeSetColor(net,setname,colour) sets the colour associated with the
visual display of these nodes (this is only visible when the network is open in the Netica GUI). The
colour can be specified in any of the usual ways that colours are specified in R (see col2rgb()).
The special value NA is used to indicate that the set should be ‘transparent’, that is the colour of the
next set in priorty should be used to colour the node.

The function NetworkNodeSetColor(net,setname), with the third argument missing, returns the
current node set colour instead of setting it.

82 NetworkNodeSetColor

Value

The old value of the node color as hexidecimal string value of the form "#rrggbb".

Note

The colors of the built-in Netica node sets serve as the ultimate default for the display of nodes.
These cannot be set or queried through this function. (This is a limitation of the Netica API).

Author(s)

Russell Almond

References

http://norsys.com/onLurl/Manual/index.html: ReorderNodesets_bn(), SetNodesetColor_bn()

See Also

NeticaNode, NodeSets(), NetworkNodeSets(), col2rgb(), rgb(), NetworkNodesInSet(), NetworkSetPriority()

Examples

nsnet <- CreateNetwork("NodeSetExample")

Ability <- NewContinuousNode(nsnet,"Ability")

X1 <- NewDiscreteNode(nsnet,"Item1",c("Right","Wrong"))
EssayScore <- NewDiscreteNode(nsnet,"EssayScore",paste("level",5:0,sep="_"))

Value <- NewContinuousNode(nsnet,"Value")
NodeKind(Value) <- "Utility"
Placement <- NewDiscreteNode(nsnet,"Placement",

c("Advanced","Regular","Remedial"))
NodeKind(Placement) <- "Decision"

NodeSets(Ability) <- "ReportingVariable"
NodeSets(X1) <- "Observable"
NodeSets(EssayScore) <- c("ReportingVariable","Observable")

Default colour is NA (transparent)
stopifnot(

is.na(NetworkNodeSetColor(nsnet,"Observable"))
)

Make Reporting variables a pale blue
NetworkNodeSetColor(nsnet,"ReportingVariable",rgb(1,.4,.4))
stopifnot(

NetworkNodeSetColor(nsnet,"ReportingVariable") == "#ff6666"
)
Using R (nee X11) color list.

http://norsys.com/onLurl/Manual/index.html
http://norsys.com/onLineAPIManual/functions/ReorderNodesets_bn.html
http://norsys.com/onLineAPIManual/functions/SetNodesetColor_bn.html

NetworkNodeSets 83

NetworkNodeSetColor(nsnet,"Observable","wheat2")
stopifnot(

NetworkNodeSetColor(nsnet,"ReportingVariable") == "#ff6666"
)

DeleteNetwork(nsnet)

NetworkNodeSets Returns a list of node sets associated with a Netica network.

Description

A node set is a character label associated with a node which provides information about its role in
the models. This function returns the complete list of node sets associated with any node in the
network.

Usage

NetworkNodeSets(net, incSystem = FALSE)

Arguments

net An active NeticaBN object representing the network.

incSystem A logical flag. If TRUE then built-in Netica node sets are returned as well as the
user defined ones.

Details

Netica node sets are a collection of string labels that can be associated with various nodes in a
network using the function NodeSets(). Node sets do not have any meaning to Netica: node
set membership only affect the way the node is displayed (see NetworkNodeSetColor()). One
purpose of node sets is to label a set of nodes that play a similar role in the model. For example,
"ReportingVariable" or "Observable".

The expression NetworkNodeSets(node) returns the node sets that are currently associated with
any node. If incSystem=TRUE, then the internal Netica system node sets will be included as well.
These begin with a colon (‘:’). This value cannot be set directly, only indirectly through the use of
NodeSets.

Value

A character vector giving the node sets used by the network.

Note

Node sets cannot be destroyed, only created. An empty node set has no effect.

84 NetworkNodeSets

Author(s)

Russell Almond

References

http://norsys.com/onLurl/Manual/index.html: GetAllNodesets_bn()

See Also

NeticaNode, NodeSets(), NetworkSetPriority(), NetworkNodesInSet(), NetworkNodeSetColor()

Examples

nsnet <- CreateNetwork("NodeSetExample")

Ability <- NewContinuousNode(nsnet,"Ability")

EssayScore <- NewDiscreteNode(nsnet,"EssayScore",paste("level",5:0,sep="_"))

Value <- NewContinuousNode(nsnet,"Value")
NodeKind(Value) <- "Utility"
Placement <- NewDiscreteNode(nsnet,"Placement",

c("Advanced","Regular","Remedial"))
NodeKind(Placement) <- "Decision"

stopifnot(
length(NetworkNodeSets(nsnet)) == 0, ## Nothing set yet
length(NetworkNodeSets(nsnet,TRUE)) == 22 ## Number of system states

)

NodeSets(Ability) <- "ReportingVariable"
stopifnot(

NetworkNodeSets(nsnet) == "ReportingVariable"
)
NodeSets(EssayScore) <- "Observable"
stopifnot(

setequal(NetworkNodeSets(nsnet),c("Observable","ReportingVariable"))
)
Changing spelling of name adds new set, doesn’t delete the old one.
NodeSets(EssayScore) <- "Observables"
stopifnot(

setequal(NetworkNodeSets(nsnet),
c("Observables", "Observable","ReportingVariable"))

)
Nor does deletion
NodeSets(Ability) <- character()
stopifnot(

setequal(NetworkNodeSets(nsnet),
c("Observables", "Observable","ReportingVariable"))

)

DeleteNetwork(nsnet)

http://norsys.com/onLurl/Manual/index.html
http://norsys.com/onLineAPIManual/functions/GetAllNodesets_bn.html

NetworkNodesInSet 85

NetworkNodesInSet Returns a list of node labeled with the given node set in a Netica Net-
work.

Description

A node set is a character label associated with a node which provides information about its role in
the models. This function returns a list of all nodes labeled with a particular node set.

Usage

NetworkNodesInSet(net, setname)

Arguments

net An active NeticaBN object representing the network.

setname A character scalar giving the node set to look for.

Details

Netica node sets are a collection of string labels that can be associated with various nodes in a
network using the function NodeSets(). Node sets do not have any meaning to Netica: node
set membership only affect the way the node is displayed (see NetworkNodeSetColor()). One
purpose of node sets is to label a set of nodes that play a similar role in the model. For example,
"ReportingVariable" or "Observable".

The expression NetworkNodesInSet(net,setname) searches through the network for all nodes
labeled with the given setname. It returns a list of such nodes. This value cannot be set directly,
only indirectly through the use of NodeSets, or through the use of system primitives.

Note that it is acceptable to use the system built-ins. For examble searching for ":TableIncomplete"
will return a collection of nodes for which the conditional probability table has not yet been set.

Value

A list of nodes which are associated with the named node set.

Author(s)

Russell Almond

References

http://norsys.com/onLurl/Manual/index.html: GetAllNodesets_bn(), IsNodeInNodeset_bn()

See Also

NeticaBN, NodeSets(), NetworkSetPriority(), NetworkNodesInSet(), NetworkNodeSetColor()

http://norsys.com/onLurl/Manual/index.html
http://norsys.com/onLineAPIManual/functions/GetAllNodesets_bn.html
http://norsys.com/onLineAPIManual/functions/IsNodeInNodeset_bn.html

86 NetworkSetPriority

Examples

nsnet <- CreateNetwork("NodeSetExample")

Ability <- NewContinuousNode(nsnet,"Ability")

X1 <- NewDiscreteNode(nsnet,"Item1",c("Right","Wrong"))

EssayScore <- NewDiscreteNode(nsnet,"EssayScore",paste("level",5:0,sep="_"))

Value <- NewContinuousNode(nsnet,"Value")
NodeKind(Value) <- "Utility"
Placement <- NewDiscreteNode(nsnet,"Placement",

c("Advanced","Regular","Remedial"))
NodeKind(Placement) <- "Decision"

NodeSets(Ability) <- "ReportingVariable"
NodeSets(X1) <- "Observable"
NodeSets(EssayScore) <- c("ReportingVariable","Observable")

setequal doesn’t deal well with arbitrary objects, so
just use the names.
nodeseteq <- function(x,y) {

setequal(as.character(x),as.character(y))
}

stopifnot(
nodeseteq(NetworkNodesInSet(nsnet,"ReportingVariable"),

list(Ability,EssayScore)),
nodeseteq(NetworkNodesInSet(nsnet,"Observable"),

list(X1,EssayScore)),
nodeseteq(NetworkNodesInSet(nsnet,"Observables"),

list()),
nodeseteq(NetworkNodesInSet(nsnet,":Nature"),

list(Ability,EssayScore,X1)),
nodeseteq(NetworkNodesInSet(nsnet,":Decision"),

list(Placement)),
nodeseteq(NetworkNodesInSet(nsnet,":Utility"),

list(Value))
)

DeleteNetwork(nsnet)

NetworkSetPriority Changes the priority order of the node sets.

NetworkSetPriority 87

Description

Netica sets the visual appearance (i.e., colour, see NetworkNodeSetColor()) of a node according
to highest priority set to which the node belongs. This function changes the order of priority.

Usage

NetworkSetPriority(net, setlist)

Arguments

net An active NeticaBN object representing the network.

setlist A character vector containing a subset of the node set names. The first ones in
the sequence will have the highest priority.

Details

Netica determines the visual style of a node by stepping through the node sets to which the node
belongs in priority order. Each node set can either have a colour set, or a flag set to indicate that
the next node in order or priority should be used to determine the appearance of the node (see
NetworkNodeSetColor()).

This function switches the priority of the node sets names in the second argument. The node sets
note mentioned in setlist are not affected.

Value

Returns the net argument invisibly.

Note

The priority of the Netica internal node sets (the ones beging with ‘:’) are set by Netica and cannot
be changed. They all have lower priority than the user-defined node sets.

Author(s)

Russell Almond

References

http://norsys.com/onLurl/Manual/index.html: ReorderNodesets_bn(), SetNodesetColor_bn()

See Also

NeticaNode, NodeSets(), NetworkNodeSets(), NetworkNodesInSet(), NetworkNodeSetColor()

http://norsys.com/onLurl/Manual/index.html
http://norsys.com/onLineAPIManual/functions/ReorderNodesets_bn.html
http://norsys.com/onLineAPIManual/functions/SetNodesetColor_bn.html

88 NetworkTitle

Examples

nsnet <- CreateNetwork("NodeSetExample")

Ability <- NewContinuousNode(nsnet,"Ability")

EssayScore <- NewDiscreteNode(nsnet,"EssayScore",paste("level",5:0,sep="_"))

Value <- NewContinuousNode(nsnet,"Value")
NodeKind(Value) <- "Utility"
Placement <- NewDiscreteNode(nsnet,"Placement",

c("Advanced","Regular","Remedial"))
NodeKind(Placement) <- "Decision"

NodeSets(EssayScore) <- c("ReportingVariable","Observable")

NetworkSetPriority(nsnet,c("Observable","ReportingVariable"))
Now EssayScore should be coloured like an observable.
stopifnot(NodeSets(EssayScore) == c("Observable","ReportingVariable"))

NetworkSetPriority(nsnet,c("ReportingVariable","Observable"))
Now EssayScore should be coloured like a Reporting Variable
stopifnot(NodeSets(EssayScore) == c("ReportingVariable","Observable"))

DeleteNetwork(nsnet)

NetworkTitle Gets the title or comments associated with a Netica network.

Description

The title is a longer name for a network which is not subject to the netica IDname restrictions. The
comment is a freeform text associated with a network.

Usage

NetworkTitle(net)
NetworkTitle(net) <- value
NetworkComment(net)
NetworkComment(net) <- value

Arguments

net A NeticaBN object.

value A character object giving the new title or comment.

NetworkUndo 89

Details

The title is meant to be a human readable alternative to the name, which is not limited to the IDname
restrictions. The title also affects how the network is displayed in the Netica GUI.

The comment is any text the user chooses to attach to the network. If value has length greater than
1, the vector is collapsed into a long string with newlines separating the components.

Value

A character vector of length 1 providing the title or comment.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNetTitle_bn(), SetNetTitle_bn(), Get-
NetComments_bn(), SetNetComments_bn()

See Also

NeticaBN, NetworkName()

Examples

firstNet <- CreateNetwork("firstNet")

NetworkTitle(firstNet) <- "My First Bayesian Network"
stopifnot(NetworkTitle(firstNet)=="My First Bayesian Network")

NetworkComment(firstNet)<-c("Network created on",date())
stopifnot(NetworkComment(firstNet) ==

paste(c("Network created on",date()),collapse="\n"))

Print here escapes the newline, so is harder to read
cat(NetworkComment(firstNet),"\n")

DeleteNetwork(firstNet)

NetworkUndo Undoes (redoes) a Netica operation on a network.

Description

Netica mantians an internal queue of reversable operations on a network. The NetworkUndo() rolls
them back off the stack. The NetworkRedo().

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNetTitle_bn.html
http://norsys.com/onLineAPIManual/functions/SetNetTitle_bn.html
http://norsys.com/onLineAPIManual/functions/GetNetComments_bn.html
http://norsys.com/onLineAPIManual/functions/GetNetComments_bn.html
http://norsys.com/onLineAPIManual/functions/SetNetComments_bn.html

90 NetworkUndo

Usage

NetworkUndo(net)
NetworkRedo(net)

Arguments

net A NeticaBN object on which an action took place.

Details

The details of which operations are undoable is not clearly documented in Netica. Some obvious
things, like adding nodes, do not appear to work.

Value

Returns an invisible integer which is the return code from the underlying network function. Its value
is not documented, other than it will be negative if the undo/redo stack is empty.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: UndoNetLastOper_bn(), RedoNetOper_bn()

See Also

NeticaBN, CreateNetwork

Examples

Not run:
activeNet <- CreateNetwork("undoRedoTest")

NewContinuousNode(activeNet,"Node1")
NewContinuousNode(activeNet,"Node2")
NewContinuousNode(activeNet,"Node3")

These tests don’t actually work, I’m not sure
what constitutes an undoable action in Netica.
print(NetworkUndo(activeNet))
stopifnot(length(NetworkAllNodes(activeNet))==2)

print(NetworkUndo(activeNet))
stopifnot(length(NetworkAllNodes(activeNet))==1)

print(NetworkRedo(activeNet))
stopifnot(length(NetworkAllNodes(activeNet))==2)

DeleteNetwork(activeNet)

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/UndoNetLastOper_bn.html
http://norsys.com/onLineAPIManual/functions/RedoNetOper_bn.html

NetworkUserField 91

End(Not run)

NetworkUserField Gets user definable fields associated with a Netica network.

Description

Netica provides a mechanism for associating user defined values with a network as a series of
key/value pairs. The key must be a IDname and the value can be an aribtrary string.

Usage

NetworkUserField(net, fieldname)
NetworkUserField(net, fieldname) <- value
NetworkAllUserFields(net)

Arguments

net A NeticaBN object indicating the network.

fieldname A character scalar conforming to the IDname rules.

value An arbitrary character string containing the new value. Only the first element is
used.

Details

Netica contains a mechanism for associating user data with networks. In the Netica documen-
tation, they note that only strings are really supported as only strings are portable across imple-
mentations. This meachnism can be used to store arbitrary values, but the user is responsible for
encoding/decoding them as strings.

Value

A character string with the value stored in the field fieldname, or NA if no such field exists.

The function NetworkAllUserFields returns a character vector containing all user data stored with
the network. The names of the result are the names of the fields.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html GetNetUserField_bn(), SetNetUserField_bn(),
GetNetNthUserField_bn()

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNetUserField_bn.html
http://norsys.com/onLineAPIManual/functions/SetNetUserField_bn.html
http://norsys.com/onLineAPIManual/functions/GetNetNthUserField_bn.html

92 NewDiscreteNode

See Also

NeticaBN, NetworkComment()

Examples

userNet <- CreateNetwork("UserNet")
NetworkUserField(userNet,"Author") <- "Russell Almond"
NetworkUserField(userNet,"Status") <- "In Progress"

stopifnot(NetworkUserField(userNet,"Author")=="Russell Almond")
stopifnot(NetworkUserField(userNet,"Status")=="In Progress")

fields <- NetworkAllUserFields(userNet)
stopifnot(length(fields)==2)
stopifnot(all(!is.na(match(c("Russell Almond","In Progress"),fields))))
stopifnot(all(!is.na(match(c("Author","Status"),names(fields)))))

stopifnot(is.na(NetworkUserField(userNet,"gender")))

DeleteNetwork(userNet)

NewDiscreteNode Creates (or destroys) a node in a Netica Bayesian network.

Description

Creates a new node in the NeticaBN net. Netica Nodes can be either discrete, in which case a list
of states must be given, or continuous, where states are not given. The function DeleteNodes()
deletes a single node or a list of nodes.

Usage

NewDiscreteNode(net, names, states = c("Yes","No"))
NewContinuousNode(net, names)
DeleteNodes(nodes)

Arguments

net A NeticaBN object point to the network where the nodes will be created.

names A character vector containing the name or names of the new nodes to be created.
The names must follow the IDname rules.

states Either or character vector, or a list of character vectors. If it is a list, its length
should be the same as the length of names. The character vectors give the names
of the states for the corresponding node. The entries should all correspond to
the IDname rules.

nodes A NeticaNode or list of NeticaNode objects to be deleted. If a list of nodes, all
must be from the same network.

NewDiscreteNode 93

Details

Both NewDiscreteNode() and NewContinuousNode() both create new nodes in the network net.
If names has length greater than 1, multiple nodes are created.

Netica currently supports two types of nodes. Discrete nodes represent nominal variables. Contin-
uous nodes represent real variables. Continuous nodes cannot be changed to discrete nodes (or vise
versa) using calls to the API [this is a different from the GUI]. However, a continus node can be
made to behave like a discrete node (or vise versa) by setting the NodeLevels() attribute.

NewDiscreteNode() additionally requires the states argument to set the initial set of states.
(These can be changed later through calls to NodeStates()). If states is a character vector, it
is used for the state names. If names has length greater than one, all nodes are created with the same
set of states. The default values create a collection of binary variables. If states is a list, then each
entry should be a character vector providing the list of states for the corresponding new node.

The function DeleteNode() deletes a single node or a group of nodes. If multiple nodes are to
be deleted in a single call, they must all belong to the same network. Node that any NeticaNode
objects that referenced the just deleted nodes will become inactive (see is.active()).

Value

For NewDiscreteNode() or NewContinuousNode(), this returns either a single object of class
NeticaNode or a list of such objects (depending on the length of names).

For DeleteNodes() a list of inactive NeticaNode objects corresponding to the recently deleted
nodes. If a node was not found, a value of NULL will be returned instead.

Note

Netica nodes internally contain a pointer back to the net they are associated with (see NodeNet()),
so most functions involving nodes don’t require the net to be named. The node creation functions
are an exception.

Most functions involving lists of nodes, assume that all nodes come from the same network. Netica
will generate an error if this is not the case.

Internally, node objects character vectors giving the name of the node with special properties repre-
senting the node. Thus, as.character(node) will usually return the name of the node. However,
if the node is renamed, that might not work properly. Using NodeName(node) is generally safer.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: NewNode_bn(), DeleteNode_bn(), GetN-
odeType_bn(), SetNodeLevels_bn()

See Also

CreateNetwork(), NeticaNode, NodeName(), is.discrete(), is.active(), NodeStates(), NodeLevels()

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/NewNode_bn.html
http://norsys.com/onLineAPIManual/functions/DeleteNode_bn.html
http://norsys.com/onLineAPIManual/functions/GetNodeType_bn.html
http://norsys.com/onLineAPIManual/functions/GetNodeType_bn.html
http://norsys.com/onLineAPIManual/functions/SetNodeLevels_bn.html

94 NodeBeliefs

Examples

safetyNet <- CreateNetwork("safetyNet")

noded1 <- NewDiscreteNode(safetyNet, "frayed") ## Yes/No
stopifnot(
NodeName(noded1) == "frayed",
NodeStates(noded1) == c("Yes", "No"),
is.discrete(noded1)
)

Both variables should have the same set of states
noded23 <- NewDiscreteNode(safetyNet,c("TensionNS","TensionEW"),

c("High","Med","Low"))
stopifnot(

all(sapply(noded23,is.active)),
all(sapply(noded23,is.discrete)),
NodeNumStates(noded23[[1]]) == 3,
NodeStates(noded23[[1]])==NodeStates(noded23[[2]])

)

noded45 <- NewDiscreteNode(safetyNet,c("MeshSize","RopeThickness"),
list(c("Coarse","Fine"),c("Thick","Medium","Thin")))

stopifnot(
all(sapply(noded45,is.active)),
all(sapply(noded45,is.discrete)),
NodeNumStates(noded45[[1]]) == 2,
NodeNumStates(noded45[[2]]) == 3,
NodeStates(noded45[[1]])!=NodeStates(noded45[[2]])

)

nodec <- NewContinuousNode(safetyNet, "Area")
stopifnot(

is.active(nodec),
is.continuous(nodec),
NodeName(nodec) == "Area"

)

stopifnot(length(NetworkAllNodes(safetyNet))==6)

DeleteNodes(nodec)
stopifnot(length(NetworkAllNodes(safetyNet))==5)

DeleteNodes(noded45)
stopifnot(length(NetworkAllNodes(safetyNet))==3)

DeleteNetwork(safetyNet)

NodeBeliefs Returns the current marginal probability distribution associated with
a node in a Netica network.

NodeBeliefs 95

Description

After a network is compiled, marginal probabilities are available at each of the nodes. Entering
findings changes these to probabilities associated with the conditions represented by the findings.
This function returns the marginal probabilities for the variable node conditioned on the findings.

The function IsBeliefUpdated(node) checks to see whether the value of findings have been pro-
pogated to node yet.

Usage

NodeBeliefs(node)
IsBeliefUpdated(node)

Arguments

node An active NeticaNode representing the variable whose marginal distribution is
to be determined.

Details

The function NodeBeliefs() is not available until the network has been compiled (CompileNetwork()).
Asking for the marginal values before the network is compiled will throw an error.

When findings are entered, the marginal probabilities (or beliefs) associated with node will change.
The process of propagating the findings from an evidence node to a query node is known as up-
dating. Depending on the size and topology of the network, the updating process might take
some time. To speed up operations, the AutoUpdate flag on the network can be cleared using
SetNetworkAutoUpdate().

If the AutoUpdate flag is not set for the network, then calling NodeBeliefs(node) could trigger an
update cycle and hence take some time. The function IsBeliefUpdated(code) tests to see whether
the marginal probability for node currently incorporates all of the findings. It returns true if it does
and false if not.

Value

The function NodeBeliefs(node) returns a vector of probabilities of length NodeNumStates(node).
The names of the result are the state names.

The function IsBeliefUpdated(node) returns TRUE if calling NodeBeliefs(node) will not result
in probabilities being updated.

Note

I tend to avoid the term "belief" because I’ve spent so much time writing about Dempster–Shafer
models (belief functions).

Author(s)

Russell Almond

96 NodeBeliefs

References

http://norsys.com/onLineAPIManual/index.html: GetNodeBeliefs_bn(), IsBeliefUpdated_bn()

See Also

NeticaBN, NodeProbs(), NodeFinding(), JointProbability(), MostProbableConfig(), FindingsProbability()

Examples

irt5 <- ReadNetworks(paste(library(help="RNetica")$path,
"sampleNets","IRT5.dne",
sep=.Platform$file.sep))

irt5.theta <- NetworkFindNode(irt5,"Theta")
irt5.x <- NetworkFindNode(irt5,paste("Item",1:5,sep="_"))

Not run:
NodeBeliefs(irt5.theta) ## This call will produce an errors because irt5

is not compiled

End(Not run)
stopifnot(

!IsBeliefUpdated(irt5.theta)
)
CompileNetwork(irt5) ## Ready to enter findings

stopifnot (
irt5 is parent node, so marginal beliefs and conditional
probability table should be the same.
sum(abs(NodeBeliefs(irt5.theta) - NodeProbs(irt5.theta))) < 1e-6

)
Marginal probability for Node 5
irt5.x5.init <- NodeBeliefs(irt5.x[[5]])

SetNetworkAutoUpdate(irt5,TRUE) ## Automatic updateing
NodeFinding(irt5.x[[1]]) <- "Right"
stopifnot(

IsBeliefUpdated(irt5.x[[5]])
)
irt5.x5.time1 <- NodeBeliefs(irt5.x[[5]])
stopifnot (

sum(abs(irt5.x5.init-irt5.x5.time1)) > 1e-6
)

SetNetworkAutoUpdate(irt5,FALSE) ## Automatic updateing
NodeFinding(irt5.x[[2]]) <- "Right"
stopifnot(

!IsBeliefUpdated(irt5.x[[5]])
)
irt5.x5.time2 <- NodeBeliefs(irt5.x[[5]])
stopifnot (

sum(abs(irt5.x5.time2-irt5.x5.time1)) > 1e-6,

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNodeBeliefs_bn.html
http://norsys.com/onLineAPIManual/functions/IsBeliefUpdated_bn.html

NodeChildren 97

IsBeliefUpdated(irt5.x[[5]]) ## Now we have updated it.
)

DeleteNetwork(irt5)

NodeChildren Returns a list of the children of a node in a Netica network.

Description

The children of a node parent are the nodes which are directly connnected to parent with an
edge oriented from parent. The function NodeChildren(parent) returns a list of the children of
parent

Usage

NodeChildren(parent)

Arguments

parent A NeticaNode whose children are to be found.

Details

The function NodeChildren(parent) only returns the immediate decendents of parent. A list of
all decendents can be found using the function GetRelatedNodes(parent,"decendents").

The function link{NodeParents}() returns the opposite end of the link, however, unlike NodeParents(),
NodeChildren() cannot be directly set.

Value

A list (possibly empty) of NeticaNode objects which are the children of parent.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNodeChildren_bn()

See Also

NeticaNode, AddLink(), NodeParents(), GetRelatedNodes()

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNodeChildren_bn.html

98 NodeFinding

Examples

chnet <- CreateNetwork("ChildcareCenter")

mom <- NewContinuousNode(chnet,"Mother")
stopifnot(

length(NodeChildren(mom))==0
)

daughters <- NewDiscreteNode(chnet,paste("Daughter",1:3,sep=""))
sapply(daughters, function(d) AddLink(mom,d))

stopifnot(
length(NodeChildren(mom))==3,
all(match(daughters,NodeChildren(mom),nomatch=0))>0

)

DeleteNetwork(chnet)

NodeFinding Returns of sets the observed value associated with a Netica node.

Description

A finding is an observed variable in a Bayesian network. The expression NodeFinding(node) <- value
indicates that the observed value of node should be set to value. The function NodeFinding(node)
returns the current value.

Usage

NodeFinding(node)
NodeFinding(node) <- value

Arguments

node An active NeticaNode whose value was observed or hypothesized.

value A character or integer scaler indicating the value which was observed or hypoth-
esized. If a character, it should be one of the values in NodeStates(node). If
an integer it should be a value between 1 and NodeNumStates(node) inclusive.

Details

Setting NodeFinding(node) <- value essentially asserts that Pr(node = value) = 1. The value
may be either expressed as a character name of one of the states, or an integer giving the index into
the state table.

Note that setting NodeFinding(node) <- value clears any previous findings (including virutal
findings set through NodeLikelihood() or EnterNegativeFinding()), that may have been set.

NodeFinding 99

The function RetractNodeFinding(node) will clear the current finding without setting it to a new
value.

The function NodeFinding(node) returns the currently set finding, if there is one. It can also return
one of the three special values:

1. "@NEGATIVE FINDINGS" — Negative findings have been entered using EnterNegativeFinding().

2. "@LIKELIHOOD" — Uncertiain evidence which provides a likelihood of various states of the
node were entered using NodeLikelihood(node)

3. "@NO FINDING" — No findings, including negative findings or likelihood findings were en-
tered.

Value

The expression NodeFinding(node)<-value returns the modified node invisibly.

The function NodeFinding(node) returns a string which is either the currently set finding or one
of the special values "@NO FINDING", "@LIKELIHOOD", or "@NEGATIVE FINDINGS".

Note

If SetNetworkAutoUpdate() has been set to TRUE, then this function could take some time as each
finding is individually propagated. Consider wrapping multiple calls setting NodeFinding() in
WithoutAutoUpdate(net, ...).

Unlike the Netica function EnterFinding_bn() the function "NodFinding<-" internally calls
RetractFindings. So there is no need to do this manually.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNodeFinding_bn(), EnterFinding_bn()

See Also

NeticaBN, NodeBeliefs(), EnterNegativeFinding(), EnterFindings(), RetractNodeFinding(),
NodeLikelihood(), JointProbability(), MostProbableConfig(), FindingsProbability()

Examples

irt5 <- ReadNetworks(paste(library(help="RNetica")$path,
"sampleNets","IRT5.dne",
sep=.Platform$file.sep))

irt5.theta <- NetworkFindNode(irt5,"Theta")
irt5.x <- NetworkFindNode(irt5,paste("Item",1:5,sep="_"))

CompileNetwork(irt5) ## Ready to enter findings

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNodeFinding_bn.html
http://norsys.com/onLineAPIManual/functions/EnterFinding_bn.html

100 NodeFinding

stopifnot (
irt5 is parent node, so marginal beliefs and conditional
probability table should be the same.
sum(abs(NodeBeliefs(irt5.theta) - NodeProbs(irt5.theta))) < 1e-6

)
Marginal probability for Node 5
irt5.x5.init <- NodeBeliefs(irt5.x[[5]])

SetNetworkAutoUpdate(irt5,TRUE) ## Automatic updateing
NodeFinding(irt5.x[[1]]) <- "Right"
stopifnot(

IsBeliefUpdated(irt5.x[[5]])
)
irt5.x5.time1 <- NodeBeliefs(irt5.x[[5]])
stopifnot (

sum(abs(irt5.x5.init-irt5.x5.time1)) > 1e-6
)

SetNetworkAutoUpdate(irt5,FALSE) ## Automatic updateing
NodeFinding(irt5.x[[2]]) <- 2 ## Wrong
stopifnot(

!IsBeliefUpdated(irt5.x[[5]]),
NodeFinding(irt5.x[[2]]) == "Wrong"

)
irt5.x5.time2 <- NodeBeliefs(irt5.x[[5]])
stopifnot (

sum(abs(irt5.x5.time2-irt5.x5.time1)) > 1e-6,
IsBeliefUpdated(irt5.x[[5]]) ## Now we have updated it.

)

Negative finding
EnterNegativeFinding(irt5.theta,c("neg1","neg2")) ## Rule out negatives.
stopifnot(

NodeFinding(irt5.theta) == "@NEGATIVE FINDINGS"
)

Clearing Findings
RetractNodeFinding(irt5.theta)
stopifnot(

NodeFinding(irt5.theta) == "@NO FINDING"
)

##Virtual findings for X3. Assume judge has said right, but judge has
80% accuracy rate.
NodeLikelihood(irt5.x[[3]]) <- c(.8,.2)
stopifnot(

NodeFinding(irt5.x[[3]]) == "@LIKELIHOOD"
)

DeleteNetwork(irt5)

NodeInputNames 101

NodeInputNames Associates names with incomming edges on a Netica node.

Description

The function NodeInputNames() can be used to set or retrieve names for each of the parents of
node. This facilitates operations such as copying and reconnecting the nodes.

Usage

NodeInputNames(node)
NodeInputNames(node) <- value

Arguments

node A NeticaNode object whose parent link names will be retrieved or set.

value A character vector of length length(NodeParents(node) giving the new names.
Names must conform to the IDname convention.

Details

When a parent node is detached from a child, Netica names the link with the name of the old node.
For example, suppose that the following commands were executed AddLink(A,C); AddLink(B,C).
Then if the node B is detacted, via NodeParents(C)[2]<-list(NULL), Netica will replace B with
a stub node, and name the link "B". The command NodeParents(C)$B <- D would then attach the
node D where the old node was attached.

Rather than relying on the automatic naming scheme, the node names can be directly set using
NodeInputNames(node)<-newvals. Netica will not rename a detached link if there already exists
a name for that link. Explicitly naming the links rather than relying on Netica’s naming scheme is
probably good practice. If node input names are set, then they will be used names for the return
value of NodeParents()

The getter form NodeInputNames() returns the currently set names of the input links. If an input
link whose name has not been set either directly or via inserting a NULL in NodeParents() has a
name of "".

Value

The function NodeInputNames() returns a character vector of the same length as GetNodeParents()
giving the current names of the links. If a link has not yet been named, the corresponding entry of
the vector will be the empty string.

The setter function returns the node object invisibly.

Note

To detach a parent, you must use list(NULL) on the left hand side of NodeParents(node)[i] <- list(NULL)
and not NULL.

102 NodeInputNames

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNodeInputNames_bn(), SetNodeInput-
Names_bn(), SwitchNodeParent_bn()

See Also

NeticaNode, AddLink(), NodeParents()

Examples

abnet <- CreateNetwork("AB")

anodes <- NewDiscreteNode(abnet, paste("A",1:3,sep=""))
B <- NewDiscreteNode(abnet,"B")

NodeParents(B) <- anodes
stopifnot(

all(NodeInputNames(B)=="")
)

NodeParents(B)[2] <- list(NULL)
stopifnot(

NodeInputNames(B)==c("","A2","")
)

Now can use A2 as name
D <- NewDiscreteNode(abnet,"D")
NodeParents(B)$A2 <- D
But name doesn’t change
stopifnot(

NodeInputNames(B)==c("","A2","")
)

##Name the inputs
NodeInputNames(B) <- paste("Input",1:3,sep="")
stopifnot(

names(NodeParents(B))[2]=="Input2"
)

Now detaching nodes doesn’t change input names.
NodeParents(B)[1] <- list(NULL)
stopifnot(

NodeKind(NodeParents(B)[[1]])=="Stub",
NodeInputNames(B)[1]=="Input1"

)

DeleteNetwork(abnet)

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNodeInputNames_bn.html
http://norsys.com/onLineAPIManual/functions/SetNodeInputNames_bn.html
http://norsys.com/onLineAPIManual/functions/SetNodeInputNames_bn.html
http://norsys.com/onLineAPIManual/functions/SwitchNodeParent_bn.html

NodeKind 103

NodeKind Gets or changes the kind of a node in a Netica network.

Description

Netica supports nodes of four different kinds: "Nature", "Decision", "Utility", and "Constant".
A fifth kind, "Stub" is used for a reference to a node when an edge has been detacted from a node.
The function NodeKind() returns the current kind.

Usage

NodeKind(node)
NodeKind(node) <- value

Arguments

node A NeticaNode object whose kind is to be determined or manipulated.

value A character string with one of the values: "Nature", "Decision", "Utility",
or "Constant". Actually, only the first letter is matched, so this could be one of
N, D, U or C.

Details

A "Nature" node (the default when the node is created) is a random variable whose value can be
predicted using the network. Pure Bayesian networks use only "Nature" nodes.

A "Decision" node is one whose value will be chosen by some decision maker. A "Utility" node
is one whose value the decision maker is trying to optimize. A influence diagram contains decision
nodes and utilities in addition to nature nodes. The goal is implicitly to find a setting of the decision
nodes that maximizes the expected utility.

A "Constant" node is a parameter used for building a conditional probability table. Its value is
nominally fixed, but it can be changed to perform sensitivity analysis.

A "Stub" is a reference to a node created by removing a parent node from another node without
changing the table. It is assumed that a real node will later be attached in that location. This kind
can only be set internally to Netica; the expression NodeKind(node) <- "Stub" will generate an
error.

Value

A character vector of length one containing one of the values: "Nature", "Decision", "Utility",
"Constant", or "Stub".

Note

Internal to Netica, "Stub"s are called DISCONNECTED_NODEs. I changed the name to make them
start with a unique letter.

104 NodeKind

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNodeKind_bn(), SetNodeKind_bn()

See Also

NeticaNode, is.discrete(), NodeParents()

Examples

knet <- CreateNetwork("kNet")

skills <- NewContinuousNode(knet,paste("SkillAtTime",1:2,sep=""))

reward <- NewContinuousNode(knet,"RewardForSkill")
NodeKind(reward) <- "Utility"

placement <-
NewDiscreteNode(knet,"Placement",c("Tier1","Tier2","Tier3"))

NodeKind(placement) <- "Decision"

instructionCost <- NewContinuousNode(knet,"CostOfInstruction")
NodeKind(instructionCost) <- "U"

pretest <- NewDiscreteNode(knet,"PretestDecision",c("yes","no"))
NodeKind(pretest) <- "D"

pretestScore <- NewContinuousNode(knet,"PretestScore")
NodeKind(pretestScore) <- "Nature"

pretestCost <- NewContinuousNode(knet,"PretestCost")
NodeKind(pretestCost) <- "u"

pretestR <- NewContinuousNode(knet,"PretestReliability")
NodeKind(pretestR) <- "Constant"

stopifnot(
NodeKind(skills[[1]]) == "Nature",
NodeKind(skills[[2]]) == "Nature",
NodeKind(reward) == "Utility",
NodeKind(placement) == "Decision",
NodeKind(instructionCost) == "Utility",
NodeKind(pretest) == "Decision",
NodeKind(pretestScore) == "Nature",
NodeKind(pretestCost) == "Utility",
NodeKind(pretestR) == "Constant"
)

To make stub node, need links

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNodeKind_bn.html
http://norsys.com/onLineAPIManual/functions/SetNodeKind_bn.html

NodeLevels 105

AddLink(skills[[1]],pretestScore)
NodeInputNames(pretestScore) <- "SkillTested"
Detatch node
NodeParents(pretestScore)$SkillTested <- list(NULL)
stopifnot(

NodeKind(NodeParents(pretestScore)$SkillTested) == "Stub"
)

DeleteNetwork(knet)

NodeLevels Accesses the levels associated with a Netica node.

Description

The levels associate a numeric value with the levels of a discrete NeticaNode, or cut a discrete
node into a number ordered categories. This function fetches or retrieves the levels for node. See
description for more details.

Usage

NodeLevels(node)
NodeLevels(node) <- value

Arguments

node A NeticaNode whose levels are to be accessed.

value A numeric vector of values. For discrete nodes, values should have length
NodeNumStates(node). For continuous nodes, it can be of any length (except
1) should be in either increasing or decreasing order.

Details

The behavior of the levels depends on whether the node is discrete (is.discrete(node)==TRUE)
or continuous (is.discrete(node)==TRUE).

Discrete. For discrete nodes, the levels are associated with the states and provide a numeric sum-
mary of the states. In particular, if NodeLevels are set, then it is meaningful to calculate an expected
value for the node. The vector returned by NodeLevels() is named with the names of the states,
making the association clear. When setting the NodeLevels, it should have length equal to the
number of states (NodeNumStates(node)).

Note that the first time the NodeLevels() are set, the entire vector must be set. After that point
individual values may be changed.

Continuous. For a continuous node, the levels are used to split the continuous range into intervals
(similar in spirit to the function cut()). The levels represent the endpoints of the intervals and
should be in either increaseing or decreasing order. The values Inf and -Inf are acceptable for the
endpoints of the interval. There should be one more level than the desired number of states.

106 NodeLevels

The states of a continuous node are defined by the node levels, and it is not meaningful to try to set
NodeStates(), NodeStateTitles() or NodeStateComments().

Setting NodeLevels(node)<-NULL for a continuous node will clear the levels and the states.

Value

For discrete nodes, a numeric vector of length NodeNumStates(), with names equal to the state
names. If levels have not be set, NAs will be returned.

For continuous nodes, a numeric vector of length NodeNumStates()+1 with no names, or character(0).

Note

The overloading of node levels is a "feature" of the Netica API. It is not great design, but it probably
will be maintained for backwards compatability.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: SetNodeLevels_bn()(), GetNodeLevels_bn(),
GetNodeNumberStates_bn(), GetNodeStateName_bn(), SetNodeStateNames_bn()

See Also

NewDiscreteNode(), NeticaNode, NodeName(), is.discrete(), is.active(), NodeStateTitles(),
NodeStates(), NodeStateComments(),

Examples

lnet <- CreateNetwork("LeveledNet")

Discrete Node
vnode <- NewDiscreteNode(lnet,"volt_switch",c("Off","Reverse","Forwards"))
stopifnot(

length(NodeLevels(vnode))==3,
names(NodeLevels(vnode)) == NodeStates(vnode),
all(is.na(NodeLevels(vnode)))

)

Not run:
Don’t run this until the levels for vnode have been set,
it will generate an error.
NodeLevels(vnode)[2] <- 0

End(Not run)

NodeLevels(vnode) <- 1:3
stopifnot(

length(NodeLevels(vnode))==3,

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/SetNodeLevels_bn().html
http://norsys.com/onLineAPIManual/functions/GetNodeLevels_bn.html
http://norsys.com/onLineAPIManual/functions/GetNodeNumberStates_bn.html
http://norsys.com/onLineAPIManual/functions/GetNodeStateName_bn.html
http://norsys.com/onLineAPIManual/functions/SetNodeStateNames_bn.html

NodeLikelihood 107

names(NodeLevels(vnode)) == NodeStates(vnode),
NodeLevels(vnode)[2]==2

)

NodeLevels(vnode)["Reverse"] <- -2

Continuous Node
wnode <- NewContinuousNode(lnet,"Weight")
stopifnot(
length(NodeLevels(wnode))==0,
NodeNumStates(wnode)==0

)

NodeLevels(wnode) <- c(0, 0.1, 10, Inf)
stopifnot(
length(NodeStates(wnode))==3,
NodeNumStates(wnode)==3

)
NodeStates(wnode) <- c("Low","Medium","High")
stopifnot(
NodeStates(wnode)[3] == "High",
is.null(names(NodeLevels(wnode)))

)
Change number of states
NodeLevels(wnode) <- c(0, 0.1, 10, 100, Inf)
stopifnot(
length(NodeStates(wnode))==4,
NodeNumStates(wnode)==4,
all(nchar(NodeStates(wnode))==0)

)
Clear levels
NodeLevels(wnode) <- c()
stopifnot(
NodeNumStates(wnode)==0,
length(NodeStates(wnode))==0

)

DeleteNetwork(lnet)

NodeLikelihood Returns or sets the virtual evidence associated with a Netica node.

Description

The findings associated with a node can be exrpressed as the probability of the evidence occuring
in each of the states of the node. This is the likelihood associated with the node. This function
retrieves or sets the likelihood.

108 NodeLikelihood

Usage

NodeLikelihood(node)
NodeLikelihood(node) <- value

Arguments

node An active NeticaNode whose evidence is to be queried or set.

value A numeric vector of length NodeNumStates(node) representing the new likeli-
hood for the node. All values must be between zero and one and there must be
at least one positive value, but the sum does not need to equal 1.

Details

This function retrieves or sets virtual evidence associated with each node. Suppose that some set
of evidence e is observed. The each of the values in the likelihood representes the conditional
probability Pr(e|node == state). Note that the likelihood can be throught of as the message that
a new node child which was a child of node with no other parents would pass to node if its value
was set.

As the likelihood values are conditional probabilities, they do not need to add to 1, although they
are still restricted to the range [0,1]. Also, at least one value must be non-zero (or else the evidence
represtents an impossible case) or Netic will generate an error.

Entering findings through NodeFinding(node,state) sets a special likelihood. In this case, the
likelihood value corresponding to state will be 1, and all others will be 0. Similarly, EnterNegativeFinding(node,statelist)
sets a special likelihood with 0’s corresponding to the states in statelist and 1’s elsewhere.

Setting the likelihood calls RetractNodeFinding(), clearing any previous finding, negative finding
or likelihood.

Value

The function NodeLikelihood(node) returns a vector of likelihoods of length NodeNumStates(node).
The names of the result are the state names.

The expression NodeLikelihood(node)<-value returns the modified node invisibly.

Warning

The documentation for the Netica function MostProbableConfig_bn() states that likelihood findings
are not properly taken into accont in MostProbableConfig(). Some quick tests indicate that it is
doing something sensible, but more extensive testing and/or clarification is needed.

The documentation for the Netica function FindingsProbability_bn() also provides a warning about
likelihood evidnece. The function FindingsProbability(net) still gives a result, but it is the
normalization constant for the network, and not necessarily a probability.

Note

If SetNetworkAutoUpdate() has been set to TRUE, then setting the likelihood could take some time
as each finding is individually propagated. Consider wrapping multiple calls setting NodeLikelihood()
in WithoutAutoUpdate(net, ...).

http://norsys.com/onLineAPIManual/functions/MostProbableConfig_bn.html
http://norsys.com/onLineAPIManual/functions/FindingsProbability_bn.html

NodeLikelihood 109

Unlike the Netica function EnterNodeLikelihood_bn() the function "NodFinding<-" internally
calls RetractFindings. So there is no need to do this manually.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNodeLikelihood_bn(), EnterNodeLike-
lihood_bn()

See Also

NeticaBN, NodeBeliefs(), EnterNegativeFinding(), RetractNodeFinding(), NodeFinding()
JointProbability(), MostProbableConfig(), FindingsProbability()

Examples

irt5 <- ReadNetworks(paste(library(help="RNetica")$path,
"sampleNets","IRT5.dne",
sep=.Platform$file.sep))

irt5.theta <- NetworkFindNode(irt5,"Theta")
irt5.x <- NetworkFindNode(irt5,paste("Item",1:5,sep="_"))

CompileNetwork(irt5) ## Ready to enter findings

Simple finding
NodeFinding(irt5.x[[1]])<-"Wrong"
stopifnot(

NodeLikelihood(irt5.x[[1]]) == c(0,1)
)

Negative finding
EnterNegativeFinding(irt5.theta,c("neg1","neg2")) ## Rule out negatives.
stopifnot(

NodeLikelihood(irt5.x[[1]]) == c(0,1),
NodeLikelihood(irt5.theta) == c(1,1,1,0,0),
NodeFinding(irt5.theta) == "@NEGATIVE FINDINGS"

)

Clearing Findings
RetractNodeFinding(irt5.theta)
stopifnot(

NodeLikelihood(irt5.theta) == c(1,1,1,1,1)
)

##Virtual findings for X3. Assume judge has said right, but judge has
80% accuracy rate.
NodeLikelihood(irt5.x[[3]]) <- c(.8,.2)
stopifnot(

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNodeLikelihood_bn.html
http://norsys.com/onLineAPIManual/functions/EnterNodeLikelihood_bn.html
http://norsys.com/onLineAPIManual/functions/EnterNodeLikelihood_bn.html

110 NodeName

sum(abs(NodeLikelihood(irt5.x[[3]]) - c(.8,.2))) < 1e-6,
NodeFinding(irt5.x[[3]]) == "@LIKELIHOOD"

)

Add in virtual likelihood from a second judge
NodeLikelihood(irt5.x[[3]]) <- NodeLikelihood(irt5.x[[3]]) * c(.75,.25)
stopifnot(

sum(abs(NodeLikelihood(irt5.x[[3]]) - c(.6,.05))) < 1e-6
)

DeleteNetwork(irt5)

NodeName Gets or set of a Netica node.

Description

Gets or sets the name of the node. Names must conform to the IDname rules.

Usage

NodeName(node)
NodeName(node)<- value

Arguments

node An active NeticaNode object that references the node.

value An character vector of length 1 giving the new name.

Details

Node names must conform to the IDname rules for Netica identifiers. Trying to set the node to a
name that does not conform to the rules will produce an error, as will trying to set the node name to
a name that corresponds to a different node in the network.

On a call to the setting method, if a node of the given name already exists, a warning will be issued
and the node argument will be returned unchanged.

The NodeTitle() function provides another way to name a node which is not subject to the IDname
restrictions.

Value

The name of the node as a character vector of length 1.

The setter method returns the NeticaNode object

NodeName 111

Note

NeticaNode objects are internally implemented as character vectors giving the name of the network.
If a node is renamed, then it is possible that R will hold onto an old reference that still using the old
name. In this case, NodeName(node) will give the correct name, and NetworkFindNode(net,NodeName(node))
will return a reference to a corrected object.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNodeName_bn(), SetNodeName_bn()

See Also

NewDiscreteNode(), NeticaNode, NetworkFindNode(), NodeTitle()

Examples

net <- CreateNetwork("funNet")

pnode <- NewDiscreteNode(net,"play")
nodecached <- pnode

stopifnot(NodeName(pnode)=="play")

NodeName(pnode)<-"work"
stopifnot(as.character(pnode)=="work")

##Warning, the following expression is true!
as.character(nodecached) != NodeName(nodecached)
But this one holds
stopifnot(NodeName(pnode)==NodeName(nodecached))
And this one
stopifnot(pnode==nodecached)

This fixes the problem
NodeName(nodecached) <- NodeName(nodecached)
stopifnot(as.character(nodecached) == NodeName(nodecached))

snode <- NewContinuousNode(net,"sleep")
NodeName(snode) <- "work" ## This should issue a warning
And not change the name.
stopifnot(NodeName(snode)=="sleep")

allNodes <- NetworkAllNodes(net)
NodeName(allNodes$work) <- "effort"

DeleteNetwork(net)

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNodeName_bn.html
http://norsys.com/onLineAPIManual/functions/SetNodeName_bn.html

112 NodeNet

NodeNet Finds which Netica network a node comes from.

Description

Each active NeticaNode object lives inside of a NeticaBN object. This function finds the network
corresponding to a node.

Usage

NodeNet(node)

Arguments

node A NeticaNode object.

Details

Two nodes with the same details in different networks are not identical inside of Netica.

This function only works for active nodes. If is.active(node) returns false, this function will
return NULL.

The functions NetworkAllNodes() and NetworkFindNode() provide pseudo-inverses for this func-
tion.

Value

A NeticaBN object which contains node, or NULL if node is not active.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNodeNet_bn()

See Also

NeticaBN, NeticaNode, is.active(), NetworkAllNodes(), NetworkFindNode()

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNodeNet_bn.html

NodeParents 113

Examples

neta <- CreateNetwork("Net_A")
netb <- CreateNetwork("Net_B")

nodea <- NewContinuousNode(neta,"Node")
nodeb <- NewContinuousNode(netb,"Node")

stopifnot(NodeNet(nodea)==neta)
stopifnot(NodeNet(nodeb)==netb)

Note
stopifnot(nodea != nodeb)
But:
stopifnot(as.character(nodea) == as.character(nodeb))

DeleteNodes(nodeb)
stopifnot(is.null(NodeNet(nodeb)))

DeleteNodes(nodea)

Now:
stopifnot(nodea == nodeb)

DeleteNetwork(list(neta,netb))

NodeParents Gets or sets the parents of a node in a Netica network.

Description

A parent of a NeticaNode is another node which has a link (created through AddLink() from that
node to child. This function returns the list of parents. It also allows the list of parents for the node
to be set, altering the topology of the network (see details).

Usage

NodeParents(child)
NodeParents(child) <- value

Arguments

child An active NeticaNode object whose parents are of interest.

value A list of NeticaNode objects (or NULLs) which will become the new parents.
Order of the nodes is important. See details.

114 NodeParents

Details

At its most basic level, NodeParents() reports on the topology of a network. Suppose we add the
links A1 --> B, A2 --> B, and A3 --> B to the network. Then NodeParents(B) should return
list(A1, A2, A3). The order of the inputs is important, because that this determines the order of
the dimensions in the conditional probability table (NodeProbs()).

The parent list can be set. This can accomplishes a number of diffent goals: it can replace a parent
variable, it can add additional parents, it can remove extra parents, and it can reorder parents.
Changing the parents alters the topology of the network. Note that Netica networks must always be
acyclic directed graphs. In particular, if is.NodeRelated(child,"decendent",parent) returns
true for any prospective parent, Netica will generate an error (new parents must node be decendents
of the child as that would produce a cycle).

Setting an element of the parent list to list(NULL) has special semantics. In this case, the parent
node becomes a special stub node (or DISCONNECTED_TYPE, see NodeKind()). This creates
a Bayesian network fragment which can later be connected to another Bayesian network (using
SetParents() with the new parent.

The function NodeInputNames(child), returns a list of names for the parent variables. Naming
the parent variables facilitates disconnecting the node and reconnecting it. Whenever a node is
disconnected, the corresponding input is named after the disconnected node, unless it already has
an input name.

Value

A list of NeticaNode objects representing the parents in the order that they will be used to establish
dimensions for the conditional probability table. If NodeInputNames(child) has been set, the
names of the result will be the input names.

The setting variant returns the modified child object.

Note

Much of the checking for this function is done internally in the Netica API, and not in the RNet-
ica interface layer. In particular, creating directed cycles will produce errors in Netica and not in
RNetica.

This is actually an attempt to make the RNetica interface more R-like, covering the common cases of
NodeParents(child) <- value. Under the hood it is using the Netica function SwitchNodeParent_bn()
to produce the expected behavior.

The fact that if x is a list x[[2]]<-NULL deletes the second element rather than replacing it with
NULL is a serious design flaw in R. However, it is documented in the FAQ and it is unlikely to change,
so we need to workaround it. We do this by setting the element we want to delete to list(NULL).
Nominally, we would do this through x[2]<-list(NULL), which is the official workaround for the
design flaw. NodeParents<- will accept list(NULL) in place of NULL because nobody who isn’t
part of the R Core Development Team will ever remember which form they are suppose to use here.

Author(s)

Russell Almond

NodeParents 115

References

http://norsys.com/onLineAPIManual/index.html: GetNodeParents_bn(), SwitchNodeParent_bn()

See Also

NeticaNode, AddLink(), NodeChildren(), NodeKind(), NodeInputNames(), is.NodeRelated()

Examples

abnet <- CreateNetwork("AB")

anodes <- NewDiscreteNode(abnet, paste("A",1:3,sep=""))
B <- NewDiscreteNode(abnet,"B")

Should be empty list
stopifnot(length(NodeParents(B))==0)

NodeParents(B) <- anodes
stopifnot(

length(NodeParents(B))==3,
NodeParents(B)[[2]] == anodes[[2]]

)

Reorder nodes
NodeParents(B) <- anodes[c(2:3,1)]
stopifnot(

length(NodeParents(B))==3,
NodeName(NodeParents(B)[[2]])=="A3",
all(nchar(names(NodeParents(B)))==0)

)

Remove a node.
NodeParents(B) <- anodes[2:1]
stopifnot(

length(NodeParents(B))==2,
NodeName(NodeParents(B)[[2]])=="A1",
all(nchar(names(NodeParents(B)))==0)

)

Add a node
NodeParents(B) <- anodes[3:1]
stopifnot(

length(NodeParents(B))==3,
NodeName(NodeParents(B)[[3]])=="A1",
all(nchar(names(NodeParents(B)))==0)

)

##Name the inputs
NodeInputNames(B) <- paste("Input",1:3,sep="")
stopifnot(

names(NodeParents(B))[2]=="Input2"
)

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNodeParents_bn.html
http://norsys.com/onLineAPIManual/functions/SwitchNodeParent_bn.html

116 NodeProbs

Detach the parent
NodeParents(B)$Input2 <- list(NULL)
stopifnot(

length(NodeParents(B))==3,
NodeKind(NodeParents(B)$Input2) == "Stub"

)

Remove all parents
NodeParents(B) <- list()
stopifnot(

length(NodeParents(B))==0
)

DeleteNetwork(abnet)

NodeProbs Gets or sets the conditional probability table associated with a Netica
node.

Description

A complete Bayesian networks defines a conditional probability distribution for a node given its
parents. If all the nodes are discrete, this comes in the form of a conditional probability table a
multidimensional array whose first several dimensions follow the parent variable and whose last
dimension follows the child variable.

Usage

NodeProbs(node)
NodeProbs(node) <- value

Arguments

node An active, discrete NeticaNode whose conditional probability table is to be ac-
cessed.

value The new conditional probability table. See details for the expected dimensions.

Details

Let node be the node of interest and parent1 , parent2 , ..., parentp , where p is the number
of parents. Let pdim = sapply(NodeParents(node), NodeNumStates) be a vector with the
number of states for each parent. A parent configuration is defined by assigning each of the parent
values to one of its possible states. Each parent configuration defines a (conditional) probability
distribution over the possible states of node.

The result of NodeProbs(node) will be an array with dimensions c(pdim, NodeNumStates(node)).
The first p dimensions will be named according to the NodeInputNames(node) or the NodeName(parent)

NodeProbs 117

if the input names are not set. The last dimension will be named according to the node itself. The
dimnames for the resulting array will correspond to the state names.

The setter form expects an array of the same dimensions as an argument, although it does not need
to have the dimnames set.

Value

A conditional probability array of class c("CPA","array"). See details

Note

All of this assumes that these are discrete nodes, that is is.discrete(node) will return true for
both node and all of the parents. It is unknown what Netica does is this is not right.

This doc file is still pretty lame. Probably need to redo output as a CPT class.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNodeProbs_bn(), SetNodeProbs_bn()

See Also

NeticaNode, NodeParents(), NodeInputNames(), NodeStates(), CPA, CPF, normalize()

Examples

abc <- CreateNetwork("ABC")
A <- NewDiscreteNode(abc,"A",c("A1","A2","A3","A4"))
B <- NewDiscreteNode(abc,"B",c("B1","B2","B3"))
C <- NewDiscreteNode(abc,"C",c("C1","C2"))

AddLink(A,B)
AddLink(A,C)
AddLink(B,C)

NodeProbs(A)<-c(.1,.2,.3,.4)
NodeProbs(B) <- normalize(matrix(1:12,4,3))
NodeProbs(C) <- normalize(array(1:24,c(4,3,2)))

Aprobs <- NodeProbs(A)
Bprobs <- NodeProbs(B)
Cprobs <- NodeProbs(C)
stopifnot(

is.CPA(Aprobs),
is.CPA(Bprobs),
is.CPA(Cprobs)

)

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNodeProbs_bn.html
http://norsys.com/onLineAPIManual/functions/SetNodeProbs_bn.html

118 NodeSets

DeleteNetwork(abc)

NodeSets Lists or changes the node sets associated with a Netica node.

Description

A node set is a character label associated with a node which provides information about its role in
the models. This function returns or sets the labels associated with a node.

Usage

NodeSets(node, incSystem = FALSE)
NodeSets(node) <- value

Arguments

node An active NeticaNode object.

incSystem A logical flag. If TRUE then built-in Netica node sets are returned as well as the
user defined ones.

value A character vector containing the names of the node sets that node should be
associated with. These names must follow the is.IDname() rules.

Details

Netica node sets are a collection of string labels that can be associated with various nodes in a
network. Node sets do not have any meaning to Netica: node set membership only affect the way
the node is displayed (see NetworkNodeSetColor()). One purpose of node sets is to label a set of
nodes that play a similar role in the model. For example, "ReportingVariable" or "Observable".

The expression NodeSet(node) returns the node sets currently associated with node. If incSystem=TRUE,
then the internal Netica system node sets will be included as well. These begin with a colon (‘:’).

The expression NodeSet(node)<-value removes any node sets previously associated with node
and adds node to the node sets named in value. The elements of value need not correspond to
existing node sets, new node sets will be created for new values. (Warning: this implies that if the
name of the node set is spelled incorrectly in one of the calls, this will create a new node set. For
example, "Observable" and "Observables" would be two distinct node sets.) Setting the node
set associated with a node only affects user-defined node sets, the Netica system node sets cannot
be set using NodeSet.

Value

A character vector giving the names of the node sets node is associated with. The setter form returns
node.

Author(s)

Russell Almond

NodeSets 119

References

http://norsys.com/onLineAPIManual/index.html: AddNodeToNodeset_bn(), RemoveNode-
FromNodeset_bn(), IsNodeInNodeset_bn()

See Also

NeticaNode, NodeKind(), NetworkNodeSets(), NetworkSetPriority(), NetworkNodesInSet(),
NetworkNodeSetColor(), is.IDname()

Examples

nsnet <- CreateNetwork("NodeSetExample")

Ability <- NewContinuousNode(nsnet,"Ability")

EssayScore <- NewDiscreteNode(nsnet,"EssayScore",paste("level",5:0,sep="_"))

Value <- NewContinuousNode(nsnet,"Value")
NodeKind(Value) <- "Utility"
Placement <- NewDiscreteNode(nsnet,"Placement",

c("Advanced","Regular","Remedial"))
NodeKind(Placement) <- "Decision"

stopifnot(
length(NodeSets(Ability)) == 0, ## Nothing set yet
setequal(NodeSets(Ability,TRUE),

c(":Continuous", ":Nature", ":TableIncomplete",
":Parentless", ":Childless", ":Node")),

!is.na(match(":Utility",NodeSets(Value,TRUE))),
!is.na(match(":Decision",NodeSets(Placement,TRUE)))

)

NodeSets(Ability) <- "ReportingVariable"
stopifnot(

NodeSets(Ability) == "ReportingVariable"
)
NodeSets(EssayScore) <- "Observable"
stopifnot(

NodeSets(EssayScore) == "Observable"
)
Make EssayScore a reporting variable, too
NodeSets(EssayScore) <- c("ReportingVariable",NodeSets(EssayScore))
stopifnot(

setequal(NodeSets(EssayScore),c("Observable","ReportingVariable"))
)

Clear out the node set
NodeSets(Ability) <- character()
stopifnot(

length(NodeSets(Ability)) == 0
)

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/AddNodeToNodeset_bn.html
http://norsys.com/onLineAPIManual/functions/RemoveNodeFromNodeset_bn.html
http://norsys.com/onLineAPIManual/functions/RemoveNodeFromNodeset_bn.html
http://norsys.com/onLineAPIManual/functions/IsNodeInNodeset_bn.html

120 NodeStates

DeleteNetwork(nsnet)

NodeStates Accessor for states of a Netica node.

Description

This function returns a list associated with a Netica node. The function NodeNumStates() returns
the number of states, NodeStates returns or manipulates them.

Usage

NodeStates(node)
NodeNumStates(node)
NodeStates(node) <- value

Arguments

node An active NeticaNode object whose states are to be accessed.
value A character vector of length NodeNumStates(node) giving the names of the

states. State names must conform to the IDname rules.

Details

States behave slightly differently for discrete and continuous nodes (see is.discrete(). For dis-
crete nodes, the random variable represented by the node can take on one of the values represented
by NodeStates(node).

Discrete. The number of states for a discrete node is determined when the node is created (through
a call to NewDiscreteNode()). The number of states may not be changed, but they can be renamed.

The states are important when building conditional probability tables (CPTs). In particular, the state
names are used to label the columns of the CPT. Thus, state names can be used to address arrays
in the same way that dimnames can. In particular, the state names can be used to index the vectors
returned by NodeStates(), NodeStateTitles(), NodeStateTitles(), and NodeLevels() (for
discrete nodes).

Continuous. States for a continuous node are determined by the NodeLevels() of the node, which
describe a series of endpoints for intervals that cut the continuous space into the states. The function
NodeNumStates(node) should return length(NodeLevels(node))-1 unless the levels have not
been set in which case it will be zero. If NodeStates are set for a continuous node, they must have
length length(NodeLevels(node))-1.

Value

The function NodeNumStates() returns an integer giving the number of states.

The function NodeStates() returns a character vector of length NodeNumStates(node) whose
values and names are both set to the state names. The setter version of this function invisibly
returns the node object.

NodeStates 121

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNodeNumberStates_bn(), GetNodeState-
Name_bn(), SetNodeStateNames_bn(), GetNodeLevels_bn() SetNodeLevels_bn()

See Also

NewDiscreteNode(), NeticaNode, NodeName(), is.discrete(), is.active(), NodeStateTitles(),
NodeLevels(), NodeStateComments(),

Examples

anet <- CreateNetwork("Annette")

Discrete Nodes
nodel2 <- NewDiscreteNode(anet,"TwoLevelNode")
stopifnot(

NodeNumStates(nodel2)==2,
NodeStates(nodel2)==c("Yes","No")

)

NodeStates(nodel2) <- c("True","False")
stopifnot(

NodeStates(nodel2)==c("True","False")
)

nodel3 <- NewDiscreteNode(anet,"ThreeLevelNode",c("High","Med","Low"))
stopifnot(

NodeNumStates(nodel3)==3,
NodeStates(nodel3)==c("High","Med","Low"),
NodeStates(nodel3)[2]=="Med"

)

NodeStates(nodel3)[2] <- "Median"
stopifnot(

NodeStates(nodel3)[2]=="Median"
)

NodeStates(nodel3)["Median"] <- "Medium"
stopifnot(

NodeStates(nodel3)[2]=="Medium"
)

Continuous Nodes
wnode <- NewContinuousNode(anet,"Weight")

Not run:
Don’t run this until the levels for wnode have been set,

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNodeNumberStates_bn.html
http://norsys.com/onLineAPIManual/functions/GetNodeStateName_bn.html
http://norsys.com/onLineAPIManual/functions/GetNodeStateName_bn.html
http://norsys.com/onLineAPIManual/functions/SetNodeStateNames_bn.html
http://norsys.com/onLineAPIManual/functions/GetNodeLevels_bn.html
http://norsys.com/onLineAPIManual/functions/SetNodeLevels_bn.html

122 NodeStateTitles

it will generate an error.
NodeStates(vnode) <- c("Low","Medium","High")

End(Not run)

First set levels of node.
NodeLevels(wnode) <- c(0, 0.1, 10, Inf)
Then can set States.
NodeStates(wnode) <- c("Low","Medium","High")

DeleteNetwork(anet)

NodeStateTitles Accessors for the titles and comments associated with states of Netica
nodes.

Description

Each state of a NeticaNode can have a longer title or comments associated with it. These functions
get or set the titles or comments.

Usage

NodeStateTitles(node)
NodeStateTitles(node) <- value
NodeStateComments(node)
NodeStateComments(node) <- value

Arguments

node An active NeticaNode object whose state titles or coments will be accessed.

value A character vector of length NodeNumStates(node) which provides the new
state titles or names.

Details

The titles are meant to be a more human readable version of the state names and are not subject
the the IDname restrictions. These are displayed in the Netica GUI in certain display modes. The
comments are meant to be a longer free form notes.

Both titles and comments are returned as a named character vector with names corresponding to the
state names. Therefore one can change a single state title or comment by accessing it either using
the state number or the state name.

NodeStateTitles 123

Value

Both NodeStateTitles() and NodeStateComments() return a character vector of length NodeNumStates(node)
giving the titles or comments respectively. The names of this vector are NodeStates(node).

The setter methods return the modified NeticaNode object invisibly.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNodeStateTitle_bn(),SetNodeStateTitle_bn(),
GetNodeStateComment_bn(),SetNodeStateComment_bn()

See Also

NeticaNode, NodeStates(), NodeLevels()

Examples

cnet <- CreateNetwork("CreativeNet")

orig <- NewDiscreteNode(cnet,"Originality", c("H","M","L"))
NodeStateTitles(orig) <- c("High","Medium","Low")
NodeStateComments(orig)[1] <- "Produces solutions unlike those typically seen."

stopifnot(
NodeStateTitles(orig) == c("High","Medium","Low"),
grep("solutions unlike", NodeStateComments(orig))==1,
NodeStateComments(orig)[3]==""
)

sol <- NewDiscreteNode(cnet,"Solution",
c("Typical","Unusual","VeryUnusual"))

stopifnot(
all(NodeStateTitles(sol) == ""),
all(NodeStateComments(sol) == "")
)

NodeStateTitles(sol)["VeryUnusual"] <- "Very Unusual"
NodeStateComments(sol) <- paste("Distance from typical solution",

c("<1", "1--2", ">2"))
stopifnot(

NodeStateTitles(sol)[3]=="Very Unusual",
NodeStateComments(sol)[1] == "Distance from typical solution <1"
)

DeleteNetwork(cnet)

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNodeStateTitle_bn.html
http://norsys.com/onLineAPIManual/functions/SetNodeStateTitle_bn.html
http://norsys.com/onLineAPIManual/functions/GetNodeStateComment_bn.html
http://norsys.com/onLineAPIManual/functions/SetNodeStateComment_bn.html

124 NodeTitle

NodeTitle Gets the title or Description associated with a Netica node.

Description

The title is a longer name for a node which is not subject to the netica IDname restrictions. The
description is a freeform text associated with a node.

Usage

NodeTitle(node)
NodeTitle(node) <- value
NodeDescription(node)
NodeDescription(node) <- value

Arguments

node A NeticaNode object.

value A character object giving the new title or description.

Details

The title is meant to be a human readable alternative to the name, which is not limited to the IDname
restrictions. The title also affects how the node is displayed in the Netica GUI.

The description is any text the user chooses to attach to the node. If value has length greater than
1, the vector is collapsed into a long string with newlines separating the components.

Value

A character vector of length 1 providing the title or description.

Note

Node descriptions are called "Descriptions" in the Netica GUI, but "Comments" in the API.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNodeTitle_bn(), SetNodeTitle_bn(), GetN-
odeComments_bn(), SetNodeComments_bn()

See Also

NeticaNode, NodeName()

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNodeTitle_bn.html
http://norsys.com/onLineAPIManual/functions/SetNodeTitle_bn.html
http://norsys.com/onLineAPIManual/functions/GetNodeComments_bn.html
http://norsys.com/onLineAPIManual/functions/GetNodeComments_bn.html
http://norsys.com/onLineAPIManual/functions/SetNodeComments_bn.html

NodeUserField 125

Examples

net2 <- CreateNetwork("secondNet")

firstNode <- NewDiscreteNode(net2,"firstNode")

NodeTitle(firstNode) <- "My First Bayesian Network Node"
stopifnot(NodeTitle(firstNode)=="My First Bayesian Network Node")

NodeDescription(firstNode)<-c("Node created on",date())
stopifnot(NodeDescription(firstNode) ==

paste(c("Node created on",date()),collapse="\n"))

Print here escapes the newline, so is harder to read
cat(NodeDescription(firstNode),"\n")

DeleteNetwork(net2)

NodeUserField Gets user definable fields associated with a Netica node.

Description

Netica provides a mechanism for associating user defined values with a node as a series of key/value
pairs. The key must be a IDname and the value can be an aribtrary string.

Usage

NodeUserField(node, fieldname)
NodeUserField(node, fieldname) <- value
NodeAllUserFields(node)

Arguments

node A NeticaBN object indicating the node.

fieldname A character scalar conforming to the IDname rules.

value An arbitrary character string containing the new value. Only the first element is
used.

Details

Netica contains a mechanism for associating user data with nodes. In the Netica documentation,
they note that only strings are really supported as only strings are portable across implementa-
tions. This meachnism can be used to store arbitrary values, but the user is responsible for encod-
ing/decoding them as strings.

126 NodeVisPos

Value

A character string with the value stored in the field fieldname, or NA if no such field exists.

The function NodeAllUserFields returns a character vector containing all user data stored with
the node. The names of the result are the names of the fields.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html GetNodeUserField_bn(), SetNodeUserField_bn(),
GetNodeNthUserField_bn()

See Also

NeticaBN, NodeDescription()

Examples

usedNet <- CreateNetwork("UsedNet")

userNode <- NewContinuousNode(usedNet, "UserNode")
NodeUserField(userNode,"Author") <- "Russell Almond"
NodeUserField(userNode,"Status") <- "In Progress"

stopifnot(NodeUserField(userNode,"Author")=="Russell Almond")
stopifnot(NodeUserField(userNode,"Status")=="In Progress")

fields <- NodeAllUserFields(userNode)
stopifnot(length(fields)==2)
stopifnot(all(!is.na(match(c("Russell Almond","In Progress"),fields))))
stopifnot(all(!is.na(match(c("Author","Status"),names(fields)))))

stopifnot(is.na(NodeUserField(userNode,"gender")))

DeleteNetwork(usedNet)

NodeVisPos Gets, sets the visual position of the node on the Netica display.

Description

When displayed in the GUI, Netica nodes have a position. The NodeVisPos() attribute controls
where the node will be displayed.

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNodeUserField_bn.html
http://norsys.com/onLineAPIManual/functions/SetNodeUserField_bn.html
http://norsys.com/onLineAPIManual/functions/GetNodeNthUserField_bn.html

NodeVisPos 127

Usage

NodeVisPos(node)
NodeVisPos(node) <- value

Arguments

node A NeticaNode object whose position is to be determined.

value A numeric vector of length 2 giving the x and y coordinates.

Details

The visual position of the node doesn’t make much different in RNetica, as R does not display the
node. However, it will control the appearence when the node is loaded into the Netica GUI.

Value

A numeric vector of length 2 with names "x" and "y".

Note

The minimum possible node position appears to be (0,0) and the maximum is never stated. Netica
appears to round positions to the nearest integer. Also, if the position appears too close to the
boarder (Netica positions the center of the node), Netica will move it away from the edge.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNodeVisPosition_bn(), SetNodeVisPo-
sition_bn(),

See Also

NeticaNode, NodeVisPos()

Examples

pnet <- CreateNetwork("PositionNet")

pnode <- NewDiscreteNode(pnet,"PlaceMe")

NodeVisPos(pnode) <- c(100,300)
pos <- NodeVisPos(pnode)
stopifnot(

pos["x"] ==100,
pos["y"] ==300

)

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNodeVisPosition_bn.html
http://norsys.com/onLineAPIManual/functions/SetNodeVisPosition_bn.html
http://norsys.com/onLineAPIManual/functions/SetNodeVisPosition_bn.html

128 NodeVisStyle

Netica rounds nonitenger positions.
NodeVisPos(pnode) <- c(74.3,88.8)
pos <- NodeVisPos(pnode)
stopifnot(

pos["x"] ==74,
pos["y"] ==88

)

Warning, setting a node too close to the edge can cause Netica to
reposition the node
NodeVisPos(pnode) <- c(1,1)
pos <- NodeVisPos(pnode)
stopifnot(

pos["x"] >1,
pos["y"] >1

)

DeleteNetwork(pnet)

NodeVisStyle Gets/sets the nodes visual appearence in Netica.

Description

Netica internally has a number of styles it can use to draw a node, thes including, "Default", "Ab-
sent", "Shape", "LabeledBox", "BeliefBars", "BeliefLine", and "Meter". The function NodeVisStyle()
returns how the node will be displayed, or sets how it will be displayed.

Usage

NodeVisStyle(node)
NodeVisStyle(node) <- value

Arguments

node A NeticaNode object whose style is to be determined.

value A character string giving the new style. Must be one of "Default", "Absent",
"Shape", "LabeledBox", "BeliefBars", "BeliefLine", or "Meter".

Details

The visual style of the node doesn’t make much different in RNetica, as R does not display the
node. However, it will control the appearence when the node is loaded into the Netica GUI.

normalize 129

Value

A character string which is one of the values "Default", "Absent", "Shape", "LabeledBox", "Belief-
Bars", "BeliefLine", or "Meter", or NA if an error occured.

The setter method returns the modified node object.

Note

The Netica documentation indicates that in the future additionl parameters can be added to the style,
for example: "LabeledBox,CornerRoundingRadius=3,LineThickness=2"

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: GetNodeVisStyle_bn(), SetNodeVisStyle_bn(),

See Also

NeticaNode, NodeVisPos()

Examples

snet <- CreateNetwork("StylishNet")

snode <- NewDiscreteNode(snet,"StyleMe")
stopifnot(NodeVisStyle(snode)=="Default")

NodeVisStyle(snode) <- "Meter"
stopifnot(NodeVisStyle(snode)=="Meter")

DeleteNetwork(snet)

normalize Normalizes a conditional probability table.

Description

A conditional probability table (CPT) represents a collection of probability distribution, one for
each configuration of the parent variables. This function normalizes the CPT, insuring that the
probabilities in each conditional distribution sum to 1.

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/GetNodeVisStyle_bn.html
http://norsys.com/onLineAPIManual/functions/SetNodeVisStyle_bn.html

130 normalize

Usage

normalize(cpt)
S3 method for class ’CPF’
normalize(cpt)
S3 method for class ’data.frame’
normalize(cpt)
S3 method for class ’CPA’
normalize(cpt)
S3 method for class ’array’
normalize(cpt)
S3 method for class ’matrix’
normalize(cpt)
Default S3 method:
normalize(cpt)

Arguments

cpt A conditional probability table stored in either array (CPA format) or data frame
(CPF format). A general data vector is treated like an unconditional probability
vector.

Details

The normalize function is a generic function which attempts to normalize a conditional probability
distribution.

A conditional probability table in RNetica is represented in one of two ways. In the conditional
probability array (CPA) the table is represented as a p+ 1 dimensional array. The first p dimensions
correspond to configurations of the parent variables and the last dimension the child value. The
normalize.CPA method adjusts the data value so that the sum across all of the child states is 1.
Thus, apply(result,1:p,sum) should result in a matrix of 1’s. The method normalize.array
first coerces its argument into a CPA and then applies the normalize.CPA method.

The second way to represent a conditional probability table in RNetica is to use a data frame (CPF).
Here the factor variables correspond to a configuration of the parent states, and the numeric columns
correspond to states of the child varaible. Each row corresponds to a particular configuration of
parent variables and the numeric values should sum to one. The normalize.CPF function makes
sure this constraint holds. The method normalize.data.frame first applies as.CPF() to make the
data frame into a CPF.

The method normalize.matrix ensures that the row sums are 1. It does not change the class.

The default method only works for numeric objects. It ensures that the total sum is 1.

NA’s are not allowed and will produce a result that is all NAs.

Value

An object with similar properities to cpt, but adjusted so that probabilities sum to one.

For normalize.CPA and normalize.array an normalized CPA array.

For normalize.CPF and normalize.data.fram an normalized CPF data frame.

normalize 131

For normalize.matrix an matrix whose row sums are 1.

For normalize.default a numeric vector whose values sum to 1.

Note

May be other functions for CPTs later.

Author(s)

Russell Almond

See Also

NodeProbs()

Examples

n14 <- normalize(1:4)
stopifnot (abs(sum(n14)-1.0) <.0001)

normalize(matrix(1:6,2,3))
normalize(array(1:24,c(4,3,2)))
arr <- array(1:24,c(4,3,2),

list(a=c("A1","A2","A3","A4"),
b=c("B1","B2","B3"),
c=c("C1","C2")))

arr <- as.CPA(arr)
narr <- normalize(arr)
stopifnot(

is(narr,"CPA"), is(narr,"array"),
all(abs(apply(narr,1:2,sum)-1) <.0001)

)

arf <- as.CPF(arr)
narf <- normalize(arf)
stopifnot(

is(narf,"CPF"), is(narf,"data.frame"),
all(abs(apply(narf[sapply(narf,is.numeric)],1,sum)-1) <.0001)

)

df2 <- data.frame(parentval=c("a","b"),
prob.true=c(1,1),prob.false=c(1,1))

ndf2 <- normalize(df2)
stopifnot(

is(ndf2,"CPF"), is(ndf2,"data.frame"),
all(abs(apply(ndf2[2:3],1,sum)-1) <.0001)

)

132 ParentStates

ParentStates Returns a list of the names of the states of the parents of a Netica node.

Description

This function returns a list each of whose elements is a character vector giving the states of the par-
ent variables (i.e., the result of calling NodeStates) on each of the elements of NodeParents(node)).
The names of this list are the names assiged to the edges through NodeInputNames(node), or the
names of the parent variables if edge names were not supplied.

Usage

ParentStates(node)
ParentNames(node)

Arguments

node An active NeticaNode object whose parent states are to be determined.

Value

For ParentStates(node), named list where each element correponds to the states of a parent
variable. If node has no parents, it returns a list of length 0.

The function ParentName(node) returns names(ParentNames(node), only is faster.

Note

This is a slightly more sophisticated version of lapply(NodeParents(node), NodeStates). It
does minimal checking so that it can be fast.

Author(s)

Russell Almond

See Also

NodeStates(), NodeParents(), NodeInputNames()

Examples

abc1 <- CreateNetwork("ABC1")
A <- NewDiscreteNode(abc1,"A",c("A1","A2","A3","A4"))
B <- NewDiscreteNode(abc1,"B",c("B1","B2","B3"))
C <- NewDiscreteNode(abc1,"C",c("C1","C2"))

stopifnot(
length(ParentStates(A)) == 0

)

RetractNodeFinding 133

AddLink(A,B)

Bpars <- ParentStates(B)
stopifnot(

length(Bpars) == 1,
names(Bpars) == "A",
Bpars$A==NodeStates(A)

)

AddLink(A,C)
AddLink(B,C)

NodeInputNames(C) <- c("A_type","B_type")

Cpars <- ParentStates(C)
stopifnot(

length(Cpars) == 2,
names(Cpars) == c("A_type","B_type"),
Cpars[[1]]==NodeStates(A),
Cpars$B_type==NodeStates(B)

)

DeleteNetwork(abc1)

RetractNodeFinding Clears any findings for a Netica node or network.

Description

The function RetractNodeFinding(node) clears any findings or virtual findings set with NodeFinding(),
EnterNegativeFinding() or NodeLikelihood() and associated with node. The function RetractNetFindings(net)
clears any findings associated with any node in the network.

Usage

RetractNodeFinding(node)
RetractNetFindings(net)

Arguments

node An active NeticaNode whose findings are to be retracted.

net An active NeticaBN whose findings are to be retracted.

Details

This is an undo function for NodeFinding(), EnterNegativeFinding() or NodeLikelihood().
In particular, it allows for entering hypothesized findings for various calculations.

134 RetractNodeFinding

Value

Returns its argument invisibly.

Note

If SetNetworkAutoUpdate() has been set to TRUE, then this function could take some time as each
finding is individually propagated. Consider wrapping multiple calls setting NodeFinding() in
WithoutAutoUpdate(net, ...).

The Netica functions for setting node findings require the programmer to call RetractNodeFindings_bn()
before setting values to clear out old findings. The RNetica functions do this internally, so the user
does not need to worry about this.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: RetractNetFindings_bn(), RetractNodeFind-
ings_bn()

See Also

NeticaBN, NodeBeliefs(), EnterNegativeFinding(), NodeFinding(), NodeLikelihood()

Examples

irt5 <- ReadNetworks(paste(library(help="RNetica")$path,
"sampleNets","IRT5.dne",
sep=.Platform$file.sep))

irt5.theta <- NetworkFindNode(irt5,"Theta")
irt5.x <- NetworkFindNode(irt5,paste("Item",1:5,sep="_"))

CompileNetwork(irt5) ## Ready to enter findings

stopifnot(NodeFinding(irt5.x[[1]]) == "@NO FINDING")

NodeFinding(irt5.x[[1]]) <- "Right"
stopifnot(NodeFinding(irt5.x[[1]]) == "Right")

RetractNodeFinding(irt5.x[[1]])
stopifnot(NodeFinding(irt5.x[[1]]) == "@NO FINDING")

NodeFinding(irt5.x[[1]]) <- "Wrong"
NodeFinding(irt5.x[[2]]) <- 1
NodeFinding(irt5.x[[3]]) <- 2
stopifnot(

NodeFinding(irt5.x[[1]]) == "Wrong",
NodeFinding(irt5.x[[2]]) == "Right",
NodeFinding(irt5.x[[3]]) == "Wrong",

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/RetractNetFindings_bn.html
http://norsys.com/onLineAPIManual/functions/RetractNodeFindings_bn.html
http://norsys.com/onLineAPIManual/functions/RetractNodeFindings_bn.html

ReverseLink 135

NodeFinding(irt5.x[[4]]) == "@NO FINDING",
NodeFinding(irt5.x[[5]]) == "@NO FINDING"

)

RetractNetFindings(irt5)
stopifnot(

NodeFinding(irt5.x[[1]]) == "@NO FINDING",
NodeFinding(irt5.x[[2]]) == "@NO FINDING",
NodeFinding(irt5.x[[3]]) == "@NO FINDING",
NodeFinding(irt5.x[[4]]) == "@NO FINDING",
NodeFinding(irt5.x[[5]]) == "@NO FINDING"

)

DeleteNetwork(irt5)

ReverseLink Reverses a link in a Netica network.

Description

This reverses the link between parent and child so that it now points from child to parent. If
child has additional parents, they are connected to parent and the conditional probality tables are
adjusted so that the joint probability distribution across all nodes in the network remains the same.

Usage

ReverseLink(parent, child)

Arguments

parent An active NeticaNode which is currently a parent of child and which will be
the child after the transformation.

child An active NeticaNode which is currently a child of parent and which will be
the parent after the transformation.

Details

This is not just a simple reversal of a single edge, but rather the influence diagram operation of
arc reversal. Netica will add additional links to enforce any conditional probability relationship.
For example, Consider a net where A and B are both parents of C, but A is not directly connecte to
C. After reversing the arc between B and C, A will also become a parent of B to maintain the joint
distribution.

Value

Returns NULL if successful and NA if there was a problem.

136 StartNetica

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: ReverseLink_bn()

Shachter, R. D. (1986) "Evaluating Influence Diagrams." Operations Research, 34, 871–82.

See Also

NeticaNode, AddLink(), NodeChildren(), NodeParents(), AbsorbNodes(), is.NodeRelated()

Examples

abcnet <- CreateNetwork("ABC")

A <- NewDiscreteNode(abcnet,"A")
B <- NewDiscreteNode(abcnet,"B")
C <- NewDiscreteNode(abcnet,"C")

AddLink(A,C)
AddLink(B,C)
stopifnot(

is.NodeRelated(A,C,"parent"),
is.NodeRelated(C,B,"child"),
!is.NodeRelated(A,B,"parent")

)

ReverseLink(B,C)
stopifnot(

is.NodeRelated(A,C,"parent"),
is.NodeRelated(C,B,"parent"),
is.NodeRelated(A,B,"parent")

)

DeleteNetwork(abcnet)

StartNetica Starting and stopping the Netica shared library.

Description

This function creates (or destroys) a Netica environment. The StartNetica function also allows
you to set various parameters associated with the Netica environment.

Usage

StartNetica(license = LicenseKey, checking = NULL, maxmem = NULL)
StopNetica()

http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/ReverseLink_bn.html

StartNetica 137

Arguments

license A string containing a license key from Norsys. If this is NULL the limited stu-
dent/demonstration version of Netica is used rather than the full version. If
the variable NeticaLicenceKey is set before RNetica is loaded, then the value
of that variable at the time the package is loaded will become the deafult for
license.

checking A character string containing one of the keywords: "NO_CHECK", "QUICK_CHECK",
"REGULAR_CHECK", "COMPLETE_CHECK", or "QUERY_CHECK", which controls how
rigorous Netica is about checking errors. A value of NULL uses the Netica default
which is "REGULAR_CHECK".

maxmem An integer containing the maximum amount of memory to be used by the Netica
shared library in bytes. If supplied, this should be at least 200,000.

Details

The function StartNetica() calls the Netica functions NewNeticaEnviron_ns() and InitNetica2_bn()
to create and set up a Netica environment.

Netica is commercial software. The RNetica package downloads and installs the demonstration
version of Netica which is limited in its functionality (particularly in the size of the networks it
handles). Unlocking the full version of Netica requires a license key which can be purchased from
Norsys (http://www.Norsys.com/). They will send a license key which unlocks the full capabil-
ities of the shared library. This can be passed as the first argument to StartNetica(). If the value
of the first argument is NULL then the demonstration verison is used instead of the licensed version
(could be useful for testing).

If you set the value of a variable NeticaLicenseKey, then when RNetica is loaded, then its value
at the time the package is loaded is used as the default value for license. If no value for as
NeticaLicenseKey, the default value for license is set to NULL, which loads the demo version of
Netica.

The checking argument, if supplied, is used to call the Netica function ArgumentChecking_ns().
See the documentation of that function for the meaning of the codes. The default value, "REGULAR_CHECK"
is appropriate for most development situations.

The maxmem argument, if supplied, is used to limit the amount of memory used by Netica. This is
passed in a call to the Netica function LimitMemoryUsage_ns(). Netica will complain if this value
is less than 200,000. Leaving this as NULL will not place limits on the size of Netica’s memory for
tables and things.

The function StopNetica() calls the Netica function CloseNetica_bn(). It is mainly used when
one wants to stop Netica and restart it with other parameters.

The function StartNetica is called when the package is attached (in the .onAttach() function.
The function StopNetica() is called by .Last.lib(), Normally, users should not need to call
these functions, but they may wish to do so if they need to restart Netica with different arguments.

Value

These functions are called for side effects and do not return meaningful values.

http://www.Norsys.com/

138 StartNetica

License

The Netica API is not free-as-in-speech software, the use of the Netica shared library makes you
subject to the Netica License agreement (which can be found in the RNetica folder in your R library.
If you do not agree to the terms of that license, please uninstall RNetica.

The Netica API is also not free-as-in-beer software. The demonstration version of the Netica API,
however, is. In order for you to make full use of the RNetica API, you must purchase a Netica API
license from Norsys (http://norsys.com/).

RNetica itself (the glue layers between R and Netica) is free (in both the speech and beer senses)
software. Suggestions for improvements and bug fixes are welcome.

Implementation Notes

I’m looking into a way to burry the license key into RNetica during the installation process. Proba-
bly will happen in a future version. Until then, best bet is to save a value for NeticaLicenseKey in
the workspace.

The Netica environment pointer, which is used by the Netica shared library is defined inside of the
RNetica shared library, and not visible at the R level.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: NewNeticaEnviron_ns(), InitNetica2_bn(),
CloseNetica_bn(), LimitMemoryUsage_ns(), ArgumentChecking_ns()

See Also

NeticaVersion(), CreateNetwork()

Examples

Not run:
Restart licensed version
StopNetica()
StartNetica("License key from Norsys")
Get the version of Netica.
print(NeticaVersion())

Commonly done next step is to create a network.
net1 <- CreateNetwork("myNet")

End(Not run)

http://norsys.com/
http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/NewNeticaEnviron_ns.html
http://norsys.com/onLineAPIManual/functions/InitNetica2_bn.html
http://norsys.com/onLineAPIManual/functions/CloseNetica_bn.html
http://norsys.com/onLineAPIManual/functions/LimitMemoryUsage_ns.html
http://norsys.com/onLineAPIManual/functions/ArgumentChecking_ns.html

WriteNetworks 139

WriteNetworks Reads or writes a Netica network from a file.

Description

This function writes a Netica network to a .neta or .dne file or reads a network written by such a
file. This allows networks created with RNetica to be shared with other Netica users.

Usage

WriteNetworks(nets, paths)
ReadNetworks(paths)
GetNetworkFileName(net)

Arguments

nets A single NeticaBN object or a list of such objects.

net A single NeticaBN object.

paths A character vector of pathnames to .neta files. For ReadNetworks(), the
pathnames must exist. For WriteNetworks(), the length(paths) must equal
length(nets). For WriteNetworks() if paths are missing, then GetNetworkFileName()
will be called to try and determine any path associated with the node.

Details

This method invokes the native Netica open and save functions to read and write networks to .neta
or .dne files. The .neta format is binary and more compact, while the .dne format is ascii and may
be safer in some circumstances (such as when used with a source control system). Netica figures
out which format to use based on the extension of the file, elments of paths should end with .neta
or .dne.

The function GetNetworkFileName() returns the name of the last file this network was saved to or
read from. It cannot be set other than through the WriteNetworks() or ReadNetworks() functions.

To facilitate saving and restoring files across R sessions, both ReadNetworks() and WriteNetworks()
attach a "Filename" attribute to the object, which records the file just read or written. GetNetworkFileName(net)
will not work after quitting and restarting Netica, but attr(net,"Filename") should contain the
same pathname. If ReadNetworks() is passed a NeticaBN object (or a list of such objects), it will at-
tempt to read from the file referenced by the "Filename" attribute. Thus, calling net <- WriteNetworks(net,path)
right before shutting down R and net <- ReadNetworks(net) right after the call to library(RNetica),
should restore the network.

Value

Both ReadNetworks() and WriteNetworks() return a list of NeticaBN objects corresponding to
the new networks. In the case of a problem with one of the networks, the corresponding entry will
be set to NULL. If the return list has length 1, a single NeticaBN object will be returned instead of a
list.

140 WriteNetworks

A "Filename" attribute is added to the NeticaBN object that is returned. This can be used to restore
NeticaBN objects after an R session is restarted.

Note

The demonstration version of Netica is limited to the size of the networks it will write (the limit is
somewhere around 10 nodes). If you are running across errors saving large networks, you need to
purchase a Netica API license from Norsys (http://norsys.com/).

ReadNetworks() and WriteNetworks() are vectorized, and can take either scalars or vectors as
arguments (thus, a whole collection of networks can be read or written at once). When the argument
is a scalar, a scalar is returned. This is probably the 80% case, but may produce unexpected behavior
in certain coding circumstances.

Author(s)

Russell Almond

References

http://norsys.com/onLineAPIManual/index.html: WriteNet_bn(), ReadNet_bn()

See Also

NeticaBN, CreateNetwork(), NetworkFindNode() (for recreating links to nodes after restoring a
net)

Examples

peanut <- CreateNetwork("peanut")
NetworkTitle(peanut) <- "The Peanut Network"
peanutFile <- tempfile("peanut",fileext=".dne")
WriteNetworks(peanut,peanutFile)
stopifnot(GetNetworkFileName(peanut)==peanutFile)

pecan <- CreateNetwork("pecan")
NetworkTitle(pecan) <- "The Pecan Network"
pecanFile <- tempfile("pecan",fileext=".dne")
almond <- CreateNetwork("almond")
NetworkTitle(almond) <- "The Almond Network"
almondFile <- tempfile("almond",fileext=".neta")
WriteNetworks(list(pecan,almond),c(pecanFile,almondFile))

DeleteNetwork(peanut)
DeleteNetwork(pecan)
DeleteNetwork(almond)
stopifnot(!is.active(almond))

peanut <- ReadNetworks(peanutFile)
stopifnot(is.active(peanut))
stopifnot(NetworkTitle(peanut)=="The Peanut Network")

http://norsys.com/
http://norsys.com/onLineAPIManual/index.html
http://norsys.com/onLineAPIManual/functions/WriteNet_bn.html
http://norsys.com/onLineAPIManual/functions/ReadNet_bn.html

WriteNetworks 141

nets <- ReadNetworks(c(pecanFile,almondFile))
stopifnot(length(nets)==2)
stopifnot(all(sapply(nets,is.active)))
stopifnot(NetworkTitle(nets[[1]])=="The Pecan Network")
almond <- GetNamedNetworks("almond")
stopifnot(is.NeticaBN(almond),is.active(almond))

DeleteNetwork(peanut)
DeleteNetwork(nets[[1]])
DeleteNetwork(almond)

Not run:
Safe way to preserve node and network objects across R sessions.
tnet <- WriteNetworks(tnet,"Tnet.neta")
q(save="yes")
R
library(RNetica)
tnet <- ReadNetworks(tnet)
nodes <- NetworkFindNodes(tnet,as.character(nodes))

End(Not run)

Index

∗Topic IO
WriteNetworks, 139

∗Topic array
CPA, 23
CPF, 25
Extract.NeticaNode, 35
normalize, 129

∗Topic attributes
NetworkNodeSetColor, 81
NetworkNodeSets, 83
NodeSets, 118

∗Topic attribute
GetNetworkAutoUpdate, 52
NetworkName, 79
NetworkNodesInSet, 85
NetworkSetPriority, 86
NetworkTitle, 88
NetworkUserField, 91
NodeInputNames, 101
NodeKind, 103
NodeLevels, 105
NodeName, 110
NodeStateTitles, 122
NodeTitle, 124
NodeUserField, 125
NodeVisPos, 126
NodeVisStyle, 128

∗Topic classes
CPA, 23
CPF, 25
NeticaBN, 71
NeticaNode, 73

∗Topic environment
NeticaVersion, 75
StartNetica, 136

∗Topic graphs
AbsorbNodes, 11
AddLink, 12
is.NodeRelated, 60

NeticaBN, 71
NeticaNode, 73
NetworkFindNode, 76
NewDiscreteNode, 92
NodeChildren, 97
NodeNet, 112
NodeParents, 113
NodeStates, 120
ReverseLink, 135

∗Topic interfaces
StartNetica, 136

∗Topic interface
AbsorbNodes, 11
AddLink, 12
AdjoinNetwork, 14
CompileNetwork, 17
CopyNetworks, 19
CopyNodes, 20
CreateNetwork, 27
DeleteNodeTable, 29
EliminationOrder, 30
EnterFindings, 32
EnterNegativeFinding, 33
Extract.NeticaNode, 35
FindingsProbability, 49
GetNamedNetworks, 50
GetNetworkAutoUpdate, 52
GetNthNetwork, 53
HasNodeTable, 55
IDname, 56
is.active, 57
is.discrete, 58
is.NodeRelated, 60
IsNodeDeterministic, 62
JointProbability, 64
JunctionTreeReport, 65
MakeCliqueNode, 66
MostProbableConfig, 69
NeticaBN, 71

142

INDEX 143

NeticaNode, 73
NeticaVersion, 75
NetworkFindNode, 76
NetworkFootprint, 78
NetworkName, 79
NetworkNodeSetColor, 81
NetworkNodeSets, 83
NetworkNodesInSet, 85
NetworkSetPriority, 86
NetworkTitle, 88
NetworkUndo, 89
NetworkUserField, 91
NewDiscreteNode, 92
NodeBeliefs, 94
NodeChildren, 97
NodeFinding, 98
NodeInputNames, 101
NodeKind, 103
NodeLevels, 105
NodeLikelihood, 107
NodeName, 110
NodeNet, 112
NodeParents, 113
NodeProbs, 116
NodeSets, 118
NodeStates, 120
NodeStateTitles, 122
NodeTitle, 124
NodeUserField, 125
NodeVisPos, 126
NodeVisStyle, 128
ParentStates, 132
RetractNodeFinding, 133
ReverseLink, 135
RNetica-package, 3
WriteNetworks, 139

∗Topic logic
HasNodeTable, 55
is.discrete, 58
is.NodeRelated, 60
IsNodeDeterministic, 62

∗Topic manidp
AdjoinNetwork, 14

∗Topic manip
AbsorbNodes, 11
AddLink, 12
CopyNodes, 20
DeleteNodeTable, 29

EnterFindings, 32
EnterNegativeFinding, 33
FindingsProbability, 49
JointProbability, 64
MostProbableConfig, 69
NetworkFootprint, 78
NodeBeliefs, 94
NodeFinding, 98
NodeLikelihood, 107
normalize, 129
RetractNodeFinding, 133

∗Topic misc
JunctionTreeReport, 65
MakeCliqueNode, 66

∗Topic model
CompileNetwork, 17
NodeProbs, 116

∗Topic package
RNetica-package, 3

∗Topic programming
GetNetworkAutoUpdate, 52

∗Topic utilities
CopyNetworks, 19
CreateNetwork, 27
GetNamedNetworks, 50
GetNetworkAutoUpdate, 52
GetNthNetwork, 53
IDname, 56
NetworkFindNode, 76
NetworkUndo, 89

∗Topic utility
EliminationOrder, 30
is.active, 57
ParentStates, 132

[.NeticaNode, 8
[.NeticaNode (Extract.NeticaNode), 35
[<-.NeticaNode (Extract.NeticaNode), 35
[[.NeticaNode (Extract.NeticaNode), 35

AbsorbNodes, 8, 11, 15, 21, 69, 136
AddLink, 7, 12, 12, 61, 65, 68, 97, 102, 113,

115, 136
AdjoinNetwork, 14, 78, 79
array, 24
as.CPA (CPA), 23
as.CPF, 24
as.CPF (CPF), 25

col2rgb, 81, 82

144 INDEX

colors, 81
CompileNetwork, 8, 17, 30, 31, 65–67, 95
CopyNetworks, 15, 19, 21, 28
CopyNodes, 15, 20, 78, 79
CPA, 23, 26, 36, 40, 117, 130
CPF, 24, 25, 36, 38, 40, 117, 130
CreateNetwork, 6, 7, 27, 51, 54, 57, 72, 80,

90, 93, 138, 140
cut, 105

data.frame, 23, 25, 26
DeleteLink (AddLink), 12
DeleteNetwork, 20, 57, 58, 72
DeleteNetwork (CreateNetwork), 27
DeleteNodes, 21, 57, 58, 74
DeleteNodes (NewDiscreteNode), 92
DeleteNodeTable, 29, 55
dimnames, 120

EliminationOrder, 18, 30, 66
EliminationOrder<- (EliminationOrder),

30
EnterFindings, 32, 33, 99
EnterNegativeFinding, 33, 33, 50, 70, 98,

99, 108, 109, 133, 134
EVERY_STATE (Extract.NeticaNode), 35
expand.grid, 26, 37, 38
Extract.NeticaNode, 24, 26, 35

FindingsProbability, 8, 18, 33, 49, 70, 96,
99, 108, 109

GetClique (MakeCliqueNode), 66
GetNamedNetworks, 50, 54, 72, 80
GetNetworkAutoUpdate, 52
GetNetworkFileName, 72
GetNetworkFileName (WriteNetworks), 139
GetNthNetwork, 51, 53
GetRelatedNodes, 97
GetRelatedNodes (is.NodeRelated), 60

HasNodeTable, 18, 29, 55

IDname, 7, 28, 56, 76, 79, 80, 88, 89, 91, 92,
101, 110, 120, 122, 124, 125

is.active, 7, 28, 57, 71–74, 93, 106, 112, 121
is.CliqueNode (MakeCliqueNode), 66
is.continuous, 39
is.continuous (is.discrete), 58
is.CPA (CPA), 23

is.CPF (CPF), 25
is.discrete, 58, 73, 74, 93, 104–106, 117,

121
is.IDname, 118, 119
is.IDname (IDname), 56
is.NeticaBN (NeticaBN), 71
is.NeticaNode (NeticaNode), 73
is.NetworkCompiled (CompileNetwork), 17
is.NodeRelated, 11–14, 60, 114, 115, 136
IsBeliefUpdated (NodeBeliefs), 94
IsNodeDeterministic, 62

JointProbability, 8, 15, 18, 33, 64, 67–70,
96, 99, 109

JunctionTreeReport, 8, 18, 30, 31, 65, 65,
67, 68

LicenseKey (StartNetica), 136

MakeCliqueNode, 64, 65, 66, 78, 79
MostProbableConfig, 8, 18, 33, 65, 69, 96,

99, 108, 109

NeticaBN, 6, 9, 14, 17–21, 27, 28, 30–34, 50,
52, 53, 57, 58, 65, 66, 69, 70, 71, 73,
74, 76, 78, 80, 81, 83, 85, 87–92, 96,
99, 109, 112, 125, 126, 133, 134,
139, 140

NeticaNode, 9, 11–15, 20, 21, 29, 33, 35, 40,
50, 55, 57–61, 63–65, 67, 68, 73, 76,
79, 82, 84, 87, 92, 93, 95, 97, 98,
101–106, 108, 110–113, 115–124,
127–129, 132, 133, 135, 136

NeticaVersion, 75, 138
NetworkAllNodes, 6, 7, 31, 69, 72, 112
NetworkAllNodes (NetworkFindNode), 76
NetworkAllUserFields

(NetworkUserField), 91
NetworkComment, 92
NetworkComment (NetworkTitle), 88
NetworkComment<- (NetworkTitle), 88
NetworkCompiledSize, 18
NetworkCompiledSize

(JunctionTreeReport), 65
NetworkFindNode, 6, 7, 74, 76, 111, 112, 140
NetworkFootprint, 15, 78
NetworkName, 72, 79, 89
NetworkName<- (NetworkName), 79
NetworkNodeSetColor, 9, 81, 83–85, 87, 118,

119

INDEX 145

NetworkNodeSets, 82, 83, 87, 119
NetworkNodesInSet, 6, 7, 9, 82, 84, 85, 85,

87, 119
NetworkRedo (NetworkUndo), 89
NetworkSetPriority, 81, 82, 84, 85, 86, 119
NetworkTitle, 80, 88
NetworkTitle<- (NetworkTitle), 88
NetworkUndo, 89
NetworkUserField, 91
NetworkUserField<- (NetworkUserField),

91
NewContinuousNode, 6, 7, 59, 74
NewContinuousNode (NewDiscreteNode), 92
NewDiscreteNode, 6, 7, 57, 59, 74, 92, 106,

111, 120, 121
NodeAllUserFields (NodeUserField), 125
NodeBeliefs, 8, 18, 33, 34, 50, 53, 65, 69, 70,

94, 99, 109, 134
NodeChildren, 12–14, 61, 97, 115, 136
NodeDescription, 126
NodeDescription (NodeTitle), 124
NodeDescription<- (NodeTitle), 124
NodeFinding, 8, 18, 32–34, 39, 49, 53, 70, 96,

98, 108, 109, 133, 134
NodeFinding<- (NodeFinding), 98
NodeInputNames, 15, 24, 29, 37, 38, 40, 55,

57, 63, 78, 79, 101, 114–117, 132
NodeInputNames<- (NodeInputNames), 101
NodeKind, 15, 103, 114, 115, 119
NodeKind<- (NodeKind), 103
NodeLevels, 59, 73, 74, 93, 105, 120, 121, 123
NodeLevels<- (NodeLevels), 105
NodeLikelihood, 8, 33, 34, 49, 50, 68, 69, 98,

99, 107, 133, 134
NodeLikelihood<- (NodeLikelihood), 107
NodeName, 57, 74, 76, 93, 106, 110, 116, 121,

124
NodeName<- (NodeName), 110
NodeNet, 77, 93, 112
NodeNumStates, 33, 36, 95, 98, 105, 108, 116,

122
NodeNumStates (NodeStates), 120
NodeParents, 7, 12–15, 21, 24, 29, 37, 40, 55,

61, 63, 78, 79, 97, 101, 102, 104,
113, 116, 117, 132, 136

NodeParents<- (NodeParents), 113
NodeProbs, 8, 13, 21, 24, 26, 36, 55, 96, 114,

116, 131

NodeProbs<- (NodeProbs), 116
NodeSets, 9, 14, 15, 21, 82–85, 87, 118
NodeSets<- (NodeSets), 118
NodeStateComments, 106, 121
NodeStateComments (NodeStateTitles), 122
NodeStateComments<- (NodeStateTitles),

122
NodeStates, 24, 33, 40, 57, 59, 63, 64, 73, 74,

93, 98, 106, 117, 120, 120, 123, 132
NodeStates<- (NodeStates), 120
NodeStateTitles, 106, 120, 121, 122
NodeStateTitles<- (NodeStateTitles), 122
NodeTitle, 110, 111, 124
NodeTitle<- (NodeTitle), 124
NodeUserField, 125
NodeUserField<- (NodeUserField), 125
NodeVisPos, 126, 127, 129
NodeVisPos<- (NodeVisPos), 126
NodeVisStyle, 128
NodeVisStyle<- (NodeVisStyle), 128
normalize, 24, 26, 117, 129

Ops.NeticaBN (NeticaBN), 71
Ops.NeticaNode (NeticaNode), 73

palette, 81
ParentNames, 38
ParentNames (ParentStates), 132
ParentStates, 37, 38, 40, 132
print, 71, 73
print.NeticaBN (NeticaBN), 71
print.NeticaNode (NeticaNode), 73

ReadNetworks, 6, 72, 74
ReadNetworks (WriteNetworks), 139
ReportErrors, 18
RetractNetFindings

(RetractNodeFinding), 133
RetractNodeFinding, 33, 34, 50, 70, 99, 108,

109, 133
ReverseLink, 12, 135
rgb, 81, 82
RNetica (RNetica-package), 3
RNetica-package, 3

SetNetworkAutoUpdate, 8, 34, 95, 99, 108,
134

SetNetworkAutoUpdate
(GetNetworkAutoUpdate), 52

146 INDEX

StartNetica, 3, 6, 75, 76, 136
StopNetica, 7, 58
StopNetica (StartNetica), 136

toString, 71, 73
toString.NeticaBN (NeticaBN), 71
toString.NeticaNode (NeticaNode), 73

UncompileNetwork, 8
UncompileNetwork (CompileNetwork), 17

WithoutAutoUpdate, 8, 32
WithoutAutoUpdate

(GetNetworkAutoUpdate), 52
WriteNetworks, 7, 8, 72, 74, 139

	RNetica-package
	AbsorbNodes
	AddLink
	AdjoinNetwork
	CompileNetwork
	CopyNetworks
	CopyNodes
	CPA
	CPF
	CreateNetwork
	DeleteNodeTable
	EliminationOrder
	EnterFindings
	EnterNegativeFinding
	Extract.NeticaNode
	FindingsProbability
	GetNamedNetworks
	GetNetworkAutoUpdate
	GetNthNetwork
	HasNodeTable
	IDname
	is.active
	is.discrete
	is.NodeRelated
	IsNodeDeterministic
	JointProbability
	JunctionTreeReport
	MakeCliqueNode
	MostProbableConfig
	NeticaBN
	NeticaNode
	NeticaVersion
	NetworkFindNode
	NetworkFootprint
	NetworkName
	NetworkNodeSetColor
	NetworkNodeSets
	NetworkNodesInSet
	NetworkSetPriority
	NetworkTitle
	NetworkUndo
	NetworkUserField
	NewDiscreteNode
	NodeBeliefs
	NodeChildren
	NodeFinding
	NodeInputNames
	NodeKind
	NodeLevels
	NodeLikelihood
	NodeName
	NodeNet
	NodeParents
	NodeProbs
	NodeSets
	NodeStates
	NodeStateTitles
	NodeTitle
	NodeUserField
	NodeVisPos
	NodeVisStyle
	normalize
	ParentStates
	RetractNodeFinding
	ReverseLink
	StartNetica
	WriteNetworks
	Index

