
Tabular views of Bayesian Networks

Russell G. Almond∗

Florida State University
mailto:ralmond@fsu.edu

Abstract

At the Bayesian modelling application work-
shop ten years ago, Almond suggested repre-
senting Bayesian networks with two matrixes.
As the matrixes could be edited with stan-
dard office software, this proved to be useful
in communicating between network designers
and subject matter experts. The current pa-
per describes an extension of that idea, now
describing the network using four tables, as
well as development of an open source soft-
ware package which implements the round
trip between between the tabular and graph-
ical views of the network. These open source
tools are currently being used to support the
scoring engine development for the educa-
tional game Physics Playground.
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1 Knowledge Engineering for
Bayesian Networks

Applications of Bayesian networks require a team of
people. For example the Biomass project (see Almond,
Mislevy, Steinberg, Williamson, & Yan, 2006) required
experts in Biology, Biology Pedagogy, Item Writing,
Cognitive Science, Psychometrics, Bayesian Networks,
Graphic Design and Computer Application Develop-
ment. Sometimes one person can take more than one
role, but even so, they seldom have enough time to do
all of the work.

The graphical visualisation of the Bayesian network
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provides a nice central focus for the project. In ed-
ucational applications, building the structure of the
Bayesian network forces the design team to wrestle
with the critical issue of what is being measured. It
then provides focus for the item writers who then con-
struct tasks which will provide evidence about the tar-
geted competencies.

However, when building the conditional probability ta-
bles which make up the Bayesian network, the graph-
ical representation is not as helpful. It does answer
the question of which variables need to be considered
in defining a conditional probability distribution for a
child variable, but not how their influence should be
combined. The conditional probability table itself is a
bit too technical for most experts to grapple with.

Ten years ago, Almond (2007) (see also Almond, 2010)
proposed a different representation using two matrixes:
Q—which expresses the relationship between the core
competency variables and the observable outcomes
from tasks,— and Ω—which expresses the relation-
ships among the core competency variables. In par-
ticular, the augmented Q-matrix was based on the
spreadsheet used by the members of the ACED design
team (Shute, Hansen, & Almond, 2008) to manage the
work for the project. The Physics Playground project
(Kim, Almond, & Shute, 2016; Almond, Kim, Shute,
& Ventura, 2013) extended the ideas, and began to
build a library of software in R (R Core Team, 2017;
Almond, 2017b) to build conditional probability tables
from the tabular representations.

This paper describes the effort to extend these tools
to a system that will translate back and forth be-
tween tabular and normal network representations of
Bayesian networks. The domain experts can edit the
tabular representations with the spreadsheet program
in their desktop office suite, and the modelling team
can quickly pull the results into the Bayes net software
to visualise and explore the implications of the experts’
numbers. The software will be released as part of the
Peanut (a corruption of Pnet, or parameterized net-



work) package.

2 Background

Peanut is being built to support the modelling efforts
in the revision of the educational game Physics Play-
ground (Shute & Ventura, 2013). In this game stu-
dents manipulate objects in a two dimensional world
with the goal of getting a ball to a goal (balloon). They
must use their knowledge of physics to manipulate the
trajectory of the ball, and each game level is designed
to emphasise some part of Newtonian mechanics, at a
middle school level. The goal is to be able to make
inferences about a student’s physics ability from ob-
servations made during game play. This can be used
to guide the choice of learning supports to encourage
student learning.

2.1 Hub and spoke model organisation

Almond and Mislevy (1999) suggested splitting the the
model into a central student model describing the in-
ferred state of knowledge about a student’s competen-
cies, and a collection of evidence models which describe
the relationships between the competency variables
and performance on a single task. The hub (compe-
tency model) is always a complete Bayesian network,
and the spoke (evidence model) is a fragment refer-
encing variables in the hub model. Call the variable
references in the spoke model stub variables. A spoke
model only needs some information about the number
and names of the states of the spoke variables. The
probability distribution for the stub variable is given
in the hub model.

Typically, the observable outcome variables are in the
spoke variables and the targets of interest are in the
hub. To propagate evidence from the spoke to the hub,
select the appropriate spoke for the task is selected
and adjoin it to the hub. Adjoining consists of replac-
ing the stub variables with the corresponding original
variables in the hub. In the resulting motif —hub and
spoke combination—the evidence can be propagated
as usual. One the evidence is recorded, the spoke can
be detached and discarded.

2.2 Matrix representations of graphical
structure

A directed graph can be represented by an adjacency
matrix, A; where ai,j = 1 if and only if there is a
directed edge from Node i to Node j. Undirected
graphs can be represented with symmetric matrixes.
Whittaker (1990) notes that if the analyst takes an in-
verse covariance matrix among the variables and drives
the low values to zero and the high values to one, the

result will be an description of an undirected graph-
ical models which has approximately the same con-
ditional independence constraints as the joint distri-
bution. Almond (2007) notes that this can easily be
turned into a directed graphical model by picking an
orientation for the edges.

This paper calls the adjacency matrix for the variables
in the hub model Ω. Almond (2007) notes that if the
hub variables are all latent, frequently the informa-
tion about the relationship between the latent vari-
ables come from factor analyses which naturally esti-
mate the covariance matrix Σ = Ω−1.

While the Ω-matrix is useful for describing the graph-
ical structure of the hub, the spokes usually take a
different form. In educational testing, a very common
case is that there is one observable outcome variable
(often whether the student got the item right or wrong,
or possibly a partial credit scale for the item). In that
case, all of the parent variables for the observables are
all stub variables, or references to variables in the hub.

These relationships are represented with a matrix Q.
The rows of this matrix represent observables (spoke
variables) and the columns represent competencies
(hub variables). A value of qj,k means that Compe-
tency k is relevant for producing Observation j, with a
zero indicating statistical independence (given the set
of relevant proficiencies). This representation is com-
mon to not only Bayesian networks but also a number
of other cognitively diagnostic models (Rupp, Tem-
plin, & Hensen, 2010).

As a means of representing the hub model, the Ω-
matrix offers little advantage over a graphical visu-
alisation. Its only real advantage comes later, when
adding parameters (Section 3.3) or if the original
source of information is from a factor analysis or other
study which produces a correlation matrix.

The Q-matrix, in contrast, provides a compact view
of what is happening across a large collection of spoke
models. The original version of Physics Playground
had 77 game levels, and approximately 75 new levels
are under development for the new version. Summing
the columns of the Q-matrix (even under the crude
assumption of only one observable per level) provides
a quick estimate of how much evidence is available for
each of the competencies. In Physics Playground this
can be used to target development activity towards de-
signing game levels for which less evidence is available.

2.3 Parameterized conditional probability
tables

There are a number of difficulties with directly assess-
ing the conditional probability tables (CPTs) from ex-



perts: the number of values in the table grows expo-
nentially with the number of parents, the representa-
tion is unfamiliar to many experts, it can be difficult
to encode knowledge about how influences combine to
create the CPT. In many situations the variables are
ordered categorical variables, and CPTs which encode
monotonicity (as skill increases so does the probability
of getting the item right) are required.

Lou DiBello (Almond et al., 2001) suggested mapping
each state of each parent variable onto a standard
normal scale. Then the probability of the child vari-
able can be expressed through a logistic regression-like
model. Consider a binary node Xj which has parents
X1, . . . , XK . Let θk be a real value corresponding to
the state of Xk. Then

P(Xj = TRUE|X1, . . . , XK) =

logit−1

(
1√
K

∑
k

= 1Kαjkθk − βj

)
. (1)

The parameters αjk, following the language of item
response theory (IRT; Hambleton, Swaminathan, &
Rogers, 1991), are called discriminations and they can
be thought of as slopes in a regression or loadings in a
factor analysis. The negative intercept parameter βj
is called a difficulty. It corresponds to a point on the
standard normal scale where a person would have a
50-50 shot of getting the item correct.

Although a function is needed to summarise across the
parents in Equation 1, the choice of the sum (or aver-
age) is somewhat arbitrary. DiBello proposed a variety
of combination rules to summarise across the parents:

Compensatory (Equation 1). In a compensatory
CPT having more of one parent skill compensates
for the lack of another. For example, suppose a
physics problem could be solved by applying ei-
ther Newton’s laws or the principle of conserva-
tion of energy. People who know both would be
better off than people who know only one because
they could use one method to solve the problem
and another to verify the solution.

Conjunctive For a conjunctive rule the sum is re-
placed with a minimum and the variance stabili-
sation constant 1/

√
K is no longer needed. Thus

the parent with the smallest value tends to dom-
inate the relationship. This combination rule is
useful for modelling situations in which multiple
skills are all needed to solve a task. For example,
a task which requires a person to read a passage
and write a summary requires both the reading
and writing skills and that person’s performance
will be limited by the weaker skill.

Disjunctive Similar to the conjunctive rule, only us-
ing a maximum instead of the minimum, so the
strongest skill predominates. This combination
rule is useful for modelling situations in which the
skill represent alternative solution paths. For ex-
ample, if a student is presented the same informa-
tion in both a reading passage and a audio lecture,
then the student should perform at a level dom-
inated by the stronger of that student’s reading
and listening skill.

In a compensatory model, the relative size of the dis-
crimination parameters indicates the importance of
the skill in solving a problem. n principle, this idea ex-
tends to the other two rules, but the resulting models
do not have as natural an interpretation. Consider the
disjunctive reading/listening task. If the written pas-
sage is clear and well written, but the audio stimulus is
spoken by somebody with a strong accent who speaks
quickly, the listening path would have a much higher
demand than the reading path. The offset conjunctive
and offset disjunctive combination rules offer a differ-
ent parameterization, with a single discrimination and
one difficulty per parent. The offset conjunctive rule
is

P(Xj = TRUE|X1, . . . , XK) =

logit−1

(
αj min

k
(θk − βjk)

)
; (2)

the offset disjunctive rule replaces the minimum with
a maximum.

Note that the choice of the inverse logistic link function
in both Equations 1 and 2 is also arbitrary. In fact,
it only works for binary child variables. For ordered
categorical variables, Almond et al. (2001) suggested
using graded response model. Almond et al. (2006)
also describes a normal link function, which uses an
extra residual variance, or link scale parameter.

Almond (2007) noted that all of the information
needed to build one of these DiBello models for an
observable variable could be noted in a single line of
a table. This starts with the row of the Q-matrix
which describes the parents of the variable. In ad-
dition, columns are needed for the combination rule
and link function, and if necessary the link scale pa-
rameter. A collection of columns are needed for the
discrimination parameters and an additional column
is needed for the intercept.

2.4 Multi-step response processes

The graded response link function works by modelling
separate curves for each state: P(Xj ≥ s|θ1, . . . , θk),



then taking the difference between the curves. In or-
der to ensure that the curves do not cross, and the
differences always result in positive probabilities, the
difficulty for each curve must be in increasing order
and the discrimination parameters must be the same.
This may or may not fit a particular situation.

This proved to be a problem in the first version of
Physics Playground (Almond et al., 2013). In that ver-
sion, players who solved the level earned a gold trophy
for an efficient solution and a silver trophy for an inef-
ficient solution (lots of attempts which did not work).
The primary outcome was a variable indicating the
trophy a player received in the level, and the values it
could take on were: none, silver and gold. Some levels
could be solved without much physics skill by simply
attempting many things. In those levels, the difference
between silver and gold provided much more evidence
than the difference between silver and none. In other
levels, unless the player had a pretty good idea of the
physics involved, they did not even know how to ap-
proach a solution. In those levels, there was much
more evidence in the jump between no trophy and
sliver than there was between silver and gold. The
requirement that the discrimination parameter must
be the same for both of those transitions was overly
restrictive.

To overcome this restriction, (Almond et al., 2013)
proposed an alternative link function based on the gen-
eralised partial credit model. This model assumes that
the student starts in the lowest state of the child vari-
able and then makes a series of transitions to higher
states. In particular, it is useful for modelling multi-
step transitions; for example, it models the transition
from no trophy to any trophy and any trophy to gold
trophy. Thus the new curves are P(Xj ≥ s + 1|Xj ≥
s, θ1, . . . , θk). With this choice of link function, the
step transitions are no longer required to have the
same discriminations, nor even required to have the
same combination function or parent variables.

In this setup there is an inner and outer Q-matrix for
the observable. The row in the outer Q-matrix corre-
sponding to the observable indicates all of the parent
variables that are used in any transition step, thus pro-
vides the topology of the graph. The inner Q-matrix
has rows corresponding to states and indicates which of
the parent variables are relevant for which state tran-
sitions. As the set of parameters is now different for
each state transition, the augmented Q-matrix now
must work at the level of the rows of this inner Q-
matrix. So now there is one row in the table for every
variable–state pair (except for the lowest state which
does not need one).

With the addition of the partial credit link function,

there are now three different link functions supported
in the current Peanut implementation. All three have
different requirements for supporting parameters.

Graded Response This approach models the
thresholds for each state (aside from the first),
and requires one discrimination parameter per
parent as well as one difficulty parameter per
state (except for the lowest).

Normal Link This approach assumes that the vari-
ables are discretized normal variables. It requires
one discrimination parameter per parent, a sin-
gle difficulty/intercept parameter, and a residual
variance/link scale parameter.

Partial Credit This approach models the transitions
between states. It potentially uses a different
set of discrimination and difficulty parameters for
each level (except the lowest), as well potentially
a different combination rule for each state.

In particular, for the first two link functions, only a
single row in a table can contain all of the parameters.
For the partial credit link function, to fully express
the model a different row is is needed for each state
(except the lowest) of each variable.

3 The Four Tables

The first version of Physics Playground used an
augmented Q-matrix to describe the model along
with some custom code written in RNetica (Almond,
2017b). It also took advantage of the special struc-
ture of the game: all of the evidence models had iden-
tical structure. Therefore, evidence models for new
levels could be created by copying a model skeleton
and then changing the conditional probability tables
for the level.

The second version of Physics Playground required
tools able to make the round trip between the parame-
terized Bayesian networks (Pnets) and the augmented
Q and Ω-matrixes. That way as the experts made
changes in the spreadsheets, new networks could be
quickly built to test the new implicit model.

It became apparent that the two matrixes were not
sufficient to create the Bayesian networks. In partic-
ular, additional meta-data was needed about the net-
works and the nodes, and that would be awkward to
store in the augmented Q and Ω matrixes. The result
was a system of four tables: a network manifest (Sec-
tion 3.1), a node manifest (Section 3.2), the augmented
Ω-matrix (Section 3.3), and the augmented Q-matrix
(Section 3.4)



3.1 The network manifest

Using the hub and spoke framework, a complete model
is not just a single Bayesian network, but rather a
collection of networks (hubs) and fragments (spokes).
Thus, meta-data is needed for a collection of networks.
Table 1 gives a sample.

The protocol assumes that the Bayesian network pack-
age has some way to attach meta-data (e.g., the de-
scription), to the network. Each node is given a name
(a short identifier, possible excluding some characters
like spaces), a title (a longer more human readable
description), and a description. Finally, networks are
associated with files.

The sample in Table 1 gives one hub (competency)
model and two spokes. The spokes are marked by
entries in the hub column indicating which model they
are meant to be attached to. Note that there is no
restriction here, the same model could potentially be
a hub and a spoke in different contexts. This would
allow for more complex variants on the simple hub and
spoke model of Almond and Mislevy (1999).

3.2 The node manifest

There are two complications with making the node
manifest. The first is that the node names are not
unique. In most Bayesian network packages, each net-
work defines its own namespace; for example, many
evidence models might have a variable “isCorrect.”
Thus, the key for a node is (Model, NodeName). The
second complication is that each node could have a dif-
ferent number of states each with its own meta-data.
Thus, the primary key for the node manifest table is
(Model, NodeName, StateName) and multiple rows of
the table correspond to a single node. Table 2 shows
an example.

Once again, the node is given both a short name and a
longer title as well as a description. The NodeLabels

column is based on a feature of Netica that has proved
very handy in writing applications. The labels field
contains a comma separated list of identifiers. The
nodes which share a common label form a useful subset
of the nodes. For example, EngXfer is labelled both
“Proficiencies” and “LowLevel”. Presumable a report-
ing feature could make a report based on all nodes with
one of those labels.

Table 2(b) shows the remaining columns. Each row
corresponds to a different state, so the state depen-
dent features are on display. The StateValue column
provides a real number corresponding to this state, ef-
fectively mapping the ordinal variable to an interval
scale. This can be used to calculate expected values.
It is also used at the theta value in Equations 1 and 2.

Although the state description fields seldom have more
than a cosmetic use in Bayesian network software, they
are critically important in model development; hence
their inclusion in the node manifest. In addition to
naming the states, the states of the variable must be
given an operational definition. In other words, what
does it mean for a particular problem to be in a par-
ticular state?

First consider the two observable nodes, ConjObs and
TwoStepObs. These correspond to tasks which are pre-
sumably scored right/wrong and with some kind of
partial credit scoring. For the second observable, it
takes on the value Full, Partial or None depending
on how many steps the student completed. Note that
this definition is not yet operational, as how one would
know that the first or second step was completed has
not yet been defined. The second observable omits the
description. Presumably there is a key, and if the pro-
vide answer matches the key, the item is score correct.
Still there may be questions. For example, if the ex-
pected answer is a fraction, is the answer required to
be reduced to simplest form?

In the case of the proficiency variables, the question is
even trickier. There is often not a concrete description
of what the variable means, rather it is a psycholog-
ical construct which is thought to be useful. Wilson
(2005) develops a construct map, which is a diagram
which shows the latent variable on a scale and identi-
fies regions of the scale with characterisations of peo-
ple in that region, or tasks that people at that level
could perform. Almond, Kim, Velasquez, and Shute
(2014) shows some operational examples. The node
manifest provides a tabular representation of the con-
struct map. Note that the example provided is again
still not sufficiently complete. It talks about “com-
plex” and “simple” problems, but does not describe
how they differ.

Getting good operational definitions of the key vari-
ables early in the design process is important. In
Physics Playground, high, medium and low values for a
physics understanding variable (like EngXfer) is rela-
tive to the target population, in this case middle school
students. Having taken several years of Physics in col-
lege, I tend to think about problems in Newtonian me-
chanics using vector notation. However, only the most
mathematically advanced middle school students take
algebra during middle school, and vectors are not cov-
ered extensively in the early algebra courses. Thus, my
mental model for high physics understanding is some-
thing that would be unrealistic for middle school sci-
ence. Discussing this issue with the experts in Physics
pedagogy (and my daughters who recently graduated
from middle school) helped me gain a better under-
standing of what to expect from our students. This,



Table 1: A Network Manifest
Name Title Hub Pathname Description
miniPP CM Physics Playground

Excerpt
miniPP-CM.dne A few selected nodes from

Physics Playground for
testing Peanut/PNetica

PPcompEM Compensatory
Evidence Model

miniPP CM PPcompEM.dne An evidence model with a
single compensatory
observable

PPconjEM Conjunctive
Evidence Model

miniPP CM PPconjEM.dne An evidence model with a
single conjunctive observable

in turn, helped the design team design game levels that
are better targeted for the audience.

3.3 The augmented Ω matrix

Although in principle, any type of model could be used
for either the competency variables in the hub model
or the observables in the spoke models, in practice,
experts tend to think about them very differently. The
Ω-matrix is designed to handle the variables in the hub
(in which the parents could be any other variable in the
model, as long as the acyclicity condition is enforced).
In the Ω-matrix, each variable appears as both a row
and a column. TheQ-matrix (Section 3.4), in contrast,
is designed to support observable in the spoke models
where most of the parent variables are actually stubs
referencing the competency variables in the hub.

For thinking about the relationship among compe-
tency variables, the normal link function tends to be
the most useful. In particular, the other two link func-
tions (graded response and partial credit) assume a
tendency to cause from the parent to the child vari-
ables; that is, the skill of the student causes a strong
or weak performance on the task. In the competency
model, the direction of causality might not be known,
or may be an artefact of the way the subject is taught.
For example, there may be a high correlation between
the nodes representing understanding of Newton’s laws
and the principle of transfer of energy. That correla-
tion could be because knowledge of one helps the stu-
dent learn the other (in either direction). It could also
be because the two subjects are often taught in the
same class together or in a specific sequence. It could
be because some unmeasured variable (e.g., mathe-
matical sophistication) drives both.

Almond (2007) originally proposed starting with the
(inverse) correlation and using that to build regression
models. For eliciting parameters from experts, going
directly to the regression models is often more use-
ful. This is represented by the choice of compensatory
rule and normal link function and requires columns for
slopes, intercepts and a link scale (residual standard

deviation) parameter. Although there is some redun-
dancy between the structure and the non-zero slopes,
putting the slopes in a separate set of columns both
separates structural and parametric decisions and al-
lows additional error checking.

To illustrate the Ω matrix, Figure 1 shows an excerpt
from the Physics Playground competency model and
Table 3 shows the corresponding Ω-matrix. The left
hand columns (Table 3(a)) show the adjacency matrix
corresponding to the graphical structure in Figure 1.
They also show the choice of link function and com-
bination rule, which are always normal and compen-
satory (the regression model).

Table 3(b) shows the remaining columns. The columns
are given a new name by prepending “A” to the vari-
able name. All of the “A” columns show the regression
weights (or factor loadings), except for the values on
the diagonal. As this value is always not applicable,
it is instead used for the link scale (residual standard
deviation) parameter. The column marked “B” is the
difficulty (negative intercept). The last column gives
a prior weight to be used when learning the models
(Almond, 2015).

This representation trades compactness (one line per
variable) for expressiveness. In particular, it really
only supports the graded response and normal link
function models. The partial credit models potentially
need a lot more parameters.

3.4 The augmented Q matrix

Three different evidence models will serve to illus-
trate the various ways in which the augmented Q-
matrix works. Each one has a single observable vari-
able, but it has different relationships with the par-
ent variables. The first, PPcompEM, has a single di-
chotomously scored observable, CompObs, and uses
the compensatory combination rule—student success
is driven by the average of the parent abilities. The
second, PPconjEM, has a single dichotomously scored
observable, ConjObs, and uses the offset conjunctive
combination rule, both skills must meet the thresh-



Table 2: Node Manifest

(a) Left hand (not-state specific) columns.

Model NodeName ModelHub NodeTitle NodeDescription NodeLabels
miniPP CM EngXfer Energy can

Transfer
Energy can transfer
from one object to
another.

pnodes, LowLevel,
Proficiencies

miniPP CM EngXfer
miniPP CM EngXfer
PPconjEM ConjObs miniPP CM Conjunctive

Observable
A binary response whose
probability of success is
related to average of
parent variables.

onodes,
Observables, pnodes

PPconjEM ConjObs
PPtwostepEM TwoStepObs miniPP CM Partial Credit

observable
A partial credit response
where each step requires
different inputs.

onodes,
Observables, pnodes

PPtwostepEM TwoStepObs
PPtwostepEM TwoStepObs

(b) Right hand (state specific) columns).

Model NodeName Nstates StateName StateTitle StateDescription StateValue
miniPP CM EngXfer 3 High Can use to solve

complex problems
0.97

miniPP CM EngXfer Medium Can use to solve
simple but not
difficult problems

0.00

miniPP CM EngXfer Low Can not solve
simple problems.

-0.97

PPconjEM ConjObs 2 Right
PPconjEM ConjObs Wrong
PPtwostepEM TwoStepObs 3 Full Complete

Solution
PPtwostepEM TwoStepObs Partial First step but

not second
PPtwostepEM TwoStepObs None No attempt or

failed first step

old for there to be a high chance of success. The last
model, PPtwostepEM, has an observable, TwoStepObs,
with three possible values: None (no credit), Partial
(credit) and Full (credit). The idea is that it represents
a task with two steps: solving the problem and select-
ing an explanation. Partial credit is awarded for com-
pleting the first, and full credit for completing both.
The two steps use different combinations of skills.

Table 4 shows a sample Q-matrix. Each variable is
identified with two columns, the model and the node
and takes one row fewer than the number of states.
Note that the two rows for TwoStepObs are not the
same: the transition from no to partial credit requires
both energy transfer and iterative design, but the tran-
sition to full credit only involves the energy transfer.
The list of parents for the TwoStepObs variable is the

set of variable which have a one in any of the rows.

All three models use the partial credit link. The partial
credit and graded response links are identical when the
variable is binary, so this only really matters for the
third variable.

The last part of the table (Table 4(c)) shows the dis-
crimination parameters (starting with “A”) and the
difficulty parameter “B”. It also shows the combina-
tion rule used. Note that for the third variable a dif-
ferent rule is used for each transition. One compli-
cation is that the compensatory and offset conjunc-
tive rules have different parameterizations; the com-
pensatory rule has one discrimination parameter per
parent and a single difficulty, while the offset conjunc-
tive rule has one difficulty per parent and a single dis-



Figure 1: Excerpt from Physics Playground Competency Model

Table 3: Ω-Matrix

(a) Left side columns showing structure.

Node Physics EngXfer IterDes NTL POfMom Link Rules
Physics 1 0 0 0 0 normalLink Compensatory
EngXfer 1 1 0 0 0 normalLink Compensatory
IterDes 1 0 1 0 0 normalLink Compensatory
NTL 1 1 0 1 0 normalLink Compensatory
POfMom 1 1 0 1 1 normalLink Compensatory

(b) Right side columns showing loadings.

Node A.Physics A.EngXfer A.IterDes A.NTL A.POfMom Intercept Weight
Physics 1.00 0.00
EngXfer 0.89 0.45 0.00
IterDes 0.89 0.45 -0.20
NTL 0.95 0.84 0.45 0.30
POfMom 0.77 0.95 0.95 0.45 0.00



Table 4: Q-matrix

(a) Q-matrix, left side columns showing meta-data.

Model Node NStates State Link LinkScale
PPcompEM CompObs 2 Right partialCredit 0
PPconjEM ConjObs 2 Right partialCredit 0
PPtwostepEM TwoStepObs 3 Full partialCredit 0
PPtwostepEM TwoStepObs Partial

(b) Q-matrix, middle columns showing Q-matrix.

Model Node POfMom NTL EngXfer IterDes Rules
PPcompEM CompObs 1 1 0 0 Compensatory
PPconjEM ConjObs 1 0 1 0 OffsetConjunctive
PPtwostepEM TwoStepObs 0 0 1 0 Compensatory
PPtwostepEM TwoStepObs 0 0 1 1 OffsetConjunctive

(c) Q-matrix, right side columns showing parameters.

Model Node A.POfMom A.NTL A.EngXfer A.IterDes B Weight
PPcompEM CompObs 1.10 0.90 0.30
PPconjEM ConjObs 0.50 -0.50 1.00
PPtwostepEM TwoStepObs 1.00 0.50
PPtwostepEM TwoStepObs 1.00 0.10 1.00

crimination. To fit these into the table structure the
roles of “A” and “B” are swapped for the offset con-
junctive (and disjunctive) rules. It is unclear whether
or not this overloading of the meaning of the columns
will be too complex for users in practice.

Once again, the prior weight column is used by learn-
ing algorithms where the expert numbers would be
taken as a prior distribution. In fact, all of the columns
of the table correspond to properties of the Pnode (pa-
rameterized node) object in Peanut (Almond, 2017a,
2015).

4 Testing, Limitations and Future
Work

Currently, the software for round-tripping between the
tabular and graphical views is under development. It
is mostly complete and testing is expected to be com-
plete by the time of the conference. This includes
both ordinary functional testing and using the tables
operationally as part of the Physics Playground de-
velopment efforts. This give us experience with how
both the physics experts (actually, experts in physics
pedagogy) and the other member of the design team
(mostly graduate students) react to these representa-
tions. Changes are likely, and code will be posted to
the RNetica web site.

A possible limitation is that the Ω-matrix only uses one
row per variable. This format is more compact, and
hence easier to use, but it also limits the complexity

of the distribution descriptions. Another limitation is
that the Q-matrix does not have any way to indicate
connections between two observables in an evidence
(spoke) model. So far, these are not needed for Physics
Playground, but they might be in the future, or in
future projects. In these cases, the tabular formats
will need to be revisited.

Peanut is meant to be agnostic to the Bayesian net-
work package used. Although I have tried to make
sure the operations are fairly standard, all testing has
been done using Netica. In particular, I make use of
Netica’s ability to add meta-data to a node or network
object. I suspect that many Bayesian network pack-
ages support this, but I am not sure. The real proof of
its generalisability will come when an implementation
is created using a different Bayes net package.

I hope that the tools used for the Physics Play-
ground project will be useful to others develop-
ing Bayesian networks. They are available at
https://pluto.coe.fsu.edu/RNetica/ and will be
updated as development and testing continues. I hope
to be able to report more on our own use of them at
the workshop.
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