
Package ‘Peanut’
March 9, 2020

Version 0.8-3

Date 2020/03/09

Title Parameterized Bayesian Networks, Abstract Classes

Author Russell Almond

Maintainer Russell Almond <ralmond@fsu.edu>

Depends R (>= 3.0), CPTtools (>= 0.5), methods, futile.logger

Imports shiny (>= 1.1), shinyjs, utils

Description
This provides support of learning conditional probability tables parameterized using CPTtools

License Artistic-2.0

URL http://pluto.coe.fsu.edu/RNetica

R topics documented:
Peanut-package . 3
BuildNetManifest . 5
BuildNodeManifest . 8
BuildTable . 11
calcExpTables . 13
calcPnetLLike . 16
defaultAlphas . 18
flog.try . 19
GEMfit . 21
is.legal.name . 25
isPnodeContinuous . 26
maxAllTableParams . 29
NodeGadget . 32
Omega2Pnet . 35
Pnet . 40
Pnet-class . 43
Pnet2Omega . 44
Pnet2Qmat . 48

1

http://pluto.coe.fsu.edu/RNetica

2 R topics documented:

PnetAdjoin . 55
PnetCompile . 57
PnetFindNode . 59
PnetHub . 60
PnetMakeStubNodes . 62
PnetName . 64
PnetPathname . 66
PnetPnodes . 67
PnetPriorWeight . 69
PnetSerialize . 71
PnetTitle . 74
PnetWarehouse-class . 76
Pnode . 78
Pnode-class . 82
PnodeBetas . 84
PnodeEvidence . 88
PnodeLabels . 90
PnodeLink . 92
PnodeLinkScale . 94
PnodeLnAlphas . 97
PnodeName . 101
PnodeParents . 102
PnodeParentTvals . 104
PnodePostWeight . 107
PnodeProbs . 109
PnodeQ . 111
PnodeRules . 113
PnodeStates . 116
PnodeStateTitles . 118
PnodeStateValues . 120
PnodeStats . 122
PnodeTitle . 124
PnodeWarehouse-class . 125
Qmat2Pnet . 128
Statistic . 135
Statistic-class . 137
topsort . 139
Warehouse . 140
WarehouseCopy . 144
WarehouseManifest . 146

Index 149

Peanut-package 3

Peanut-package Parameterized Bayesian Networks, Abstract Classes

Description

This provides support of learning conditional probability tables parameterized using CPTtools

Details

The DESCRIPTION file: This package was not yet installed at build time.

Peanut (a corruption of Parameterized network or Pnet) is an object oriented layer on top of the tools
for constructing conditional probability tables for Bayesian networks in the CPTtools package.
In particular, it defines a Pnode (parameterized node) object which stores all of the arguments
necessary to use to the calcDPCTable function to build the conditional probability table for the
node.

The Pnet object is a Bayesian network containing a number of Pnodes. It supports two key op-
erations, BuildAllTables which sets the values of the conditional probabilities based on current
parameters and GEMfit which adjusts the parameters to match a set of cases.

Like the DBI package, this class consists mostly of generic functions which need to be implement
for specific Bayes net implementations. The package PNetica provides an implementation of the
Peanut generic functions using the RNetica package. All of the Netica-dependent code is isolated
in the PNetica package, to make it easier to create other implementations.

Index

Index: This package was not yet installed at build time.

Author(s)

Russell Almond

Maintainer: Russell Almond <ralmond@fsu.edu>

References

Almond, R. G. (2015) An IRT-based Parameterization for Conditional Probability Tables. Paper
presented at the 2015 Bayesian Application Workshop at the Uncertainty in Artificial Intelligence
Conference.

Almond, R. G., Mislevy, R. J., Steinberg, L. S., Yan, D. and Williamson, D. M. (2015) Bayesian
Networks in Educational Assessment. Springer. (ISBN 978-1-4939-2124-9).

See Also

PNetica An implementation of the Peanut object model using RNetica.

CPTtools A collection of implementation independent Bayes net utilities.

4 Peanut-package

Examples

Not run:
library(PNetica) ## Requires implementation
sess <- NeticaSession()
startSession(sess)

Building CPTs
tNet <- CreateNetwork("TestNet",session=sess)

theta1 <- NewDiscreteNode(tNet,"theta1",
c("VH","High","Mid","Low","VL"))

PnodeStateValues(theta1) <- effectiveThetas(NodeNumStates(theta1))
NodeProbs(theta1) <- rep(1/NodeNumStates(theta1),NodeNumStates(theta1))
theta2 <- NewDiscreteNode(tNet,"theta2",

c("VH","High","Mid","Low","VL"))
PnodeStateValues(theta2) <- effectiveThetas(NodeNumStates(theta2))
NodeProbs(theta2) <- rep(1/NodeNumStates(theta2),NodeNumStates(theta2))

partial3 <- NewDiscreteNode(tNet,"partial3",
c("FullCredit","PartialCredit","NoCredit"))

PnodeParents(partial3) <- list(theta1,theta2)

partial3 <- Pnode(partial3,Q=TRUE, link="partialCredit")
PnodePriorWeight(partial3) <- 10
BuildTable(partial3)

Set up so that first skill only needed for first transition, second
skill for second transition; adjust alphas to match
PnodeQ(partial3) <- matrix(c(TRUE,TRUE,

TRUE,FALSE), 2,2, byrow=TRUE)
PnodeLnAlphas(partial3) <- list(FullCredit=c(-.25,.25),

PartialCredit=0)
BuildTable(partial3)
partial4 <- NewDiscreteNode(tNet,"partial4",

c("Score4","Score3","Score2","Score1"))
NodeParents(partial4) <- list(theta1,theta2)
partial4 <- Pnode(partial4, link="partialCredit")
PnodePriorWeight(partial4) <- 10

Skill 1 used for first transition, Skill 2 used for second
transition, both skills used for the 3rd.

PnodeQ(partial4) <- matrix(c(TRUE,TRUE,
FALSE,TRUE,
TRUE,FALSE), 3,2, byrow=TRUE)

PnodeLnAlphas(partial4) <- list(Score4=c(.25,.25),
Score3=0,
Score2=-.25)

BuildTable(partial4)

BuildNetManifest 5

Fitting Model to data

irt10.base <- ReadNetworks(paste(library(help="PNetica")$path,
"testnets","IRT10.2PL.base.dne",
sep=.Platform$file.sep),
session=sess)

irt10.base <- as.Pnet(irt10.base) ## Flag as Pnet, fields already set.
irt10.theta <- PnetFindNode(irt10.base,"theta")
irt10.items <- PnetPnodes(irt10.base)
Flag items as Pnodes
for (i in 1:length(irt10.items)) {

irt10.items[[i]] <- as.Pnode(irt10.items[[i]])
Add node to list of observed nodes
PnodeLabels(irt10.items[[1]]) <-

union(PnodeLabels(irt10.items[[1]]),"onodes")

}

casepath <- paste(library(help="PNetica")$path,
"testdat","IRT10.2PL.200.items.cas",
sep=.Platform$file.sep)

BuildAllTables(irt10.base)
PnetCompile(irt10.base) ## Netica requirement

item1 <- irt10.items[[1]]
priB <- PnodeBetas(item1)
priA <- PnodeAlphas(item1)
priCPT <- NodeProbs(item1)

gemout <- GEMfit(irt10.base,casepath)

DeleteNetwork(irt10.base)
DeleteNetwork(tNet)
stopSession(sess)

End(Not run)

BuildNetManifest Builds a network manifest from a list of Pnets

Description

A network manifest is a table of meta data about a colleciton of networks. Each line corresponds to
the specific network. This manifest can be used by a network warehouse (Warehouse) to recreate
the network on demand.

6 BuildNetManifest

Usage

BuildNetManifest(Pnetlist)

Arguments

Pnetlist A list of Pnet objects which will appear in the network manifest.

Details

A network manifest is a table (data frame) which describes a collection of networks. It contains
meta-data about the networks, and not the information about the nodes, contained in the node man-
ifest (BuildNodeManifest) or the relaitonships between the nodes which is contained in the Q-
matrix (Pnet2Qmat) or the Ω-Matrix (Pnet2Omega). The role of the net manifest is to be used as
to create a Net Warehouse which is an argument to the Qmat2Pnet and Omega2Pnet commands,
creating networks as they are referenced.

The “Name” column of the table contains the network name and is a key to the table (so it should be
unique). It corresponds to PnetName. The “Title” (PnetTitle) and “Description” (PnetDescription)
columns contain optional meta-data about the node. The “Pathname” (PnetPathname) column con-
tiains the location of the file to which the network should be written and from which it can be read.
The “Hub” (PnetHub) is for spoke models (evidence models) some of whose variables are defined
in a hub network. This the network in question is meant to be a spoke, then this field points at the
corresponding hub.

Value

An object of type data.frame where the columns have the following values.

Name A character value giving the name of the network. This should be unique for
each row and normally must conform to variable naming conventions. Corre-
sponds to the function PnetName.

Title An optional character value giving a longer human readable name for the ne-
towrk. Corresponds to the function PnetTitle.

Hub If this model is incomplete without being joined to another network, then the
name of the hub network. Otherwise an empty character vector. Corresponds to
the function PnetHub.

Pathname The location of the file from which the network should be read or to which it
should be written. Corresponds to the function PnetPathname.

Description An optional character value documenting the purpose of the network. Corre-
sponds to the function PnetDescription.

Note that the name column is regarded as a primary key to the table.

Logging

BuildNetManifest uses the flog.logger mechanism to log progress. To see progress messages,
use flog.threshold(DEBUG) (or TRACE).

BuildNetManifest 7

Author(s)

Russell Almond

References

Almond, R. G. (presented 2017, August). Tabular views of Bayesian networks. In John-Mark
Agosta and Tomas Singlair (Chair), Bayeisan Modeling Application Workshop 2017. Symposium
conducted at the meeting of Association for Uncertainty in Artificial Intelligence, Sydney, Australia.
(International) Retrieved from http://bmaw2017.azurewebsites.net/

See Also

Network functions called to find network data: PnetName, PnetTitle, PnetPathname, PnetHub,
PnetDescription

Used in the construction of Network Warehouses (see WarehouseManifest).

Similar to the function BuildNodeManifest.

Examples

This provides an example network manifest.
netman1 <- read.csv(paste(library(help="Peanut")$path, "auxdata",

"Mini-PP-Nets.csv", sep=.Platform$file.sep),
row.names=1, stringsAsFactors=FALSE)

Not run:
library(PNetica) ## Example requires PNetica

sess <- NeticaSession()
startSession(sess)

netpath <- file.path(library(help="PNetica")$path, "testnets")
netnames <- paste(c("miniPP-CM","PPcompEM","PPconjEM","PPtwostepEM",

"PPdurAttEM"),"dne",sep=".")

Nets <- ReadNetworks(file.path(netpath,netnames),
session=sess)

netman <- BuildNetManifest(Nets)
stopifnot(all.equal(netman,netman1))

BNWarehouse is the PNetica Net Warehouse.
Nethouse <- BNWarehouse(manifest=netman1,session=sess,key="Name")

stopSession(sess)

End(Not run)

http://bmaw2017.azurewebsites.net/

8 BuildNodeManifest

BuildNodeManifest Builds a table describing a set of Pnodes

Description

A node manifest is a table where each line describes one state of a node in a Bayesian network. As
a node manifest may contain nodes from more than one network, the key for the table is the first
two columns: “Model” and “NodeName”. The primary purpose is that this can be given to a Node
Warehouse to create nodes on demand.

Usage

BuildNodeManifest(Pnodelist)

Arguments

Pnodelist A list of Pnode objects from which the table will be built.

Details

A node manifest is a table (data frame) which describes a collection of nodes. It contains mostly
meta-data about the nodes, and not the information about the relaitonships between the nodes which
is contained in the Q-matrix (Pnet2Qmat) or the Ω-Matrix (Pnet2Omega). The role of the node
manifest is to be used as to create a Node Warehouse which is an argument to the Qmat2Pnet and
Omega2Pnet commands, creating nodes as they are referenced. Hence it contains the information
about the node which is not part of the Q or Ω matrix.

The Q-matrix can span multiple Bayesian networks. The same variable can appear with the same
name but slightly different definitions in two different networks. Consequently, the key for this table
is the “Model” and “NodeName” columns (usually the first two). The function WarehouseData
when applied to a node warehouse should have a key of length 2 (model and node name) and will
return multiple lines, one line corresponding to each state of the data frame.

The columns “ModelHub”, “NodeTitle”, “NodeDescription” and “NodeLabels” provide meta-data
about the node. They may be missing empty strings, indicating that meta-data is unavailable.

The columns “Nstates” and “StateName” are required. The number of states should be an integer (2
or greater) and there should be as many rows with this model and node name as there are states. Each
should have a unique value for “StateName”. The “StateTitle”, “StateDescription” and “StateValue”
are optional, although if the variable is to be used as a parent variable, it is strongly recommended
to set the state values.

Value

An object of class data.frame with the following columns.

Node-level Key Fields:

Model A character value giving the name of the Bayesian network to which this node
belongs. Corresponds to the value of PnodeNet.

BuildNodeManifest 9

NodeName A character value giving the name of the node. All rows with the same value
in the model and node name columns are assumed to reference the same node.
Corresponds to the value of PnodeName.

Node-level Fields:

ModelHub If this is a spoke model (meant to be attached to a hub) then this is the name
of the hub model (i.e., the name of the proficiency model corresponding to an
evidence model). Corresponds to the value of PnetHub(PnodeNet(node)).

NodeTitle A character value containing a slightly longer description of the node, unlike the
name this is not generally restricted to variable name formats. Corresponds to
the value of PnodeTitle.

NodeDescription

A character value describing the node, meant for human consumption (docu-
mentation). Corresponds to the value of PnodeDescription.

NodeLabels A comma separated list of identifiers of sets which this node belongs to. Used to
identify special subsets of nodes (e.g., high-level nodes or observeable nodes).
Corresponds to the value of PnodeLabels.

State-level Key Fields:

Continuous A logical value. If true, the variable will be continuous, with states correspond-
ing to ranges of values. If false, the variable will be discrete, with named states.

Nstates The number of states. This should be an integer greater than or equal to 2.
Corresponds to the value of PnodeNumStates.

StateName The name of the state. This should be a string value and it should be different for
every row within the subset of rows corresponding to a single node. Corresponds
to the value of PnodeStates.

State-level Fields:

StateTitle A longer name not subject to variable naming restrictions. Corresponds to the
value of PnodeStateTitles.

StateDescription

A human readable description of the state (documentation). Corresponds to the
value of PnodeStateDescriptions.

StateValue A real numeric value assigned to this state. PnodeStateValues. Note that this
has different meaning for discrete and continuous variables. For discrete vari-
ables, this associates a numeric value with each level, which is used in calculat-
ing the PnodeEAP and PnodeSD functions. In the continuous case, this value is
ignored and the midpoint between the “LowerBounds” and “UpperBounds” are
used instead.

LowerBound This servers as the lower bound for each partition of the continuous variagle.
-Inf is a legal value for the first or last row.

UpperBound This is only used for continuous variables, and the value only is needed for one
of the states. This servers as the upper bound of range each state. Note the upper
bound needs to match the lower bounds of the next state. Inf is a legal value for
the first or last row.

10 BuildNodeManifest

Logging

BuildNodeManifest uses the flog.logger mechanism to log progress. To see progress messages,
use flog.threshold(DEBUG) (or TRACE).

Continuous Variables

Peanut (following Netica) treats continuous variables as discrete variables whose states corre-
spond to ranges of an underlying continuous variable. Unfortunately, this overlays the meaning
of PnodeStateValues, and consequently the “StateValue” column.

Discrete Variables. The states of the discrete variables are defined by the “StateName” fields. If
values are supplied in “StateValue”, then these values are used in calculating expected a posteriori
statistics, PnodeEAP() and PnodeSD(). The “LowerBound” and “UpperBound” fields are ignored.

Continuous Variables. The states of the continuous variable are defined by breaking the range up
into a series of intervals. Right now the intervals must be adjacent (the upper bound of one must
match the lower bound of the next) and cannot overlap. This is done by supplying a “LowerBound”
and “UpperBound” for each state. If the upper and lower bounds do not match, then an error is
signaled.

Author(s)

Russell Almond

References

Almond, R. G. (presented 2017, August). Tabular views of Bayesian networks. In John-Mark
Agosta and Tomas Singlair (Chair), Bayeisan Modeling Application Workshop 2017. Symposium
conducted at the meeting of Association for Uncertainty in Artificial Intelligence, Sydney, Australia.
(International) Retrieved from http://bmaw2017.azurewebsites.net/

See Also

Node functions called to find node meta-data: PnodeName, PnodeTitle, PnodeNet, PnetHub,
PnodeDescription, PnodeLabels. PnodeNumStates, PnodeStateTitles, PnodeStateDescriptions,
PnodeStateValues.

Used in the construction of Network Warehouses (see WarehouseManifest).

Similar to the function BuildNetManifest.

Examples

This expression provides an example Node manifest
nodeman1 <- read.csv(file.path(library(help="Peanut")$path, "auxdata",

"Mini-PP-Nodes.csv"),
row.names=1,stringsAsFactors=FALSE)

Not run:
library(PNetica) ## Requires PNetica
sess <- NeticaSession()
startSession(sess)

http://bmaw2017.azurewebsites.net/

BuildTable 11

netpath <- file.path(library(help="PNetica")$path, "testnets")
netnames <- paste(c("miniPP-CM","PPcompEM","PPconjEM","PPtwostepEM",

"PPdurAttEM"),"dne",sep=".")

Nets <- ReadNetworks(file.path(netpath,netnames),
session=sess)

CM <- Nets[[1]]
EMs <- Nets[-1]

nodeman <- BuildNodeManifest(lapply(NetworkAllNodes(CM),as.Pnode))

for (n in 1:length(EMs)) {
nodeman <- rbind(nodeman,

BuildNodeManifest(lapply(NetworkAllNodes(EMs[[n]]),
as.Pnode)))

}

Need to ensure that labels are in cannonical order only for the
purpose of testing
nodeman[,6] <- sapply(strsplit(nodeman[,6],","),

function(l) paste(sort(l),collapse=","))
nodeman1[,6] <- sapply(strsplit(nodeman1[,6],","),

function(l) paste(sort(l),collapse=","))

stopifnot(all.equal(nodeman,nodeman1))

This is the node warehouse for PNetica
Nodehouse <- NNWarehouse(manifest=nodeman1,

key=c("Model","NodeName"),
session=sess)

phyd <- WarehouseData(Nodehouse,c("miniPP_CM","Physics"))
p3 <- MakePnode.NeticaNode(CM,"Physics",phyd)

attd <- WarehouseData(Nodehouse,c("PPdurAttEM","Attempts"))
att <- MakePnode.NeticaNode(Nets[[5]],"Attempts",attd)

durd <- WarehouseData(Nodehouse,c("PPdurAttEM","Duration"))
dur <- MakePnode.NeticaNode(Nets[[5]],"Duration",durd)

stopSession(sess)

End(Not run)

BuildTable Builds the conditional probability table for a Pnode

12 BuildTable

Description

The function BuildTable builds the conditional probability table for a Pnode object, and sets the
prior weight for the node using the current values of parameters. It sets these in the Bayesian net-
work object as appropriate for the implementation. The expression BuildAllTables(net) builds
tables for all of the nodes in PnetPnodes(net).

Usage

BuildTable(node)
BuildAllTables(net, debug=FALSE)

Arguments

node A Pnode object whose table is to be built.

net A Pnet object for whom the tables are needed to be built.

debug A logical scalar. If true then recover is called after an error, so that the node in
question can be inspected.

Details

The fields of the Pnode object correspond to the arguments of the calcDPCTable function. The
output conditional probability table is then set in the node object in an implementation dependent
way. Similarly, the current value of GetPriorWeight is used to set the weight that the prior table
will be given in the EM algorithm.

Value

The node or net argument is returned invisibly. As a side effect the conditional probability table
and prior weight of node (or a collection of nodes) is modified.

Logging and Debug Mode

As of version 0.6-2, the meaning of the debug argument is changed. In the new version, the
flog.logger mechanism is used for progress reports, and error reporting. In particular, setting
flog.threshold(DEBUG) (or TRACE) will cause progress reports to be sent to the logging output.

The debug argument has been repurposed. It now call recover when the error occurs, so that the
problem can be debugged.

Note

The function BuildTable is an abstract generic function, and it needs a specific implementation.
See the PNetica-package for an example.

Author(s)

Russell Almond

calcExpTables 13

References

Almond, R. G. (2015) An IRT-based Parameterization for Conditional Probability Tables. Paper
presented at the 2015 Bayesian Application Workshop at the Uncertainty in Artificial Intelligence
Conference.

See Also

Pnode, PnodeProbs, PnodeQ, PnodePriorWeight, PnodeRules, PnodeLink, PnodeLnAlphas, PnodeAlphas,
PnodeBetas, PnodeLinkScale,GetPriorWeight, calcDPCTable

In many implementations, it will be necessary to run PnetCompile after building the tables.

Examples

Not run:

This is the implementation of BuildTable in Netica. The [<- and
NodeExperience functions are part of the RNetica implementation.

BuildTable.NeticaNode <- function (node) {
node[] <- calcDPCFrame(ParentStates(node),PnodeStates(node),

PnodeLnAlphas(node), PnodeBetas(node),
PnodeRules(node),PnodeLink(node),
PnodeLinkScale(node),PnodeQ(node),
PnodeParentTvals(node))

NodeExperience(node) <- GetPriorWeight(node)
invisible(node)

}

This is a simplified implementation of BuildAllTables
(The full implementation adds logging and error handling.)
BuildAllTables <- function (net) {

lapply(PnetPnodes(net),BuildTable)
invisible(net)

}

End(Not run)

calcExpTables Calculate expected tables for a parameterized network

Description

The performs the E-step of the GEM algorithm by running the internal EM algorithm of the host
Bayes net package on the cases. After this is run, the posterior parameters for each conditional
probability distribution should be the expected cell counts, that is the expected value of the sufficient
statistic, for each Pnode in the net.

14 calcExpTables

Usage

calcExpTables(net, cases, Estepit = 1, tol = sqrt(.Machine$double.eps))

Arguments

net A Pnet object

cases An object representing a set of cases. Note the type of object is implementation
dependent. It could be either a data frame providing cases or a filename for a
case file.

Estepit An integer scalar describing the number of steps the Bayes net package should
take in the internal EM algorithm.

tol A numeric scalar giving the stopping tolerance for the Bayes net package inter-
nal EM algorithm.

Details

The GEMfit algorithm uses a generalized EM algorithm to fit the parameterized network to the
given data. This loops over the following steps:

E-step Run the internal EM algorithm of the Bayes net package to calculate expected tables for all
of the tables being learned. The function calcExpTables carries out this step.

M-step Find a set of table parameters which maximize the fit to the expected counts by calling
mapDPC for each table. The function maxAllTableParams does this step.

Update CPTs Set all the conditional probability tables in the network to the new parameter values.
The function BuildAllTables does this.

Convergence Test Calculate the log likelihood of the cases under the new parameters and stop if
no change. The function calcPnetLLike calculates the log likelihood.

The function calcExpTables performs the E-step. It assumes that the native Bayes net class which
net represents has a function which does EM learning with hyper-Dirichlet priors. After this in-
ternal EM algorithm is run, then the posterior should contain the expected cell counts that are the
expected value of the sufficient statistics, i.e., the output of the E-step. Note that the function
maxAllTableParams is responsible for reading these from the network.

The internal EM algorithm should be set to use the current value of the conditional probability
tables (as calculated by BuildTable(node) for each node) as a starting point. This starting value is
given a prior weight of GetPriorWeight(node). Note that some Bayes net implementations allow
a different weight to be given to each row of the table. The prior weight counts as a number of
cases, and should be scaled appropriately for the number of cases in cases.

The parameters Estepit and tol are passed to the internal EM algorithm of the Bayes net. Note
that the outer EM algorithm assumes that the expected table counts given the current values of the
parameters, so the default value of one is sufficient. (It is possible that a higher value will speed up
convergence, the parameter is left open for experimentation.) The tolerance is largely irrelevant as
the outer EM algorithm does the tolerance test.

calcExpTables 15

Value

The net argument is returned invisibly.

As a side effect, the internal conditional probability tables in the network are updated as are the
internal weights given to each row of the conditional probability tables.

Note

The function calcExpTables is an abstract generic functions, and it needs specific implementa-
tions. See the PNetica-package for an example.

This function assumes that the host Bayes net implementation (e.g., RNetica-package): (1) net
has an EM learning function, (2) the EM learning supports hyper-Dirichlet priors, (3) it is possible
to recover the hyper-Dirichlet posteriors after running the internal EM algorithm.

Author(s)

Russell Almond

References

Almond, R. G. (2015) An IRT-based Parameterization for Conditional Probability Tables. Paper
presented at the 2015 Bayesian Application Workshop at the Uncertainty in Artificial Intelligence
Conference.

See Also

Pnet, GEMfit, calcPnetLLike, maxAllTableParams

Examples

Not run:

library(PNetica) ## Need a specific implementation
sess <- NeticaSession()
startSession(sess)

irt10.base <- ReadNetworks(paste(library(help="PNetica")$path,
"testnets","IRT10.2PL.base.dne",
sep=.Platform$file.sep),
session=sess)

irt10.base <- as.Pnet(irt10.base) ## Flag as Pnet, fields already set.
irt10.theta <- PnetFindNode(irt10.base,"theta")
irt10.items <- PnetPnodes(irt10.base)
Flag items as Pnodes
for (i in 1:length(irt10.items)) {

irt10.items[[i]] <- as.Pnode(irt10.items[[i]])
Add node to list of observed nodes
PnodeLabels(irt10.items[[1]]) <-

union(PnodeLabels(irt10.items[[1]]),"onodes")
}
PnetCompile(irt10.base) ## Netica requirement

16 calcPnetLLike

casepath <- paste(library(help="PNetica")$path,
"testdat","IRT10.2PL.200.items.cas",
sep=.Platform$file.sep)

item1 <- irt10.items[[1]]

priorcounts <- sweep(PnodeProbs(item1),1,GetPriorWeight(item1),"*")

calcExpTables(irt10.base,casepath)

postcounts <- sweep(PnodeProbs(item1),1,PnodePostWeight(item1),"*")

Posterior row sums should always be larger.
stopifnot(

all(apply(postcounts,1,sum) >= apply(priorcounts,1,sum))
)

DeleteNetwork(irt10.base)
stopSession(sess)

End(Not run)

calcPnetLLike Calculates the log likelihood for a set of data under a Pnet model

Description

The function calcPnetLLike calculates the log likelihood for a set of data contained in cases
using the current values of the conditional probability table in a Pnet. If it is called after a call to
BuildAllTables(net) this will be the current value of the parameters.

Usage

calcPnetLLike(net, cases)

Arguments

net A Pnet object representing a parameterized network.

cases An object representing a set of cases. Note the type of object is implementation
dependent. It could be either a data frame providing cases or a filename for a
case file.

Details

This function provides the convergence test for the GEMfit algorithm. The Pnet represents a model
(with parameters set to the value used in the current iteration of the EM algorithm) and cases a set
of data. This function gives the log likelihood of the data.

calcPnetLLike 17

This is a generic function shell. It is assumed that either (a) the native Bayes net implementation
provides a way of calculating the log likelihood of a set of cases, or (b) it provides a way of calcu-
lating the likelihood of a single case, and the log likelihood of the case set can be calculated though
iteration. In either case, the value of cases is implementation dependent. In PNetica-package the
cases argument should be a filename of a Netica case file (see write.CaseFile).

Value

A numeric scalar giving the log likelihood of the data in the case file.

Note

The function calcPnetLLike is an abstract generic functions, and it needs specific implementa-
tions. See the PNetica-package for an example.

Author(s)

Russell Almond

References

Almond, R. G. (2015) An IRT-based Parameterization for Conditional Probability Tables. Paper
presented at the 2015 Bayesian Application Workshop at the Uncertainty in Artificial Intelligence
Conference.

See Also

Pnet, GEMfit, calcExpTables, maxAllTableParams

Examples

Not run:

library(PNetica) ## Need a specific implementation
sess <- NeticaSession()
startSession(sess)

irt10.base <- ReadNetworks(paste(library(help="PNetica")$path,
"testnets","IRT10.2PL.base.dne",
sep=.Platform$file.sep),
session=sess)

irt10.base <- as.Pnet(irt10.base) ## Flag as Pnet, fields already set.
irt10.theta <- PnetFindNode(irt10.base,"theta")
irt10.items <- PnetPnodes(irt10.base)
Flag items as Pnodes
for (i in 1:length(irt10.items)) {

irt10.items[[i]] <- as.Pnode(irt10.items[[i]])
Add node to list of observed nodes
PnodeLabels(irt10.items[[1]]) <-

union(PnodeLabels(irt10.items[[1]]),"onodes")
}

18 defaultAlphas

PnetCompile(irt10.base) ## Netica requirement

casepath <- paste(library(help="PNetica")$path,
"testdat","IRT10.2PL.200.items.cas",
sep=.Platform$file.sep)

llike <- calcPnetLLike(irt10.base,casepath)

DeleteNetwork(irt10.base)
stopSession(sess)

End(Not run)

defaultAlphas Reshapes alpha or beta vector based on rule and parents

Description

Combination rules can be sorted into multiple-a rules (e.g., Compensatory) and multiple-b rules
(e.g., OffsetConjunctive). The function isOffsetRule distinguishes between the two types.
These functions adjust the log alpha or beta matrix to the correct length depending on the rule and
parents of the node argument.

Usage

defaultAlphas(node, rule)
defaultBetas(node, rule)

Arguments

node A Pnode object whose PnodeLnAlphas or PnodeBetas field is to be set.

rule A character scalar giving the name of a combination rule.

Value

A vector of zeros of a suitable length to be used as a default value for PnodeLnAlphas(node) or
PnodeBetas(node).

Note

These are used in the PNetica implementation of the Pnode constructor.

Author(s)

Russell Almond

See Also

Pnode, PnodeLnAlphas, PnodeBetas, isOffsetRule

flog.try 19

Examples

Not run:
library(PNetica) # Requires PNetica
sess <- NeticaSession()
startSession(sess)

EM1 <- ReadNetworks(file.path(library(help="PNetica")$path, "testnets",
"PPcompEM.dne"), session=sess)

EM2 <- ReadNetworks(file.path(library(help="PNetica")$path, "testnets",
"PPconjEM.dne"), session=sess)

comp <- PnetFindNode(EM1,"CompensatoryObs")
conj <- PnetFindNode(EM2,"ConjunctiveObs")

stopifnot(
defaultAlphas(comp,"Compensatory") == c(0,0),
defaultBetas(comp,"Compensatory") == 0,
defaultAlphas(conj,"OffsetConjuctive") == 0,
defaultBetas(conj,"OffsetConjunctive") == c(0,0)

)

DeleteNetwork(list(EM1,EM2))
stopSession(sess)

End(Not run)

flog.try Trys to execute an expression with errors logged.

Description

This is a version of try which logs errors using the flog.logger mechanism.

Usage

flog.try(expr, context = deparse(substitute(expr)), loggername = flog.namespace(), tracelevel = c("WARN", "ERROR", "FATAL"))

Arguments

expr An R expression to be executed.

context A character string defining what was operation is being performed for use in the
log message.

loggername A package name defining the logger to be used. See flog.namespace.

tracelevel A character vector. In response to signals of the listed types, a stack trace will
be sent to the log file.

20 flog.try

Details

This function behaves like the try function, attempt to execute expr. If successful, the result is
returned, if not an object of class try-error is returned, so that the calling function can figure out
how to proceed.

It has two important difference from try. The first is the context argument which provides in-
formation about what was happening when the error was generated. In a large problem, this can
provide vital debugging information, like the issue was with a particular node in a graph.

The second is that the error message and the stack trace are posted to the logging stream using the
flog.logger function. This makes the code easier to use in server processes.

Value

Either the result of running expr or an object of class try-error.

Note

I should move this to the RGAutils package as it is generally useful.

Author(s)

Russell Almond

See Also

try, flog.logger

The function maxAllTableParams shows an example of this in use.

Examples

Not run:
maxAllTableParams <- function (net, Mstepit=5,

tol=sqrt(.Machine$double.eps),
debug=FALSE) {

Errs <- list()
netnm <- PnetName(net)
lapply(PnetPnodes(net),

function (nd) {
ndnm <- PnodeName(nd)
flog.debug("Updating params for node
out <- flog.try(maxCPTParam(nd,Mstepit,tol),

context=sprintf("Updating params for node
ndnm, netnm))

if (is(out,'try-error')) {
Errs <- c(Errs,out)
if (debug) recover()

}
})

if (length(Errs) >0L)
stop("Errors encountered while updating parameters for ",netnm)

GEMfit 21

invisible(net)
}

End(Not run)

GEMfit Fits the parameters of a parameterized network using the GEM algo-
rithm

Description

A Pnet is a description of a parameterized Bayesian network, with each Pnode giving the param-
eterization for its conditional probability table. This function uses a generalized EM algorithm to
find the values of the parameters for each Pnode which maximize the posterior probability of the
data in cases.

Usage

GEMfit(net, cases, tol = sqrt(.Machine$double.eps),
maxit = 100, Estepit = 1, Mstepit = 30,
trace=FALSE, debugNo=maxit+1)

Arguments

net A Pnet object

cases An object representing a set of cases. Note the type of object is implementation
dependent. It could be either a data frame providing cases or a filename for a
case file.

tol A numeric scalar giving the stopping tolerance for the for the EM algorithm.

maxit An integer scalar giving the maximum number of iterations for the outer EM
algorithm.

Estepit An integer scalar giving the number of steps the Bayes net package should take
in the internal EM algorithm during the E-step.

Mstepit An integer scalar giving the number of steps that should be taken by mapDPC
during the M-step.

trace A logical value which indicates whether or not cycle by cycle information should
be sent to to the flog.logger.

debugNo An integer scalar. When this iteration is reached, then the flog.threshold(DEBUG)
will be set, so more debugging information will be provided.

22 GEMfit

Details

The GEMfit algorithm uses a generalized EM algorithm to fit the parameterized network to the
given data. This loops over the following steps:

E-step Run the internal EM algorithm of the Bayes net package to calculate expected tables for all
of the tables being learned. The function calcExpTables carries out this step.

M-step Find a set of table parameters which maximize the fit to the expected counts by calling
mapDPC for each table. The function maxAllTableParams does this step.

Update CPTs Set all the conditional probability tables in the network to the new parameter values.
The function BuildAllTables does this.

Convergence Test Calculate the log likelihood of the cases under the new parameters and stop if
no change. The function calcPnetLLike calculates the log likelihood.

Note that although GEMfit is not a generic function, the four main component functions, calcExpTables,
maxAllTableParams, BuildAllTables, and calcPnetLLike, are generic functions. In particular,
the cases argument is passed to calcExpTables and calcPnetLLike and must be whatever the
host Bayes net package regards as a collection of cases. In PNetica-package the cases argument
should be a filename of a Netica case file (see write.CaseFile).

The parameter tol controls the convergence checking. In particular, the algorithm stops when the
difference in log-likelihood (as computed by calcPnetLLike) between iterations is less than tol
in absolute value. If the number of iterations exceeds maxit the algorithm will stop and report lack
of convergence.

The E-step and the M-step are also both iterative; the parameters Estepit and Mstepit control
the number of iterations taken in each step respectively. As the goal of the E-step is to calculate
the expected tables of counts, the default value of 1 should be fine. Although the algorithm should
eventually converge for any value of Mstepit, different values may affect the convergence rate, and
analysts may need to experiment with application specific values of this parameter.

The arguments trace and debugNo are used to provide extra debugging information. Setting trace
to TRUE means that a message is printed after tables are built but before they are updated. Setting
debugNo to a certain integer, will begin node-by-node messages for both BuildAllTables and
maxAllTableParams. In particular, setting it to 1 is useful for debugging problems that occur at
initialization. If the problem turns up at a later cycle, the trace option can be used to figure out
when the error occurs.

Value

A list with three elements:

converged A logical flag indicating whether or not the algorithm reached convergence.

iter An integer scalar giving the number of iterations of the outer EM loop taken by
the algorithm (plus 1 for the starting point).

llikes A numeric vector of length iter giving the values of the log-likelihood after
each iteration. (The first value is the initial log likelihood.)

As a side effect the PnodeLnAlphas and PnodeBetas fields of all nodes in PnetPnodes(net)) are
updated to better fit the expected tables, and the internal conditional probability tables are updated
to match the new parameter values.

GEMfit 23

Logging and Debug Mode

As of version 0.6-2, the meaning of the trace and debugNo has changed. In the new version, the
flog.logger mechanism is used for progress reports, and error reporting.

Setting trace to true causes information about the steps of the algoritm (incluing the log likelihood
at each step) to be output to the current appender (see flog.appender) The logging is done at
the INFO level. As the default appender is the console, and INFO is the default logging level, the
meaning of this parameter hasn’t changed much.

The meaning of debugNo has changed, howver. Previously, it would turn on extra debug information
when the target iteration was reached. That information is now always logged at the DEBUG level.
So now if the current iteration reached debugNo, then GEMfit calls flog.threshold(DEBUG) to
provide more information. This allows the more detailed DEBUG-level messages to be turned on
when the EM algorithm is closer to convergence.

Note

Note that although this is not a generic function, the four main component functions: calcExpTables,
maxAllTableParams, BuildAllTables, and calcPnetLLike. All four must have specific imple-
mentations for this function to work. See the PNetica-package for an example.

These functions assume that the host Bayes net implementation (e.g., RNetica-package): (1) net
has an EM learning function, (2) the EM learning supports hyper-Dirichlet priors, (3) it is possible
to recover the hyper-Dirichlet posteriors after running the internal EM algorithm.

Author(s)

Russell Almond

References

Almond, R. G. (2015) An IRT-based Parameterization for Conditional Probability Tables. Paper
presented at the 2015 Bayesian Application Workshop at the Uncertainty in Artificial Intelligence
Conference.

See Also

Pnet, calcExpTables, calcPnetLLike, maxAllTableParams, BuildAllTables

Examples

Not run:

library(PNetica) ## Need a specific implementation
sess <- NeticaSession()
startSession(sess)

irt10.base <- ReadNetworks(paste(library(help="PNetica")$path,
"testnets","IRT10.2PL.base.dne",
sep=.Platform$file.sep),
session=sess)

24 GEMfit

irt10.base <- as.Pnet(irt10.base) ## Flag as Pnet, fields already set.
irt10.theta <- PnetFindNode(irt10.base,"theta")
irt10.items <- PnetPnodes(irt10.base)
Flag items as Pnodes
for (i in 1:length(irt10.items)) {

irt10.items[[i]] <- as.Pnode(irt10.items[[i]])
Add node to list of observed nodes
PnodeLabels(irt10.items[[1]]) <-

union(PnodeLabels(irt10.items[[1]]),"onodes")
}

casepath <- paste(library(help="PNetica")$path,
"testdat","IRT10.2PL.200.items.cas",
sep=.Platform$file.sep)

BuildAllTables(irt10.base)
PnetCompile(irt10.base) ## Netica requirement

item1 <- irt10.items[[1]]
priB <- PnodeBetas(item1)
priA <- PnodeAlphas(item1)
priCPT <- PnodeProbs(item1)

gemout <- GEMfit(irt10.base,casepath,trace=TRUE)

postB <- PnodeBetas(item1)
postA <- PnodeAlphas(item1)
postCPT <- PnodeProbs(item1)

Posterior should be different
stopifnot(

postB != priB, postA != priA
)

The network that was used for data generation.
irt10.true <- ReadNetworks(paste(library(help="PNetica")$path,

"testnets","IRT10.2PL.true.dne",
sep=.Platform$file.sep),
session=sess)

irt10.true <- as.Pnet(irt10.true) ## Flag as Pnet, fields already set.
irt10.ttheta <- PnetFindNode(irt10.true,"theta")
irt10.titems <- PnetPnodes(irt10.true)
Flag titems as Pnodes
for (i in 1:length(irt10.titems)) {

irt10.titems[[i]] <- as.Pnode(irt10.titems[[i]])
Add node to list of observed nodes
PnodeLabels(irt10.titems[[1]]) <-

union(PnodeLabels(irt10.titems[[1]]),"onodes")
}

is.legal.name 25

BuildAllTables(irt10.true)
PnetCompile(irt10.true) ## Netica requirement

See how close we are.
for (j in 1:length(irt10.titems)) {

cat("diff[",j,"] = ",
sum(abs(PnodeProbs(irt10.items[[j]])-

PnodeProbs(irt10.titems[[j]])))/
length(PnodeProbs(irt10.items[[j]])), "\n")

}

DeleteNetwork(irt10.base)
DeleteNetwork(irt10.true)

End(Not run)

is.legal.name Checks to see if names are valid for objects in warehouse.

Description

Objects in a warehouse may have restrictions on the names that are allowed. For example, Netica
nodes and nets must have names that follow common variable naming convention (alphanumeric,
starts with a letter, no embedded spaces, etc.). The function is.legal.name checks the name type,
and as.legal.name munges the name so that it is legal.

Usage

is.legal.name(warehouse, name)
as.legal.name(warehouse, name)

Arguments

warehouse A warehouse which defines the type of object.

name A character vector giving names to be tested or munged.

Value

For is.valid.name, a logical value returning the result of each test.

For as.valid.name, a character vector with the modified names.

Note

The BNWarehouse and NNWarehouse have a prefix field which is used to ensure that names always
start with a letter.

26 isPnodeContinuous

Author(s)

Russell Almond

Examples

Not run:
Requires PNetica
library(PNetica)

sess <- NeticaSession()
startSession(sess)

BNWarehouse is the PNetica Net Warehouse.
This provides an example network manifest.
table.dir <- file.path(library(help="Peanut")$path, "auxdata")
net.dir <- file.path(library(help="PNetica")$path, "testnets")

netman1 <- read.csv(file.path(table.dir,"Mini-PP-Nets.csv"),
row.names=1, stringsAsFactors=FALSE)

Nethouse <- BNWarehouse(manifest=netman1,session=sess,key="Name",
address=net.dir,prefix="S")

stopifnot(is.legal.name(Nethouse,c("CamelCase","Embedded Space")) ==
c(TRUE,FALSE),
as.legal.name(Nethouse,"100c3") == "S100c3")

This expression provides an example Node manifest
nodeman1 <- read.csv(file.path(table.dir,"Mini-PP-Nodes.csv"),

row.names=1,stringsAsFactors=FALSE)
Nodehouse <- NNWarehouse(manifest=nodeman1,

key=c("Model","NodeName"),
session=sess,prefix="V")

stopifnot(is.legal.name(Nodehouse,c("Neg1","-1")) ==
c(TRUE,FALSE),
as.legal.name(Nodehouse,1) == "V1")

End(Not run)

isPnodeContinuous Functions for handling continuous nodes.

Description

Continuous nodes are handled slightly differently from discrete nodes. The function isPnodeContinuous
returns a logical value indicating whether or not the node is continuous.

isPnodeContinuous 27

Continuous nodes can behave like discrete nodes (for the purposes of building conditional probabil-
ity tables, see BuildTable) if states are created from ranges of values. The function PnodeStateBounds
accesses those ranges.

Usage

isPnodeContinuous(node)
PnodeStateBounds(node)
PnodeStateBounds(node) <- value

Arguments

node A Pnode object.

value A k by 2 numeric matrix giving the upper and lower bound for each state.

Details

Continuous, in this case, covers nodes whose possible states are numeric, either integer or real. The
current model supports these nodes in a discrete Bayesian network by discretizing them. In partic-
ular, the range is broken up into a number of non-overlapping regions, each region corresponding
to a state.

For example, consider a variable which is a count, and the analyst wants to consider the values 0, 1,
2 or 3, and 4 or more. This can be done by setting bounds on these states:

"Zero" -0.5 0.5
"One" 0.5 1.5
"TwoThree" 1.5 3.5
"FourPlus" 3.5 Inf

This matrix is the NodeStateBounds for the node. Note that the second column is the same as the
first (offset by one). Note also that infinite (Inf and -Inf) values are allowed.

Setting the state bounds to a matrix with k rows, will make the variable behave as if it has k states.

Value

The function isPnodeContinuous returns a logical value.

The function PnodeStateBounds returns a k by 2 numeric matrix giving the upper and lower
bounds. Note that if bounds have not been set for the node, then it will return a matrix with 0
rows.

Note

This is rather strongly tied to how Netica treats continuous variables. A different mechism might
be necessary as Peanut is expanded to cover more implementations.

Right now, the value is the midpoint of the interval. This cause problems when converting to T-
values.

28 isPnodeContinuous

The setter function is very strict about the upper and lower bounds matching. Even a mismatch at
the least significant digit will cause a problem.

Author(s)

Russell Almond

See Also

Pnode, PnodeStateValues, PnodeParentTvals

Examples

Not run:
library(PNetica) ## Requires implementation
sess <- NeticaSession()
startSession(sess)

tNet <- CreateNetwork("TestNet",session=sess)

theta1 <- NewDiscreteNode(tNet,"theta1",
c("VH","High","Mid","Low","VL"))

PnodeStateValues(theta1) <- effectiveThetas(NodeNumStates(theta1))
stopifnot (!isPnodeContinuous(theta1))

This gives an error
out <- try(PnodeStateBounds(theta1))
stopifnot (is(out,'try-error'))

theta0 <- NewContinuousNode(tNet,"theta0")
stopifnot(nrow(PnodeStateBounds(theta0)) == 0L)

norm5 <-
matrix(c(qnorm(c(.001,.2,.4,.6,.8)),

qnorm(c(.2,.4,.6,.8,.999))),5,2,
dimnames=list(c("VH","High","Mid","Low","VL"),

c("LowerBound","UpperBound")))
PnodeStateBounds(theta0) <- norm5
PnodeStates(theta0)
PnodeStateBounds(theta0)
PnodeStateValues(theta0) ## Note these are medians not mean wrt normal!

DeleteNetwork(tNet)
stopSession(sess)

End(Not run)

maxAllTableParams 29

maxAllTableParams Find optimal parameters of Pnet or Pnode to match expected tables

Description

These functions assume that an expected count contingency table can be built from the network.
They then try to find the set of parameters maximizes the probability of the expected contingency
table with repeated calls to mapDPC. The function maxCPTParam maximizes a single Pnode and the
function maxAllTableParams maximizes all Pnodes (i.e., the value of PnetPnodes(net) in a Pnet.

Usage

maxAllTableParams(net, Mstepit = 5, tol = sqrt(.Machine$double.eps), debug=FALSE)

maxCPTParam(node, Mstepit = 5, tol = sqrt(.Machine$double.eps))

Arguments

net A Pnet object giving the parameterized network.

node A Pnode object giving the parameterized node.

Mstepit A numeric scalar giving the number of maximization steps to take. Note that the
maximization does not need to be run to convergence.

tol A numeric scalar giving the stopping tolerance for the maximizer.

debug A logical scalar. If true then recover is called after an error, so that the node in
question can be inspected.

Details

The GEMfit algorithm uses a generalized EM algorithm to fit the parameterized network to the
given data. This loops over the following steps:

E-step Run the internal EM algorithm of the Bayes net package to calculate expected tables for all
of the tables being learned. The function calcExpTables carries out this step.

M-step Find a set of table parameters which maximize the fit to the expected counts by calling
mapDPC for each table. The function maxAllTableParams does this step.

Update CPTs Set all the conditional probability tables in the network to the new parameter values.
The function BuildAllTables does this.

Convergence Test Calculate the log likelihood of the cases under the new parameters and stop if
no change. The function calcPnetLLike calculates the log likelihood.

The function maxAllTableParams performs the M-step of this operation. Under the global param-
eter independence assumption, the parameters for the conditional probability tables for different
nodes are independent given the sufficient statistics; that is, the expected contingency tables. The
default method of maxAllTableParams calls maxCPTParam on each node in PnetPnodes(net).

After the hyper-Dirichlet EM algorithm is run by calcExpTables, a hyper-Dirichlet prior should
be available for each conditional probability table. As the parameter of the Dirichlet distribution

30 maxAllTableParams

is a vector of pseudo-counts, the output of this algorithm should be a table of pseudo counts. Of-
ten this is stored as the updated conditional probability table and a vector of row weights indicat-
ing the strength of information for each row. Using the RNetica-package, this is calculated as:
sweep(NodeProbs(item1),1, NodeExperience(item1),"*")

The function maxCPTParm is essentially a wrapper which extracts the table of pseudo-counts from
the network and then calls mapDPC to maximize the parameters, updating the parameters of node to
the result.

The parameters Mstepit and tol are passed to mapDPC to control the gradient descent algorithm
used for maximization. Note that for a generalized EM algorithm, the M-step does not need to
be run to convergence, a couple of iterations are sufficient. The value of Mstepit may influence
the speed of convergence, so the optimal value may vary by application. The tolerance is largely
irrelevant (if Mstepit is small) as the outer EM algorithm does the tolerance test.

Value

The expression maxCPTParam(node) returns node invisibly. The expression maxAllTableParams(net)
returns net invisibly.

As a side effect the PnodeLnAlphas and PnodeBetas fields of node (or all nodes in PnetPnodes(net))
are updated to better fit the expected tables.

Logging and Debug Mode

As of version 0.6-2, the meaning of the debug argument is changed. In the new version, the
flog.logger mechanism is used for progress reports, and error reporting. In particular, setting
flog.threshold(DEBUG) (or TRACE) will cause progress reports to be sent to the logging output.

The debug argument has been repurposed. It now call recover when the error occurs, so that the
problem can be debugged.

Note

The function maxCPTParam is an abstract generic function, and it needs specific implementations.
See the PNetica-package for an example. A default implementation is provides for maxAllTableParams
which loops through calls to maxCPTParam for each node in PnetPnodes(net).

This function assumes that the host Bayes net implementation (e.g., RNetica-package): (1) net
has an EM learning function, (2) the EM learning supports hyper-Dirichlet priors, (3) it is possible
to recover the hyper-Dirichlet posteriors after running the internal EM algorithm.

Author(s)

Russell Almond

References

Almond, R. G. (2015) An IRT-based Parameterization for Conditional Probability Tables. Paper
presented at the 2015 Bayesian Application Workshop at the Uncertainty in Artificial Intelligence
Conference.

maxAllTableParams 31

See Also

Pnet, Pnode, GEMfit, calcPnetLLike, calcExpTables, mapDPC

Examples

Not run:

library(PNetica) ## Need a specific implementation
sess <- NeticaSession()
startSession(sess)

irt10.base <- ReadNetworks(paste(library(help="PNetica")$path,
"testnets","IRT10.2PL.base.dne",
sep=.Platform$file.sep),
session=sess)

irt10.base <- as.Pnet(irt10.base) ## Flag as Pnet, fields already set.
irt10.theta <- NetworkFindNode(irt10.base,"theta")
irt10.items <- PnetPnodes(irt10.base)
Flag items as Pnodes
for (i in 1:length(irt10.items)) {

irt10.items[[i]] <- as.Pnode(irt10.items[[i]])
Add node to list of observed nodes
PnodeLabels(irt10.items[[1]]) <-

union(PnodeLabels(irt10.items[[1]]),"onodes")
}

casepath <- paste(library(help="PNetica")$path,
"testdat","IRT10.2PL.200.items.cas",
sep=.Platform$file.sep)

BuildAllTables(irt10.base)
PnetCompile(irt10.base) ## Netica requirement

item1 <- irt10.items[[1]]
priB <- PnodeBetas(item1)
priA <- PnodeAlphas(item1)
priCPT <- PnodeProbs(item1)

gemout <- GEMfit(irt10.base,casepath,trace=TRUE)

calcExpTables(irt10.base,casepath)

maxAllTableParams(irt10.base)

postB <- PnodeBetas(item1)
postA <- PnodeAlphas(item1)
BuildTable(item1)
postCPT <- PnodeProbs(item1)

Posterior should be different
stopifnot(

32 NodeGadget

postB != priB, postA != priA
)

DeleteNetwork(irt10.base)
stopSession(sess)

End(Not run)

NodeGadget Shiny gadget for editing parameterized nodes (PNodes)

Description

These functions open a shiny application (in a browser window) for editing a Pnode object. The
various functions make assumptions about the relevant parameters to reduce unneeded complexity.

Usage

CompensatoryGadget(pnode, color="firebrick")
OffsetGadget(pnode, color="plum")
RegressionGadget(pnode, useR2 = PnodeNumParents(pnode)>0L,

color="sienna")
DPCGadget(pnode, color="steelblue")

Arguments

pnode A Pnode object to be modified.

useR2 Logical value, if true (default for nodes with at least one parent), then R-squared
will be used instead of the actual link scale parameter on the graphical input.

color A base color to use for barcharts (see barchart.CPF). Execute colors() for a
list of choices.

Details

Each function puts limits on the number of parameters.

The CompensatoryGadget assumes that:

• The link function is partialCredit or gradedResponse.

• There is a single rule for all states, and PnodeQ(pnode)=TRUE.

• One of the multiple-a rules: Compensatory, Conjunctive or Disjunctive is used, so that
there is one alpha for each parent.

• There is one beta for each state except the last, which is a reference state.

It is most useful for compensatory models.

The OffsetGadget assumes that:

NodeGadget 33

• The link function is partialCredit or gradedResponse (although the latter only works cor-
rectly if there are only two states in the child variable.

• There is a single rule for all states, and PnodeQ(pnode)=TRUE.

This is most useful for when the pnode is a proficiency variable, as the normal link is the inverse of
the discretization used by PnodeParentTvals.

The RegressionGadget assumes that:

• The link function is normalLink and a link scale parameter is needed.

• There is a single rule for all states, and PnodeQ(pnode)=TRUE.

• One of the multiple-a rules: Compensatory, Conjunctive or Disjunctive is used, so that
there is one alpha for each parent. The alphas are called slopes.

• There is one beta, and the probabilities are controlled by the spread. Negative beta is used and
called an intercept.

The link scale parameter can be specified either directly, or via R-squared. In the no parent case,
direct parameter is needed. In the case of multiple parents, the default is to specify the R-squared
and calculate the link scale based on the slopes and R-squared. This behavior can be overridden
with the useR model. This gadget works for variables with no parents (the others all assume at least
one parent).

Value

If the user presses “Done” on the interface, the result is a modified version of the final pnode
argument.

If the user presses “Cancel” a ‘Cancel-Error’ is raised, and pnode is not modified (even if pnode is
a reference class object).

Author(s)

Russell Almond

References

Almond, R. G. (2015) An IRT-based Parameterization for Conditional Probability Tables. Paper
presented at the 2015 Bayesian Application Workshop at the Uncertainty in Artificial Intelligence
Conference.

See Also

Pnode, calcDPCFrame, barchart.CPF

Examples

Not run:
library(PNetica) ## Requires implementation
sess <- NeticaSession()
startSession(sess)

34 NodeGadget

tNet <- CreateNetwork("TestNet",sess)

theta1 <- NewDiscreteNode(tNet,"theta1",
c("VH","High","Mid","Low","VL"))

PnodeStateValues(theta1) <- effectiveThetas(PnodeNumStates(theta1))
PnodeProbs(theta1) <- rep(1/PnodeNumStates(theta1),PnodeNumStates(theta1))
theta2 <- NewDiscreteNode(tNet,"theta2",

c("VH","High","Mid","Low","VL"))
PnodeStateValues(theta2) <- effectiveThetas(PnodeNumStates(theta2))
PnodeProbs(theta2) <- rep(1/PnodeNumStates(theta1),PnodeNumStates(theta2))

CompensatoryGadget

partial3 <- NewDiscreteNode(tNet,"partial3",
c("FullCredit","PartialCredit","NoCredit"))

PnodeParents(partial3) <- list(theta1,theta2)

Usual way to set rules is in constructor
partial3 <- Pnode(partial3,rules="Compensatory", link="partialCredit")
PnodePriorWeight(partial3) <- 10
BuildTable(partial3)

partial3 <- CompensatoryGadget(partial3)

OffsetGadget

PnodeRules(partial3) <- "OffsetConjunctive"
Single slope parameter for each transition
PnodeLnAlphas(partial3) <- 0
PnodeQ(partial3) <- TRUE
PnodeBetas(partial3) <- c(0,1)
BuildTable(partial3)

partial3 <- OffsetGadget(partial3)

Regression Gadget

PnodeRules(partial3) <- "Compensatory"
PnodeLink(partial3) <- "normalLink"
PnodeLinkScale(partial3) <- 1.0

partial3 <- RegressionGadget(partial3)

Single parent case
theta2 <- Pnode(theta2,c(),0,link="normalLink",linkScale=1)
theta2 <- RegressionGadget(theta2)

Complex case with Q-matrix
Set up so that first skill only needed for first transition, second
skill for second transition; Adjust alphas to match
PnodeQ(partial3) <- matrix(c(TRUE,TRUE,

TRUE,FALSE), 2,2, byrow=TRUE)
PnodeLnAlphas(partial3) <- list(FullCredit=c(-.25,.25),

Omega2Pnet 35

PartialCredit=0)

partial3 <- DPCGadget(partial3)

DeleteNetwork(tNet)
stopSession(sess)

End(Not run)

Omega2Pnet Constructs a parameterized network from an Omega matrix.

Description

An Omega matrix (represented as a data frame) is a structure which describes a Bayesian network
as a series of regressions from the parent nodes to the child nodes. It actually contains two ma-
trixes, one giving the structure and the other the regression coefficients. A skeleton matrix can be
constructed through the function Pnet2Omega.

Usage

Omega2Pnet(OmegaMat, pn, nodewarehouse, defaultRule = "Compensatory",
defaultLink = "normalLink", defaultAlpha = 1, defaultBeta = 0,
defaultLinkScale = 1, defaultPriorWeight=10, debug = FALSE, override =FALSE,
addTvals = TRUE)

Arguments

OmegaMat A data frame containing an Omega matrix (see values section of Pnet2Omega).

pn A (possible empty) Pnet object. This will be modified by the function.

nodewarehouse A Node Warehouse which contains instructions for building nodes referenced in
the Omega matrix but not in the network.

defaultRule This should be a character scalar giving the name of a CPTtools combination
rule (see Compensatory). With the regression model assumed in the algorithm,
currently “Compensatory” is the only value that makes sense.

defaultLink This should be a character scalar giving the name of a CPTtools link function
(see normalLink). With the regression model assumed in the algorithm, cur-
rently “normalLink” is the only value that makes sense.

defaultAlpha A numeric scalar giving the default value for slope parameters.

defaultBeta A numeric scalar giving the default value for difficulty (negative intercept) pa-
rameters.

defaultLinkScale

A positive number which gives the default value for the link scale parameter.
defaultPriorWeight

A positive number which gives the default value for the node prior weight hyper-
parameter.

36 Omega2Pnet

debug A logical scalar. If true then recover is called after an error, so that the node in
question can be inspected.

override A logical value. If false, differences between any exsiting structure in the graph
and the Omega matrix will raise an error. If true, the graph will be modified to
conform to the matrix.

addTvals A logical value. If true, nodes which do not have state values set, will have those
state values set using the function effectiveThetas.

Details

Whittaker (1990) noted that a normal Bayesian network (one in which all nodes followed a standard
normal distribution) could be described using the inverse of the covariance matrix, often denoted
Omega. In particular, zeros in the inverse covariance matrix represented variables which were
conditionally independent, and therefore reducing the matrix to one with positive and zero values
could provide the structure for a graphical model. Almond (2010) proposed using this as the basis
for specifying discrete Bayesian networks for the proficiency model in educational assessments
(especially as correlation matrixes among latent variables are a possible output of a factor analysis).

The Omega matrix is represented with a data.frame object which contains two square submatrixes
and a couple of auxiliary columns. The first column should be named “Node” and contains the
names of the nodes. This defines a collection of nodes which are defined in the Omega matrix. Let
J be the number of nodes (rows in the data frame). The next J columns should have the names the
nodes . Their values give the structural component of the matrix. The following two columns are
“Link” and “Rules” these give the name of the combination rule and link function to use for this
row. Next follows another series J “A” columns, each should have a name of the form “A.node”.
This defines a matrix A containing regression coefficients. Finally, there should be two additional
columns, “Intercept” and “PriorWeight”.

Let Q be the logical matrix formed by the J columns after the first and let A be the matrix of
coefficients. The matrix Q gives the structure of the graph with Q[i, j] being true when Node j
is a parent of node i. By convention, Q[j, j] = 1. Note that unlike the inverse covariance matrix
from which it gets its name, this matrix is not symmetric. It instead reflects the (possibly arbitrary)
directions assigned to the edges. Except for the main diagonal, Q[i, j] andQ[j, i] will not both be 1.
Note also, that A[i, j] should be positive only when Q[i, j] = 1. This provides an additional check
that structures were correctly entered if the Omega matrix is being used for data entry.

When the link function is set to normalLink and the rules is set of Compensatory the model is
described as a series of regressions. Consider Node j which has K parents. Let θj be a real value
corresponding to that node and let θk be a real (standard normal) value representing Parent Node
k ak represent the corresponding coefficient from the A-table. Let σj = aj,j that is the diagonal
element of the A-table corresponding to the variable under consideration. Let bj be the value of the
intercept column for Node j. Then the model specifies that thetaj has a normal distribution with
mean

1√
K

∑
akθk + bj ,

and standard deviation σj . The regression is discretized to calculate the conditional probability
table (see normalLink for details).

Note that the parameters are deliberately chosen to look like a regression model. In particular,
bj is a normal intercept and not a difficulty parameter, so that in general PnodeBetas applied to
the corresponding node will have the opposite sign. The 1/

√
K term is a variance stabilization

Omega2Pnet 37

parameter so that the variance of θj will not be affected by number of parents of Node j. The
multiple R-squared for the regression model is

1/K
∑
a2k

1/K
∑
a2k + σ2

j

.

This is often a more convenient parameter to elicit than σj .

The function Omega2Pnet attempts to make adjustments to its pnet argument, which should be
a Pnet, so that it conforms to the information given in the Omega matrix. Nodes are created as
necessary using information in the nodewarehouse argument, which should be a Warehouse object
whose manifest includes instructions for building the nodes in the network. The warehouse supply
function should either return an existing node in pnet or create a new node in pnet. The structure
of the graph is adjusted to correspond to the Q-matrix (structural part of the data frame). If the value
of the override argument is false, an error is raised if there is existing structure with a different
topology. If override is true, then the pnet is destructively altered to conform to the structural
information in the Omega matrix.

The “Link” and “Rules” columns are used to set the values of PnodeLink(node) and PnodeRules(node).
The off-diagonal elements of the A-matrix are used to set PnodeAlphas(node) and the diagonal
elements to set PnodeLinkScale(node). The values in the “Intercept” column are the negatives
of the values PnodeBetas(node). Finally, the values in the “PriorWeight” column correspond to
the values of PnodePriorWeight(node). In any of these cases, if the value in the Omega matrix is
missing, then the default value will be supplied instead.

One challenge is setting up a matrix with the correct structure. If the nodes have been defined, the
the Pnet2Omega can be used to create a blank matrix with the proper format which can then be
edited.

Value

The network pnet is returned. Note that it is destructively modified by the commands to conform
to the Omega matrix.

Omega Matrix Structure

An Omega Matrix should be an object of class data.frame with number of rows equal to the
number of nodes. Throughout let node stand for the name of a node.

Node The name of the node described in this column.

node One column for each node. The value in this column should be 1 if the node in the column is
regarded as a parent of the node referenced in the row.

Link The name of a link function. Currently, “normalLink” is the only value supported.

Rules The name of the combination rule to use. Currently, “Compensatory” is recommended.

A.node One column for each node. This should be a positive value if the corresponding node
column has a 1. This gives the regression coefficient. If node corresponds to the current row,
this is the residual standard deviation rather than a regression coefficient. See details.

Intercept A numeric value giving the change in prevalence for the two variables (see details).

PriorWeight The amount of weight which should be given to the current values when learning
conditional probability tables. See PnodePriorWeight.

38 Omega2Pnet

Logging and Debug Mode

As of version 0.6-2, the meaning of the debug argument is changed. In the new version, the
flog.logger mechanism is used for progress reports, and error reporting. In particular, setting
flog.threshold(DEBUG) (or TRACE) will cause progress reports to be sent to the logging output.

The debug argument has been repurposed. It now call recover when the error occurs, so that the
problem can be debugged.

Side Effects

This function destructively modifies pnet and nodes referenced in the Qmat and supplied by the
warehouses.

Note that unlike typical R implementations, this is not necessarily safe. In particular, if the Qmat
references 10 node, and an error is raised when trying to modify the 5th node, the first 4 nodes will
be modified, the last 5 will not be and the 5th node may be partially modified. This is different from
most R functions where changes are not committed unless the function returns successfully.

Note

While the Omega matrix allows the user to specify both link function and combination rule, the
description of the Bayesian network as a series of regressions only really makes sense when the
link function is normalLink and the combination rule is Compensatory. These are included for
future exapnsion.

The representation, using a single row of the data frame for each node in the graph, only works
well with the normal link function. In particular, both the partial credit and graded response links
require the ability to specify different intercepts for different states of the variable, something which
is not supported in the Omega matrix. Furthermore, the OffsetConjunctive rule requires multiple
intercepts. Presumable the Conjunctive rule could be used, but the interpretation of the slope
parameters is then unclear. If the variables need a model other than the compensatory normal
model, it might be better to use a Q-matrix (see Pnet2Qmat to describe the variable.

Author(s)

Russell Almond

References

Whittaker, J. (1990). Graphical Models in Applied Multivariate Statistics. Wiley.

Almond, R. G. (2010). ‘I can name that Bayesian network in two matrixes.’ International Journal
of Approximate Reasoning. 51, 167-178.

Almond, R. G. (presented 2017, August). Tabular views of Bayesian networks. In John-Mark
Agosta and Tomas Singlair (Chair), Bayeisan Modeling Application Workshop 2017. Symposium
conducted at the meeting of Association for Uncertainty in Artificial Intelligence, Sydney, Australia.
(International) Retrieved from http://bmaw2017.azurewebsites.net/

http://bmaw2017.azurewebsites.net/

Omega2Pnet 39

See Also

The inverse operation is Pnet2Omega.

See Warehouse for description of the node warehouse argument.

See normalLink and Compensatory for more information about the mathematical model.

The node attributes set from the Omega matrix include: PnodeParents(node), PnodeLink(node),
PnodeLinkScale(node), PnodeRules(node), PnodeAlphas(node), PnodeBetas(node), and PnodePriorWeight(node)

Examples

Sample Omega matrix.
omegamat <- read.csv(paste(library(help="Peanut")$path, "auxdata",

"miniPP-omega.csv", sep=.Platform$file.sep),
row.names=1,stringsAsFactors=FALSE)

Not run:
library(PNetica) ## Needs PNetica
sess <- NeticaSession()
startSession(sess)

curd <- getwd()

netman1 <- read.csv(paste(library(help="Peanut")$path, "auxdata",
"Mini-PP-Nets.csv", sep=.Platform$file.sep),

row.names=1,stringsAsFactors=FALSE)

nodeman1 <- read.csv(paste(library(help="Peanut")$path, "auxdata",
"Mini-PP-Nodes.csv", sep=.Platform$file.sep),

row.names=1,stringsAsFactors=FALSE)

Insures we are building nets from scratch
setwd(tempdir())
Network and node warehouse, to create networks and nodes on demand.
Nethouse <- BNWarehouse(manifest=netman1,session=sess,key="Name")

Nodehouse <- NNWarehouse(manifest=nodeman1,
key=c("Model","NodeName"),
session=sess)

CM <- WarehouseSupply(Nethouse,"miniPP_CM")
CM1 <- Omega2Pnet(omegamat,CM,Nodehouse,override=TRUE,debug=TRUE)

Om2 <- Pnet2Omega(CM1,NetworkAllNodes(CM1))

DeleteNetwork(CM)
stopSession(sess)
setwd(curd)

End(Not run)

40 Pnet

Pnet A Parameterized Bayesian network

Description

A parameterized Bayesian network. Note that this an abstract class. If an object implements the
Pnet protocol, then is.Pnet(net) should return TRUE.

Usage

is.Pnet(x)
as.Pnet(x)
Pnet(net, priorWeight=10, pnodes=list())
S4 method for signature 'ANY'
Pnet(net, priorWeight=10, pnodes=list())

Arguments

x A object to test to see if it a parameterized network, or to coerce into a parame-
terized network.

net A network object which will become the core of the Pnet. Note that this should
probably already be another kind of network, e.g., a NeticaBN object.

priorWeight A numeric vector providing the default prior weight for nodes.

pnodes A list of objects which can be coerced into node objects. Note that the function
does not do the coercion.

Details

The Pnet class is basically a protocol which any Bayesian network net object can follow to work
with the tools in the Peanut package. This is really an abstract class (in the java programming
language, Pnet would be an interface rather than a class). In particular, a Pnet is any object for
which is.Pnet returns true. The default method looks for the string "Pnet" in the class list.

A Pnet object has two “fields” (implemented through the accessor methods). The function PnetPnodes
returns a list of parameterized nodes or Pnodes associate with the network. The function PnetPriorWeight
gets (or sets) the default weight to be used for each node.

The default constructor adds "Pnet" to the class of net and then sets the two fields using the
accessor functions. There is no default method for the as.Pnet function.

In addition to the required fields, there are several optional fields. The methods PnetName(),
PnetTitle(), PnetDescription(), and PnetPathname() all provide generic setters and getters
for mostly self-explanatory properties of the network. For model fragments (such as evidence mod-
els) which are meant to be ajoined to other networks, the accessor PnetHub() returns the name of
the network to which it is to be adjoined (such as a proficiency model). These optional feilds are

Pnet 41

referenced by the function BuildNetManifest() which builds a table of meta-data from which to
construct a network.

The Pnet supports hub-and-spoke architectures for Bayes nets. The hub is a complete Bayesian net-
work to which spokes, network fragments are attached. For example, in a typical educational testing
application, the centeral student proficiency model will be the hub, and the evidence models linking
the proficiency variables to the observable outcomes, will be the spokes. Only the spokes corre-
sponding to the tasks on a given test form need to be attached to draw inferences. Spoke models
are generally model fragments because they contain “stub” nodes, references to nodes in the corre-
sponding hub model. The function PnetHub() returns or sets the name of the hub model for a spoke.
For a hub net, this function returns character(0) or NULL. The function PnetMakeStubNodes()
will create stub node objects in the spoke model, and the function PnetRemoveStubNodes() will
remove them. These are called before and after creating graph structures in Qmat2Pnet. The func-
tions PnetAdjoin() and PnetDetach() adjoin a hub and spoke node, matching the stub variables
with their real counterparts and detach them (reversing the process).

The importance of the Pnet object is that it supports the GEMfit method which adjust the param-
eters of the Pnode objects to fit a set of case data. In order to be compatible with GEMfit, the
Pnet object must support four methods: BuildAllTables, calcPnetLLike, calcExpTables, and
maxAllTableParams.

The generic function BuildAllTables builds conditional probability tables from the current values
of the parameters in all Pnodes. The default method loops through all of the nodes in PnetPnodes
and calls the function BuildTable on each.

The generic function calcPnetLLike calculates the log likelihood of a set of cases given the current
values of the parameters. There is no default for this method as it implementation dependent.

The generic function calcExpTables calculates expected cross-tabs for all CPT for the Pnodes
given a set of case data. The easiest way to do this is to run the EM algorithm for an unconstrained
hyper-Dirichlet model for one or two cycles. There is no default for this as it is implementation
dependent.

The generic function maxAllTableParams calculates the parameters that maximize the fit to the
expected tables for each Pnode. The default method loops over PnetPnodes(net) and applies the
method maxCPTParam to each.

Value

The function is.Pnet returns a logical scalar indicating whether or not the object claims to follow
the Pnet protocol.

The function as.Pnet and Pnet convert the argument into a Pnet and return that.

Author(s)

Russell Almond

References

Almond, R. G. (2015) An IRT-based Parameterization for Conditional Probability Tables. Paper
presented at the 2015 Bayesian Application Workshop at the Uncertainty in Artificial Intelligence
Conference.

42 Pnet

See Also

Fields: PnetPriorWeight, PnetPnodes

Generic Functions: BuildAllTables, calcPnetLLike, calcExpTables, maxAllTableParams, PnetName(),
PnetTitle(), PnetDescription(), PnetPathname(), PnetAdjoin(), PnetDetach(), PnetMakeStubNodes(),
PnetRemoveStubNodes(), PnetFindNode()

Functions: GEMfit, BuildNetManifest, Pnet2Qmat, Pnet2Omega, Qmat2Pnet, Omega2Pnet

Related Classes: Pnode, Warehouse

Examples

Not run:

library(PNetica) ## Implementation of Peanut protocol
sess <- NeticaSession()
startSession(sess)
Create network structure using RNetica calls
IRT10.2PL <- CreateNetwork("IRT10_2PL",session=sess)

theta <- NewDiscreteNode(IRT10.2PL,"theta",
c("VH","High","Mid","Low","VL"))

PnodeStateValues(theta) <- effectiveThetas(PnodeNumStates(theta))
PnodeProbs(theta) <- rep(1/PnodeNumStates(theta),PnodeNumStates(theta))

J <- 10 ## Number of items
items <- NewDiscreteNode(IRT10.2PL,paste("item",1:J,sep=""),

c("Correct","Incorrect"))
for (j in 1:J) {

PnodeParents(items[[j]]) <- list(theta)
PnodeStateValues(items[[j]]) <- c(1,0)
PnodeLabels(items[[j]]) <- c("observables")

}

Convert into a Pnet
IRT10.2PL <- Pnet(IRT10.2PL,priorWeight=10,pnodes=items)

Draw random parameters
btrue <- rnorm(J)
lnatrue <- rnorm(J)/sqrt(3)
dump(c("btrue","lnatrue"),"IRT10.2PL.params.R")

Convert nodes to Pnodes
for (j in 1:J) {

items[[j]] <- Pnode(items[[j]],lnatrue[j],btrue[j])
}
BuildAllTables(IRT10.2PL)
is.Pnet(IRT10.2PL)
WriteNetworks(IRT10.2PL,"IRT10.2PL.true.dne")

DeleteNetwork(IRT10.2PL)
stopSession(sess)

Pnet-class 43

End(Not run)

Pnet-class Class "Pnet"

Description

This is a virtual class. Classes implementing the Pnet protocol should attach themselves using
setIs.

Note that NULL is always considered a member so that uninitialized in containers.

Objects from the Class

A virtual Class: No objects may be created from it.

Classes can register as belonging to this abstract class. The trick for doing this is: setIs("NetClass","Pnet")

Currently NeticaBN is an example of an object of this class (but requires the PNetica package to
provide all of the required functionality).

Methods

No methods defined with class "Pnet" in the signature; however, the following generic functions are
available:

PnetName signature(net = "Pnet"): Fetches network name.

PnetName<- signature(net = "Pnet", value="character"): Sets network name.

PnetTitle signature(net = "Pnet"): Fetches network title.

PnetTitle<- signature(net = "Pnet", value="character"): Sets network title.

PnetHub signature(net = "Pnet"): Fetches name of hub (Proficiency model) if this is a spoke
network (Evidence model).

PnetHub<- signature(net = "Pnet", value): Sets name of hub model.

PnetPathname signature(net = "Pnet"): Fetches name of file in which network is saved.

PnetPathname<- signature(net = "Pnet", value): Sets name of file in which network is
saved.

PnetDescription signature(net = "Pnet"): Fetches documentation string for network.

PnetDescription<- signature(net = "Pnet", value="character"): Sets documentation
string for network.

PnetFindNode signature(net = "Pnet", name="character"): Finds a node by name.

PnetMakeStubNodes signature(net = "Pnet", nodes = "list"): Copies nodes
from hub model into spoke model.

44 Pnet2Omega

PnetRemoveStubNodes signature(net = "Pnet", nodes = "list"): Removes
copied nodes from hub model.

PnetAdjoin signature(hub = "Pnet", spoke = "Pnet"): Attaches spoke to hub, matching
stub nodes in spoke with their counterparts in the hub.

PnetDetach signature(motif = "Pnet", spoke = "Pnet"): Removes the spoke from the motif
(combined hub and spoke).

PnetCompile signature(net = "Pnet"): Performs topological transformations on the net to
make it ready for inference.

PnetSerialize signature(net = "Pnet"): Saves the net to a string which can be stored in a
database.

PnetUnserialize signature(serial = "character"): Reverses the above procedure.
unserializePnet signature(factory, data): this is an improved version of unserialize that as-

sumes a store of networks.

Pwned

R really doesn’t want me to do this. I’m just having a lot of difficulty creating a class that extends
something from a different package.

For now, need to use "ANY" instead of "Pnet" and then do explicit type checking with is.Pnet.

Author(s)

Russell Almond

See Also

Pnet.

The class NeticaBN implements this protocol.

Examples

showClass("Pnet")
Not run:
setIs("NeticaBN","Pnet")

End(Not run)

Pnet2Omega Constructs an Omega matrix from a parameterized network.

Description

An Omega matrix (represented as a data frame) is a structure which describes a Bayesian network
as a series of regressions from the parent nodes to the child nodes. It actually contains two matrixes,
one giving the structure and the other the regression coefficients. If the parameters have not yet been
added to nodes, then the function will use the supplied default values allowing the parameters to
later be defined through the use of the function Pnet2Omega.

Pnet2Omega 45

Usage

Pnet2Omega(net, prof, defaultRule = "Compensatory", defaultLink = "normalLink", defaultAlpha = 1, defaultBeta = 0, defaultLinkScale = 1, debug = FALSE)

Arguments

net A Pnet object containing the network to be described.

prof A list of Pnode objects which will become the rows and columns of the matrix.

defaultRule This should be a character scalar giving the name of a CPTtools combination
rule (see Compensatory). With the regression model assumed in the algorithm,
currently “Compensatory” is the only value that makes sense.

defaultLink This should be a character scalar giving the name of a CPTtools link function
(see normalLink). With the regression model assumed in the algorithm, cur-
rently “normalLink” is the only value that makes sense.

defaultAlpha A numeric scalar giving the default value for slope parameters.

defaultBeta A numeric scalar giving the default value for difficulty (negative intercept) pa-
rameters.

defaultLinkScale

A positive number which gives the default value for the link scale parameter.

debug A logical value. If true, extra information will be printed during process of
building the Omega matrix.

Details

Whittaker (1990) noted that a normal Bayesian network (one in which all nodes followed a standard
normal distribution) could be described using the inverse of the covariance matrix, often denoted
Omega. In particular, zeros in the inverse covariance matrix represented variables which were
conditionally independent, and therefore reducing the matrix to one with positive and zero values
could provide the structure for a graphical model. Almond (2010) proposed using this as the basis
for specifying discrete Bayesian networks for the proficiency model in educational assessments
(especially as correlation matrixes among latent variables are a possible output of a factor analysis).

The Omega matrix is represented with a data.frame object which contains two square submatrixes
and a couple of auxiliary columns. The first column should be named “Node” and contains the
names of the nodes. This defines a collection of nodes which are defined in the Omega matrix. Let
J be the number of nodes (rows in the data frame). The next J columns should have the names the
nodes . Their values give the structural component of the matrix. The following two columns are
“Link” and “Rules” these give the name of the combination rule and link function to use for this
row. Next follows another series J “A” columns, each should have a name of the form “A.node”.
This defines a matrix A containing regression coefficients. Finally, there should be two additional
columns, “Intercept” and “PriorWeight”.

Let Q be the logical matrix formed by the J columns after the first and let A be the matrix of
coefficients. The matrix Q gives the structure of the graph with Q[i, j] being true when Node j
is a parent of node i. By convention, Q[j, j] = 1. Note that unlike the inverse covariance matrix
from which it gets its name, this matrix is not symmetric. It instead reflects the (possibly arbitrary)
directions assigned to the edges. Except for the main diagonal, Q[i, j] andQ[j, i] will not both be 1.
Note also, that A[i, j] should be positive only when Q[i, j] = 1. This provides an additional check
that structures were correctly entered if the Omega matrix is being used for data entry.

46 Pnet2Omega

When the link function is set to normalLink and the rules is set of Compensatory the model is
described as a series of regressions. Consider Node j which has K parents. Let θj be a real value
corresponding to that node and let θk be a real (standard normal) value representing Parent Node
k ak represent the corresponding coefficient from the A-table. Let σj = aj,j that is the diagonal
element of the A-table corresponding to the variable under consideration. Let bj be the value of the
intercept column for Node j. Then the model specifies that thetaj has a normal distribution with
mean

1√
K

∑
akθk + bj ,

and standard deviation σj . The regression is discretized to calculate the conditional probability
table (see normalLink for details).

Note that the parameters are deliberately chosen to look like a regression model. In particular,
bj is a normal intercept and not a difficulty parameter, so that in general PnodeBetas applied to
the corresponding node will have the opposite sign. The 1/

√
K term is a variance stabilization

parameter so that the variance of θj will not be affected by number of parents of Node j. The
multiple R-squared for the regression model is

1/K
∑
a2k

1/K
∑
a2k + σ2

j

.

This is often a more convenient parameter to elicit than σj .

The function Pnet2Omega builds an Omega matrix from an existing Pnet. Only the nodes specified
in the prof argument are included in the matrix, each row corresponding to a node. The values in
the “Node” column are taken from PnodeName(node). The values in the structural part of the matrix
are taken from the graphical structure, specifically PnodeParents(node). The “Link” and “Rules”
columns are taken from PnodeLink(node) and PnodeRules(node). The off-diagonal elements of
the A-matrix are taken from the values of PnodeAlphas(node) and the diagonal elements from
PnodeLinkScale(node). The values in the “Intercept” column are the negatives of the values
PnodeBetas(node). Finally, the values in the “PriorWeight” column correspond to the values of
PnodePriorWeight(node); note that a value of NA indicates that the prior weight should be taken
from the Pnet.

If the nodes do not yet have the various parameters set, then this function will create a blank Omega
matrix, with default values (set from various optional arguments) for entries where the parameters
have not yet been set. This matrix can then be edited and read back in with Omega2Pnet as a way
of setting the parameters of the network.

Value

An object of class (OmegaMat,data.frame) with number of rows equal to the number of nodes.
Throughout let node stand for the name of a node.

Node The name of the node described in this column.

node One column for each node. The value in this column should be 1 if the node in
the column is regarded as a parent of the node referenced in the row.

Link The name of a link function. Currently, “normalLink” is the only value sup-
ported.

Rules The name of the combination rule to use. Currently, “Compensatory” is recom-
mended.

Pnet2Omega 47

A.node One column for each node. This should be a positive value if the corresponding
node column has a 1. This gives the regression coefficient. If node corresponds
to the current row, this is the residual standard deviation rather than a regression
coefficient. See details.

Intercept A numeric value giving the change in prevalence for the two variables (see de-
tails).

PriorWeight The amount of weight which should be given to the current values when learning
conditional probability tables. See PnodePriorWeight.

Note

While the Omega matrix allows the user to specify both link function and combination rule, the
description of the Bayesian network as a series of regressions only really makes sense when the
link function is normalLink and the combination rule is Compensatory. These are included for
future exapnsion.

The representation, using a single row of the data frame for each node in the graph, only works
well with the normal link function. In particular, both the partial credit and graded response links
require the ability to specify different intercepts for different states of the variable, something which
is not supported in the Omega matrix. Furthermore, the OffsetConjunctive rule requires multiple
intercepts. Presumable the Conjunctive rule could be used, but the interpretation of the slope
parameters is then unclear. If the variables need a model other than the compensatory normal
model, it might be better to use a Q-matrix (see Pnet2Qmat to describe the variable.

Author(s)

Russell Almond

References

Whittaker, J. (1990). Graphical Models in Applied Multivariate Statistics. Wiley.

Almond, R. G. (2010). ‘I can name that Bayesian network in two matrixes.’ International Journal
of Approximate Reasoning. 51, 167-178.

Almond, R. G. (presented 2017, August). Tabular views of Bayesian networks. In John-Mark
Agosta and Tomas Singlair (Chair), Bayeisan Modeling Application Workshop 2017. Symposium
conducted at the meeting of Association for Uncertainty in Artificial Intelligence, Sydney, Australia.
(International) Retrieved from http://bmaw2017.azurewebsites.net/

See Also

The inverse operation is Omega2Pnet.

See normalLink and Compensatory for more information about the mathematical model.

The node functions from which the Omega matrix is populated includes: PnodeParents(node),
PnodeLink(node), PnodeLinkScale(node), PnodeRules(node), PnodeAlphas(node), PnodeBetas(node),
and PnodePriorWeight(node)

http://bmaw2017.azurewebsites.net/

48 Pnet2Qmat

Examples

Sample Omega matrix.
omegamat <- read.csv(paste(library(help="Peanut")$path, "auxdata",

"miniPP-omega.csv", sep=.Platform$file.sep),
row.names=1,stringsAsFactors=FALSE)

Not run:
library(PNetica) ## Needs PNetica
sess <- NeticaSession()
startSession(sess)
curd <- getwd()

netman1 <- read.csv(paste(library(help="Peanut")$path, "auxdata",
"Mini-PP-Nets.csv", sep=.Platform$file.sep),

row.names=1,stringsAsFactors=FALSE)

nodeman1 <- read.csv(paste(library(help="Peanut")$path, "auxdata",
"Mini-PP-Nodes.csv", sep=.Platform$file.sep),

row.names=1,stringsAsFactors=FALSE)

Insures we are building nets from scratch
setwd(tempdir())
Network and node warehouse, to create networks and nodes on demand.
Nethouse <- BNWarehouse(manifest=netman1,session=sess,key="Name")

Nodehouse <- NNWarehouse(manifest=nodeman1,
key=c("Model","NodeName"),
session=sess)

CM <- WarehouseSupply(Nethouse,"miniPP_CM")
CM1 <- Omega2Pnet(omegamat,CM,Nodehouse,override=TRUE,debug=TRUE)

Om2 <- Pnet2Omega(CM1,NetworkAllNodes(CM1))

class(omegamat) <- c("OmegMat","data.frame") # To match Pnet2Omega output.
omegamat$PriorWeight <- rep("10",nrow(omegamat))

stopifnot(all.equal(omegamat,Om2))

DeleteNetwork(CM)
stopSession(sess)
setwd(curd)

End(Not run)

Pnet2Qmat Makes an augmented Q-matrix from a collection of parameterized nets

Pnet2Qmat 49

Description

In augmented Q-matrix, there is a set of rows for each Pnode which describes the conditional
probability table for that node in terms of the model parameters (see BuildTable). As the Pnodes
could potentially come from multiple nets, the key for the table is (“Model”, “Node”). As there are
multiple rows per node, “State” is the third part of the key.

The function Pnet2 creates an augmentedQ-matrix out of a collection of Pnodes, possibly spanning
multiple Pnets.

Usage

Pnet2Qmat(obs, prof, defaultRule = "Compensatory", defaultLink = "partialCredit", defaultAlpha = 1, defaultBeta = NULL, defaultLinkScale = NULL, debug = TRUE)

Arguments

obs A list of observable Pnode objects. These could span multiple Pnet objects.
Each element of this list will corresponded to one or more rows in the output
Q-matrix.

prof A list of proficiency Pnodes. These are the parents of the Pnodes in the obs list.
Usually, these are all in a central proficiency or hub model.

defaultRule This should be a character scalar giving the name of a CPTtools combination
rule (see Compensatory).

defaultLink This should be a character scalar giving the name of a CPTtools link function
(see partialCredit).

defaultAlpha A numeric scalar giving the default value for slope parameters.

defaultBeta A numeric scalar giving the default value for difficulty (negative intercept) pa-
rameters.

defaultLinkScale

A positive number which gives the default value for the link scale parameter.

debug A logical value. If true, extra information will be printed during process of
building the Pnet.

Details

A Q-matrix is a 0-1 matrix which describes which proficiency (latent) variables are connected to
which observable outcome variables; qjk = 1 if and only if proficiency variable k is a parent of
observable variable j. Almond (2010) suggested that augmenting the Q-matrix with additional
columns representing the combination rules (PnodeRules), link function (PnodeLink), link scale
parameter (if needed, PnodeLinkScale) and difficulty parameters (PnodeBetas). The discrimina-
tion parameters (PnodeAlphas) could be overloaded with the Q-matrix, with non-zero parameters
in places where there were 1’s in the Q-matrix.

This arrangement worked fine with combination rules (e.g., Compensatory) which contained mul-
tiple alpha (discrimination) parameters, one for each parent variable, and a single beta (difficulty).
The introduction of a new type of offset rule (e.g., OffsetDisjunctive) which uses a multiple
difficulty parameters, one for each parent variable, and a single alpha. Almond (2016) suggested
a new augmentation which has three matrixes in a single table (a Qmat): the Q-matrix, which
contains structural information; the A-matrix, which contains discrimination parameters; and the

50 Pnet2Qmat

B-matrix, which contains the difficulty parameters. The names for the columns for these matrixes
contain the names of the proficiency variables, prepended with “A.” or “B.” in the case of the A-
matrix and B-matrix. There are two additional columns marked “A” and “B” which are used for
the discrimination and difficulty parameter in the multiple-beta and multiple-alpha cases. There is
some redundancy between the Q, A and B matrixes, but this provides an opportunity for checking
the validity of the input.

The introduction of the partial credit link function (partialCredit) added a further complication.
With the partial credit model, there could be a separate set of discrimination or difficulty parame-
ters for each transition for a polytomous item. Even the gradedResponse link function requires a
separate difficulty parameter for each level of the varaible save the first. The rows of the Qmat data
structure are hence augmented to include one row for every state but the lowest-level state. There
should be of fewer rows of associated with the node than the value in the “Nstates” column, and
the names of the states (values in the “State” column) should correspond to every state of the target
variable except the first. It is an error if the number of states does not match the existing node, or
if the state names do not match what is already used for the node or is in the manifest for the node
Warehouse.

Note that two nodes in different networks may share the same name, and two states in two different
nodes may have the same name as well. Thus, the formal key for the Qmat data frame is (“Model”,
“Node”, “State”), however, the rows which share the values for (“Model”, “Node”) form a subtable
for that particular node. In particular, the rows of the Q-matrix subtable for that node form the
inner Q-matrix for that node. The inner Q-matrix shows which variables are relevant for each state
transition in a partial credit model. The column-wise maximum of the inner Q-matrix forms the
row of the outer Q-matrix for that node. This shows which proficiency nodes are the parent of the
observable node. This corresponds to PnodeQ(node).

The function Qmat2Pnet creates and sets the parameters of the observable Pnodes referenced in the
Qmat argument. As it needs to reference, and possibly create, a number of Pnets and Pnodes, it
requires both a network and a node Warehouse. If the override parameter is true, the networks
will be modified so that each node has the correct parents, otherwise Qmat2Pnet will signal an error
if the existing network structure is inconsistent with the Q-matrix.

As there is only one link function for each node , the values of PnodeLink(node) and PnodeLinkScale(node)
are set based on the values in the “Link” and “LinkScale” columns and the first row corresponding
to node . Note that the choice of link functions determines what is sensible for the other values but
this is not checked by the code.

The value of PnodeRules(node) can either be a single value or a list of rule names. The first value
in the sub-Qmat must a character value, but if the other values are missing then a single value is
used. If not, all of the entries should be non-missing. If this is a single value, then effectively the
same combination rule is used for each transition.

The interpretation of the A-matrix and the B-matrix depends on the value in the “Rules” col-
umn. There are two types of rules, multiple-A rules and multiple-B rules (offset rules). The
CPTtools funciton isOffsetRule checks to see what kind of a rule it is. The multiple-A rules,
of which Compensatory is the canonical example, have one discrimination (or slope) parameter
for every parent variable (values of 1 in the Q-matrix) and have a single difficulty (negative inter-
cept) parameter which is in the “B” column of the Qmat. The multiple-B or offset rules, of which
OffsetConjunctive is the canonical example, have a difficulty (negative intercept) parameter for
each parent variable and a single discrimination (slope) parameter which is in the “A” column. The
function Qmat2Pnet uses the value of isOffsetRule to determine whether to use the multiple-B
(true) or multiple-A (false) paradigm.

Pnet2Qmat 51

A simple example is a binary observable variable which uses the Compensatory rule. This is
essentially a regression model (logistic regression with partialCredit or gradedResponse link
funcitons, linear regression with normalLink link function) on the parent variables. The linear
predictor is:

1√
K

(a1θ1 + . . .+ aKθK)− b.

The values θ1, . . . , θK are effective thetas, real values corresponding to the states of the parent
variables. The value ai is stored in the column “A.namei” where namei is the name of the ith
proficiency variable; the value of PnodeAlphas(node) is the vector a1, . . . , ak with names cor-
responding to the parent variables. The value of b is stored in the “B” column; the value of
PnodeBetas(node) is b.

The multiple-B pattern replaces the A-matrix with the B-matrix and the column “A” with “B”.
Consider binary observable variable which uses the OffsetConjunctive rule. The linear predictor
is:

amin(θ1 − b+ 1, . . . , θK − bK).

The value bi is stored in the column “B.namei” where namei is the name of the ith proficiency
variable; the value of PnodeBetas(node) is the vector b1, . . . , bk with names corresponding to the
parent variables. The value of a is stored in the “A” column; the value of PnodeBetas(node) is a.

When there are more than two states in the output varible, PnodeRules, PnodeAlphas(node) and
PnodeBetas(node) become lists to indicate that a different value should be used for each transi-
tion between states. If there is a single value in the “Rules” column, or equivalently the value of
PnodeRules is a scalar, then the same rule is repeated for each state transition. The same is true
for PnodeAlphas(node) and PnodeBetas(node). If these values are a list, that indicates that a
different value is to be used for each transition. If they are a vector that means that different values
(of discriminations for multiple-a rules or difficulties for multiple-b rules) are needed for the parent
variables, but the same set of values is to be used for each state transition. If different values are to
be used then the values are a list of vectors.

The necessary configuration of a’s and b’s depends on the type of link function. Here are the rules
for the currently existing link funcitons:

normal (normalLink) This link function uses the same linear predictor for each transition, so
there should be a single rule, and PnodeAlphas(node) and PnodeBetas(node) should both
be vectors (with b of length 1 for a multiple-a rule). This rule also requires a positive value for
the PnodeLinkScale(node) in the “"LinkScale"” column. The values in the “A.name” and
“B.name” for rows after the first can be left as NA’s to indicate that the same values are reused.

graded response (gradedResponse) This link function models the probability of getting at or
above each state and then calculates the differences between them to produce the conditional
probability table. In order to avoid negative probabilities, the probability of being in a higher
state must always be nonincreasing. The surest way to ensure this is to both use the same
combination rules at each state and the same set of discrimination parameters for each state.
The difficulty parameters must be nondecreasing. Again, values for rows after the first can be
left as NAs to indicate that the same value should be resused.

partial credit (partialCredit) This link function models the conditional probability from mov-
ing from the previous state to the current state. As such, there is no restriction on the rules or
parameters. In particular, it can alternate between multiple-a and multiple-b style rules from
row to row.

52 Pnet2Qmat

Another restriction that the use of the partial credit rule lifts is the restriction that all parent
variable must be used in each transition. Note that there is one row of the Q-matrix (the
inner Q-matrix) for each state transition. Only the parent variables with 1’s in the particular
state row are considered when building the PnodeAlphas(node) and PnodeBetas(node) for
this model. Note that only the partial credit link function can take advantage of the multiple
parents, the other two require all parents to be used for every state.

The function Pnet2Qmat takes a collection of nodes (in a series of spoke or evidence models) and
builds a Qmat data structure that can reproduce them. It loops through the nodes and fills out the
Qmat based on the properties of the Pnodes. Note that if the proprties are not yet set, then the
default values are used, thus applying this to a network for which the structure has been established,
but the parameters have not yet been set will build a blank Qmat which can be adjusted by experts.

Value

The output augmented Q-matrix is a data frame with the columns described below. The number of
columns is variable, with items marked prof actually corresponding to a number of columns with
names taken from the proficiency variables (the prof argument).

Model The name of the Pnet in which the node in this row lives.

Node The name of the Pnode described in this row. Except for the multiple rows
corresponding to the same node, the value of this column needs to be unique
within “Model”.

Nstates The number of states for this node. Generally, each node should have one fewer
rows than this number.

State The name of the state for this row. This should be unique within the (“Model”,“Node”)
combination.

Link The name of a link function. This corresponds to PnodeLink(node).

LinkScale Either a positive number giving the link scale parameter or an NA if the link func-
tion does not need scale parameters. This corresponds to PnodeLinkScale(node).

prof There is one column for each proficiency variable. This corresponds to the struc-
tural part of the Q-matrix. There should be 1 in this column if the named pro-
ficiency is used in calculating the transition to this state for this particular node,
and a 0 otherwise.

Rules The name of the combination rule to use for this row. This corresponds to
PnodeRules(node).

A.prof There is one column for each proficiency with the proficiency name appended to
“A.”. If a multiple-alpha style combination rule (e.g., Compensatory) this col-
umn should contain the appropriate discriminations, otherwise, its value should
be NA.

A If a multiple-beta style combination rule (e.g., OffsetConjunctive) this col-
umn should contain the single discrimination, otherwise, its value should be NA.

B.prof There is one column for each proficiency with the proficiency name appended
to “B.”. If a multiple-bet style combination rule (e.g., OffsetConjunctive) this
column should contain the appropriate difficulty (negative intercept), otherwise,
its value should be NA.

Pnet2Qmat 53

B If a multiple-beta style combination rule (e.g., Compensatory) this column should
contain the single difficulty (negative intercept), otherwise, its value should be
NA.

PriorWeight The amount of weight which should be given to the current values when learning
conditional probability tables. See PnodePriorWeight.

Author(s)

Russell Almond

References

Almond, R. G. (2010). ‘I can name that Bayesian network in two matrixes.’ International Journal
of Approximate Reasoning. 51, 167-178.

Almond, R. G. (presented 2017, August). Tabular views of Bayesian networks. In John-Mark
Agosta and Tomas Singlair (Chair), Bayeisan Modeling Application Workshop 2017. Symposium
conducted at the meeting of Association for Uncertainty in Artificial Intelligence, Sydney, Australia.
(International) Retrieved from http://bmaw2017.azurewebsites.net/

See Also

The inverse operation is Qmat2Pnet.

See Warehouse for description of the network and node warehouse arguments

See partialCredit, gradedResponse, and normalLink for currently available link functions. See
Conjunctive and OffsetConjunctive for more information about available combination rules.

The node attributes set from the Omega matrix include: PnodeParents(node), PnodeLink(node),
PnodeLinkScale(node), PnodeRules(node), PnodeQ(node), PnodeAlphas(node), PnodeBetas(node),
and PnodePriorWeight(node)

Examples

Sample Q matrix
Q1 <- read.csv(paste(library(help="Peanut")$path, "auxdata",

"miniPP-Q.csv", sep=.Platform$file.sep),
stringsAsFactors=FALSE)

Not run:
library(PNetica) ## Needs PNetica
sess <- NeticaSession()
startSession(sess)
curd <- getwd()

netman1 <- read.csv(paste(library(help="Peanut")$path, "auxdata",
"Mini-PP-Nets.csv", sep=.Platform$file.sep),

row.names=1,stringsAsFactors=FALSE)

nodeman1 <- read.csv(paste(library(help="Peanut")$path, "auxdata",
"Mini-PP-Nodes.csv", sep=.Platform$file.sep),

http://bmaw2017.azurewebsites.net/

54 Pnet2Qmat

row.names=1,stringsAsFactors=FALSE)

omegamat <- read.csv(paste(library(help="Peanut")$path, "auxdata",
"miniPP-omega.csv", sep=.Platform$file.sep),

row.names=1,stringsAsFactors=FALSE)

Insures we are building nets from scratch
setwd(tempdir())
Network and node warehouse, to create networks and nodes on demand.
Nethouse <- BNWarehouse(manifest=netman1,session=sess,key="Name")

Nodehouse <- NNWarehouse(manifest=nodeman1,
key=c("Model","NodeName"),
session=sess)

Build the proficiency model first:
CM <- WarehouseSupply(Nethouse,"miniPP_CM")
CM1 <- Omega2Pnet(omegamat,CM,Nodehouse,override=TRUE)

Build the nets from the Qmat

Qmat2Pnet(Q1, Nethouse,Nodehouse)

Build the Qmat from the nets
Generate a list of nodes
obs <-unlist(sapply(list(sess$nets$PPcompEM,sess$nets$PPconjEM,

sess$nets$PPtwostepEM,sess$nets$PPdurAttEM),
NetworkAllNodes))

Q2 <- Pnet2Qmat(obs,NetworkAllNodes(CM))

adjust Q1 to match Q2
Q1 <- Q1[,-1] ## Drop unused first column.
class(Q1) <- c("Qmat", "data.frame")
Force them into the same order
Q1 <- Q1[order(Q1$Model,Q1$Node),]
Q2 <- Q2[order(Q2$Model,Q2$Node),]
row.names(Q1) <- NULL
row.names(Q2) <- NULL

Force all NA columns into the right type
Q1$LinkScale <- as.numeric(Q1$LinkScale)
Q1$A.Physics <- as.numeric(Q1$A.Physics)
Q1$A.IterativeD <- as.numeric(Q1$A.IterativeD)
Q1$B.Physics <- as.numeric(Q1$B.Physics)
Q1$B.NTL <- as.numeric(Q1$B.NTL)

Fix fancy quotes added by some spreadsheets
Q1$Rules <- gsub(intToUtf8(c(91,0x201C,0x201D,93)),"\"",Q1$Rules)

Insert Default Prior Weights

PnetAdjoin 55

Q1$PriorWeight <- ifelse(is.na(Q1$NStates),"","10")
all.equal(Q1,Q2)

stopSession(sess)
setwd(curd)

End(Not run)

PnetAdjoin Merges (or separates) two Pnets with common variables

Description

In the hub-and-spoke Bayes net construction method, number of spoke models (evidence models in
educational applications) are connected to a central hub model (proficiency models in educational
applications). The PnetAdjoin operation combines a hub and spoke model to make a motif, re-
placing references to hub variables in the spoke model with the actual hub nodes. The PnetDetach
operation reverses this.

Usage

PnetAdjoin(hub, spoke)
PnetDetach(motif, spoke)

Arguments

hub A complete Pnet to which new variables will be added.

spoke An incomplete Pnet which may contain stub nodes, references to nodes in the
hub.

motif The combined Pnet which is formed by joining a hub and spoke together.

Details

The hub-and-spoke model for Bayes net construction (Almond and Mislevy, 1999; Almond, 2017)
divides a Bayes net into a central hub model and a collection of spoke models. The motivation is
that the hub model represents the status of a system—in educational applications, the proficiency
of the student—and the spoke models are related to collections of evidence that can be collected
about the system state. In the educational application, the spoke models correspond to a collection
of observable outcomes from a test item or task. A motif is a hub plus a collection of spoke model
corresponding to a single task.

While the hub model is a complete Bayesian network, the spoke models are fragments. In particular,
several hub model variables are parents of variables in the spoke model. These variables are not
defined in spoke model, but are rather replaced with stub nodes, nodes which reference, but do not
define the spoke model.

The PnetAdjoin operation copies the Pnodes from the spoke model into the hub model, and con-
nects the stub nodes to the nodes with the same name in the spoke model. The result is a motif

56 PnetAdjoin

consisting of the hub and the spoke. (If this operation is repeated many times it can be used to build
an arbitrarily complex motif.)

The PnetDetach operation reverses the adjoin operation. It removes the nodes associated with
the spoke model only, leaving the joint probability distribution of the hub model (along with any
evidence absorbed by setting values of observable variables in the spoke) intact.

Value

The function PnetAdjoin returns a list of the newly created nodes corresponding to the spoke model
nodes. Note that the names may have changed to avoid duplicate names. The names of the list are
the spoke node names, so that any name changes can be discovered.

In both cases, the first argument is destructively modified, for PnetAdjoin the hub model becomes
the motif. For PnetDetach the motif becomes the hub again.

Note

Node names must be unique within a Bayes net. If several spokes are attached to a hub and those
spokes have common names for observable variables, then the names will need to be modified
to make them unique. The function PnetAdjoin always returns the new nodes so that any name
changes can be noted by the calling program.

I anticipate that there will be considerable varation in how these functions are implemented depend-
ing on the underlying implementation of the Bayes net package. In particular, there is no particular
need for the PnetDetach function to do anything. While removing variables corresponding to an
unneeded spoke model make the network smaller, they are harmless as far as calculations of the
posterior distribution.

Author(s)

Russell Almond

References

Almond, R. G. & Mislevy, R. J. (1999) Graphical models and computerized adaptive testing. Ap-
plied Psychological Measurement, 23, 223–238.

Almond, R., Herskovits, E., Mislevy, R. J., & Steinberg, L. S. (1999). Transfer of information
between system and evidence models. In Artificial Intelligence and Statistics 99, Proceedings (pp.
181–186). Morgan-Kaufman

Almond, R. G. (presented 2017, August). Tabular views of Bayesian networks. In John-Mark
Agosta and Tomas Singlair (Chair), Bayeisan Modeling Application Workshop 2017. Symposium
conducted at the meeting of Association for Uncertainty in Artificial Intelligence, Sydney, Australia.
(International) Retrieved from http://bmaw2017.azurewebsites.net/

See Also

Pnet, PnetHub, Qmat2Pnet, PnetMakeStubNodes

http://bmaw2017.azurewebsites.net/

PnetCompile 57

Examples

Not run:
library(PNetica) # Requires PNetica
sess <- NeticaSession()
startSession(sess)

PM <- ReadNetworks(file.path(library(help="PNetica")$path, "testnets",
"miniPP-CM.dne"), session=sess)

EM1 <- ReadNetworks(file.path(library(help="PNetica")$path, "testnets",
"PPcompEM.dne"), session=sess)

Phys <- PnetFindNode(PM,"Physics")

Prior probability for high level node
PnetCompile(PM)
bel1 <- PnodeMargin(PM, Phys)

Adjoin the networks.
EM1.obs <- PnetAdjoin(PM,EM1)
PnetCompile(PM)

Enter a finding
PnodeEvidence(EM1.obs[[1]]) <- "Right"
Posterior probability for high level node

bel2 <- PnodeMargin(PM,Phys)

PnetDetach(PM,EM1)
PnetCompile(PM)

Findings are unchanged
bel2a <- PnodeMargin(PM,Phys)
stopifnot(all.equal(bel2,bel2a,tol=1e-6))

DeleteNetwork(list(PM,EM1))
stopSession(sess)

End(Not run)

PnetCompile Compiles a Parameterized Bayesian Network

Description

This function requests that the Bayes net be compiled—transformed so that inference can be carried
out.

Usage

PnetCompile(net)

58 PnetCompile

Arguments

net A Pnet object to be compiled.

Details

Many Bayesian network algorithm have two phases. The graph is built as an acyclic directed graph.
Before inference is carried out, the graph is transformed into a structure called a Junction Tree, Tree
of Cliques or Markov Tree (Almond, 1995).

This function requests that implementation specific processing, particularly, building the appropri-
ate Markov Tree, be done for the net, so that it can be placed in inference mode instead of editing
mode.

Value

The compile net argument should be returned.

Note

It should be harmless to call this function on a net which is already compiled.

Author(s)

Russell Almond

References

Almond, R. G. (1995). Graphical Belief Models. Chapman and Hall.

See Also

The following functions will likely return errors if the net is not compiled: PnodeEvidence,
calcStat, PnodeMargin, PnodeEAP, PnodeSD, PnodeMedian, PnodeMode.

Examples

Not run:

library(PNetica) ## Need a specific implementation
sess <- NeticaSession()
startSession(sess)

irt10.base <- ReadNetworks(paste(library(help="PNetica")$path,
"testnets","IRT10.2PL.base.dne",
sep=.Platform$file.sep),session=sess)

irt10.base <- as.Pnet(irt10.base) ## Flag as Pnet, fields already set.
irt10.theta <- PnetFindNode(irt10.base,"theta")
irt10.items <- PnetPnodes(irt10.base)
Flag items as Pnodes
for (i in 1:length(irt10.items)) {

irt10.items[[i]] <- as.Pnode(irt10.items[[i]])

PnetFindNode 59

}
Make some statistics
marginTheta <- Statistic("PnodeMargin","theta","Pr(theta)")
meanTheta <- Statistic("PnodeEAP","theta","EAP(theta)")
sdTheta <- Statistic("PnodeSD","theta","SD(theta)")
medianTheta <- Statistic("PnodeMedian","theta","Median(theta)")
modeTheta <- Statistic("PnodeMedian","theta","Mode(theta)")

BuildAllTables(irt10.base)
PnetCompile(irt10.base) ## Netica requirement

calcStat(marginTheta,irt10.base)
calcStat(meanTheta,irt10.base)
calcStat(sdTheta,irt10.base)
calcStat(medianTheta,irt10.base)
calcStat(modeTheta,irt10.base)

PnodeEvidence(irt10.items[[1]]) <- "Correct"

calcStat(marginTheta,irt10.base)
calcStat(meanTheta,irt10.base)
calcStat(sdTheta,irt10.base)
calcStat(medianTheta,irt10.base)
calcStat(modeTheta,irt10.base)

DeleteNetwork(irt10.base)
stopSession(sess)

End(Not run)

PnetFindNode Finds nodes in a parameterized network.

Description

The function PnetFindNode finds a node in a Pnet with the given name. If no node with the
specified name found, it will return NULL.

Usage

PnetFindNode(net, name)

Arguments

net The Pnet to search.

name A character vector giving the name or names of the desired nodes.

60 PnetHub

Details

Although each Pnode belongs to a single network, a network contains many nodes. Within a net-
work, a node is uniquely identified by its name. However, nodes can be renamed (see PnodeName()).

Value

The Pnode object or list of Pnode objects corresponding to names,

Author(s)

Russell Almond

See Also

Pnode, Pnet

PnodeNet retrieves the network for the node.

Examples

Not run:
library(PNetica) # Requires PNetica
sess <- NeticaSession()
startSession(sess)

tnet <- CreateNetwork("TestNet",sess)
nodes <- NewDiscreteNode(tnet,c("A","B","C"))

nodeA <- PnetFindNode(tnet,"A")
stopifnot (nodeA==nodes[[1]])

nodeBC <- PnetFindNode(tnet,c("B","C"))
stopifnot(nodeBC[[1]]==nodes[[2]])
stopifnot(nodeBC[[2]]==nodes[[3]])

DeleteNetwork(tnet)
stopSession(sess)

End(Not run)

PnetHub Returns the name of the hub net if this is a spoke net.

Description

The hub-and-spoke model divides a complete model up into a central hub model (call a proficiency
or competency model in educational applications) and spoke models (or evidence models) which
reference variables in the hub network. If a network is a spoke, then the field PnetHub should be set
to the name of the corresponding hub network.

PnetHub 61

Usage

PnetHub(net)
PnetHub(net) <- value

Arguments

net A Pnet object whose hub name is to be accessed.

value A character scalar giving the name of the new hub network.

Value

The getter method returns either a character vector of length 1 giving the name of the hub, or NA or
the empty string if no hub is set.

The setter method returns the net argument.

Author(s)

Russell Almond

References

Almond, R. G. & Mislevy, R. J. (1999) Graphical models and computerized adaptive testing. Ap-
plied Psychological Measurement, 23, 223–238.

Almond, R., Herskovits, E., Mislevy, R. J., & Steinberg, L. S. (1999). Transfer of information
between system and evidence models. In Artificial Intelligence and Statistics 99, Proceedings (pp.
181–186). Morgan-Kaufman

Almond, R. G. (presented 2017, August). Tabular views of Bayesian networks. In John-Mark
Agosta and Tomas Singlair (Chair), Bayeisan Modeling Application Workshop 2017. Symposium
conducted at the meeting of Association for Uncertainty in Artificial Intelligence, Sydney, Australia.
(International) Retrieved from http://bmaw2017.azurewebsites.net/

See Also

Pnet, PnetAdjoin (for merging hub and spoke), Qmat2Pnet, Pnet2Qmat

Examples

Not run:
library(PNetica) # Requires PNetica
sess <- NeticaSession()
startSession(sess)
curd <- getwd()
setwd(file.path(library(help="PNetica")$path, "testnets"))

PM <- ReadNetworks("miniPP-CM.dne", session=sess)
stopifnot(PnetHub(PM)=="")

EM1 <- ReadNetworks("PPcompEM.dne", session=sess)

http://bmaw2017.azurewebsites.net/

62 PnetMakeStubNodes

stopifnot(PnetHub(EM1)=="miniPP_CM")

foo <- CreateNetwork("foo",sess)
stopifnot(is.na(PnetHub(foo)))
PnetHub(foo) <- PnetName(PM)
stopifnot(PnetHub(foo)=="miniPP_CM")

DeleteNetwork(list(PM,EM1,foo))
stopSession(sess)
setwd(curd)

End(Not run)

PnetMakeStubNodes Creates (or removes) references to nodes in a network

Description

A stub node is a reference in a spoke network to a node in a hub network. The function PnetMakeStubNodes
makes stub nodes in the spoke network. The function RemoveStubNodes removes them.

Usage

PnetMakeStubNodes(net, nodes)
PnetRemoveStubNodes(net, nodes)

Arguments

net A Pnet object in which the stub nodes will be created or removed. This is
generally a spoke (evidence model) network.

nodes A list of Pnode objects. In the case of PnetMakeStubNodes these are the nodes
in the hub model which are to be copied. In the case of PnetRemoveStubNodes
these are the stub nodes to be removed.

Details

In the hub-and-spoke model, spoke models (evidence models) reference nodes in the central hub
model (proficiency model in educational applications). The stub node is a node (or pseudo-node)
in the spoke model which is actually a reference to a node in the hub model. In the operation
PnetAdjoin when the spoke model is combined with the hub model, the stubs are replaced with
the actual nodes they represent.

The pair of functions PnetMokeStubNodes and PnetRemoveStubNodes are used inside of Qmat2Pnet
to create the necessary references to the proficiency nodes (in the columns of the Q-matrix) while
building the conditional probability tables for the observable nodes (the rows of the Q-matrix). The
function PnetMakeStubNodes gets called before the conditional probability tables are built, and the
function PnetRemoveStubNodes gets called after all conditional probability tables are built.

PnetMakeStubNodes 63

Value

The function PnetMakeStubNodes returns a list of the newly created stub nodes.

The return of the function PnetRemoveStubNodes is implementation dependent, and is called mainly
for its side effects.

Both functions destructively modify the net argument.

Note

The behavior of these functions will depend a lot on the underlying implementation, and they should
be thought of as a pair. The function PnetMakeStubNodes gets called before constructing the
conditional probability tables, and PnetRemoveStubNodes. For example, this could be used to give
the nodes the official hub node name while constructing the conditional probability tables and then
rename them to something else.

In the PNetica-package implementation, the function PnetMakeStubNodes copies the nodes from
the hub to the spoke, and the function PnetRemoveStubNodes deletes them (which if they are
attached as a parent, automatically creates a stub node in Netica).

Author(s)

Russell Almond

References

Almond, R. G. (presented 2017, August). Tabular views of Bayesian networks. In John-Mark
Agosta and Tomas Singlair (Chair), Bayeisan Modeling Application Workshop 2017. Symposium
conducted at the meeting of Association for Uncertainty in Artificial Intelligence, Sydney, Australia.
(International) Retrieved from http://bmaw2017.azurewebsites.net/

See Also

PnetHub(spoke) give the name of the hub node for a given spoke.

The function PnetAdjoin(hub,spoke) merges hub and spoke networks replacing the stubs with
the originals in the hub network.

The function Qmat2Pnet uses PnetMakeStubNodes and PnetRemoveStubNodes internally.

Examples

Not run:
library(PNetica) ## Needs PNetica
sess <- NeticaSession()
startSession(sess)

PM <- ReadNetworks(file.path(library(help="PNetica")$path, "testnets",
"miniPP-CM.dne"), session=sess)

EM1 <- ReadNetworks(file.path(library(help="PNetica")$path, "testnets",
"PPcompEM.dne"), session=sess)

Find the target node and its parents.

http://bmaw2017.azurewebsites.net/

64 PnetName

obs <- PnetFindNode(EM1,"CompensatoryObs")
pars <- PnetFindNode(PM,c("NTL","POfMom"))

Make stub nodes for the parents
stubs <- PnetMakeStubNodes(EM1,pars)
Set them as the parents
PnodeParents(obs) <- stubs

Build the CPT
PnodeLink(obs) <- "partialCredit"
PnodeRules(obs) <- "Compensatory"
PnodeAlphas(obs) <- c(NTL=0.9,POfMom=1.1)
PnodeBetas(obs) <- 0.3
PnodeQ(obs) <- TRUE
BuildTable(obs)

##Done, now remove the stubs
PnetRemoveStubNodes(EM1,stubs)

DeleteNetwork(list(PM,EM1))
stopSession(sess)

End(Not run)

PnetName Gets or Sets the name of a Netica network.

Description

Gets or sets the name of the network. Names must generally conform to the network naming
convention of the host Bayesian network system. In particular, they should probably follow the
rules for R variable names.

Usage

PnetName(net)
PnetName(net) <- value

Arguments

net A Pnet object.
value A character scalar containing the new name.

Details

Network names must conform to the rules for the host Bayes net system‘q. Trying to set the network
to a name that does not conform to the rules will produce an error, as will trying to set the network
name to a name that corresponds to another different network.

The PnetTitle() function provides another way to name a network which is not subject to the
variable restrictions.

PnetName 65

Value

The name of the network as a character vector of length 1.

The setter method returns the modified object.

True Names

True names are the names in the secret ancient lanugage which hold power over an object (Le Guin,
1968).

Actually, this is a difficulty with implementations that place restrictions on the name of a network
or node. In particular, Netica restricts node names to alphanumeric characters and limits the length.
This may make it difficult to match nodes by name with other parts of the system which do not have
this restriction. In this case the object may have both a true name, which is returned by PnodeName
and an internal use name which is used by the implementation.

Author(s)

Russell Almond

References

Le Guin, U. K. (1968). A Wizard of Earthsea. Parnassus Press.

See Also

Pnet, PnetTitle()

Examples

Not run:
library(PNetica) ## Requires PNetica
sess <- NeticaSession()
startSession(sess)
net <- CreateNetwork("funNet",sess)
stopifnot(PnetName(net)=="funNet")

PnetName(net)<-"SomethingElse"
stopifnot(PnetName(net)=="SomethingElse")

DeleteNetwork(net)
stopSession(sess)

End(Not run)

66 PnetPathname

PnetPathname Returns the path associated with a network.

Description

A Pnet is associated with a filename where it is stored. This value should get set when the network
is read or written. Note that this will usually be the name of the network with a implementation file
type.

Usage

PnetPathname(net)
PnetPathname(net) <- value

Arguments

net A Pnet Bayesian network.

value A character scalar giving the pathname for the network.

Value

The getter form returns a character vector of length 1. The setter form return the Pnet argument.

Author(s)

Russell Almond

See Also

Pnet

Examples

Not run:
library(PNetica) # Requires PNetica
sess <- NeticaSession()
startSession(sess)
curd <- getwd()
setwd(file.path(library(help="PNetica")$path, "testnets"))

PM <- ReadNetworks("miniPP-CM.dne", session=sess)
stopifnot(PnetPathname(PM)=="miniPP-CM.dne")
PnetPathname(PM) <- "StudentModel1.dne"
stopifnot(PnetPathname(PM)=="StudentModel1.dne")

DeleteNetwork(PM)

stopSession(sess)
setwd(curd)

PnetPnodes 67

End(Not run)

PnetPnodes Returns a list of Pnodes associated with a Pnet

Description

Each Pnet object maintains a list of Pnode objects which it is intended to set. The function
PnetPnodes accesses this list. The function PnodeNet returns a back pointer to the Pnet from
the Pnode.

Usage

PnetPnodes(net)
PnetPnodes(net) <- value
PnodeNet(node)

Arguments

net A Pnet object.

node A Pnode object.

value A list of Pnode objects associated with net.

Details

The primary purpose of PnetPnodes is to provide a list of nodes which GEMfit and BuildAllTables
will iterate to do their function.

The function PnodeNet returns the network object associated with the node (this assumes that the
implementation has back pointers). Note that node may not be in the result of PnetPnodes (if for
example, the conditional probability table of node is to remain fixed during a call to GEMfit). This
function is used by GetPriorWeight to get the default prior weight if node does not have that value
set locally.

Value

The function PnetPnodes returns a list of Pnode objects associated with the net. The expression
PnetPnodes(net) <- value returns the net.

The function PnodeNet returns the network (Pnet) object that contains node.

Note

The functions PnetPnodes and PetPnodes<- and PnodeNet are abstract generic functions, and
need specific implementations. See the PNetica-package for an example.

Author(s)

Russell Almond

68 PnetPnodes

References

Almond, R. G. (2015) An IRT-based Parameterization for Conditional Probability Tables. Paper
presented at the 2015 Bayesian Application Workshop at the Uncertainty in Artificial Intelligence
Conference.

See Also

Pnet, Pnode, GetPriorWeight, BuildAllTables, GEMfit

Examples

Not run:

library(PNetica) ## Implementation of Peanut protocol
sess <- NeticaSession()
startSession(sess)
Create network structure using RNetica calls
IRT10.2PL <- CreateNetwork("IRT10_2PL",session=sess)

theta <- NewDiscreteNode(IRT10.2PL,"theta",
c("VH","High","Mid","Low","VL"))

PnodeStateValues(theta) <- effectiveThetas(PnodeNumStates(theta))
NodeProbs(theta) <- rep(1/PnodeNumStates(theta),PnodeNumStates(theta))

J <- 10 ## Number of items
items <- NewDiscreteNode(IRT10.2PL,paste("item",1:J,sep=""),

c("Correct","Incorrect"))
for (j in 1:J) {

PnodeParents(items[[j]]) <- list(theta)
PnodeStateValues(items[[j]]) <- c(1,0)
PnodeLabels(items[[j]]) <- c("observables")

}
Convert into a Pnet
IRT10.2PL <- Pnet(IRT10.2PL,priorWeight=10,pnode=items[2:J])
for (j in 2:J) {

items[[j]] <- Pnode(items[[j]])
}

stopifnot(
length(PnetPnodes(IRT10.2PL)) == J-1, # All except item 1
PnodeNet(items[[2]]) == IRT10.2PL,
PnodeNet(items[[1]]) == IRT10.2PL # this is net membership, not

Pnodes field
)

PnetPnodes(IRT10.2PL) <- items ## Add back item 1
stopifnot(

length(PnetPnodes(IRT10.2PL)) == J
)
DeleteNetwork(IRT10.2PL)
stopSession(sess)

PnetPriorWeight 69

End(Not run)

PnetPriorWeight Gets the weight to be associated with the prior table during EM learn-
ing

Description

The EM learning algorithm GEMfit uses the built-in EM learning of the Bayes net to build expected
count tables for each Pnode. The expected count tables are a weighted average of the case data and
the prior from the parameterized table. This gives the weight, in number of cases, given to the prior.

Usage

PnetPriorWeight(net)
PnetPriorWeight(net) <- value
PnodePriorWeight(node)
PnodePriorWeight(node) <- value
GetPriorWeight(node)

Arguments

net A Pnet object whose prior weight is to be accessed.

node A Pnode object whose prior weight is to be accessed.

value A nonnegative numeric vector giving the prior weight. This should either be a
scalar or a vector with length equal to the number of rows of the conditional
probability table. In the case of PnetPriorWeight using a non-scalar value will
produce unpredictable results.

Details

Suppose that value of the node and all of its parents are fully observed, and let X1i, . . . , Xki be the
observed counts for row i, and let p1i, . . . , pki be the conditional probabilities for row i. Then the
posterior probabilities for row i can be found by normalizing X1i + wip1i, . . . , Xki + wipki. In
the EM algorithm, the table is not fully observed but the expected value of X1i, . . . , Xki is used
instead.

This function gets or sets the vector w1, . . . , wI (where I is the number of rows in the conditional
probability table). If value is a scalar this is the same as giving all wi the same value.

The function PnodePriorWeight gets or sets the prior weight for a given node. The function
PnetPriorWeight gets or sets the default weight for all nodes (a property of the network). Unless
all nodes have the name number of parents with the same number of states, this should be a scalar.
The expression GetPriorWeight(node) gets the prior weight for the node or if that is null, it gets
the default prior weight from the net (using the function PnodeNet.

70 PnetPriorWeight

Value

A numeric vector or scalar giving the weight or NULL if the default network weight is to be used.

Note

The GEMfit algorithm will update the prior weight for each node based on how much information
is available for each row. Thus, even if the values are initially the same for each row, after calling
GEMfit they usually will be different for each row.

The functions PnetPriorWeight and PnodePriorWeight are abstract generic functions, and they
needs specific implementations. See the PNetica-package for an example.

Author(s)

Russell Almond

References

Almond, R. G. (2015) An IRT-based Parameterization for Conditional Probability Tables. Paper
presented at the 2015 Bayesian Application Workshop at the Uncertainty in Artificial Intelligence
Conference.

See Also

Pnet, Pnode, PnodeNet, BuildTable, GEMfit

Examples

Not run:

library(PNetica) ## Implementation of Peanut protocol
sess <- NeticaSession()
startSession(sess)
Create network structure using RNetica calls
IRT10.2PL <- CreateNetwork("IRT10_2PL",session=sess)

theta <- NewDiscreteNode(IRT10.2PL,"theta",
c("VH","High","Mid","Low","VL"))

PnodeStateValues(theta) <- effectiveThetas(PnodeNumStates(theta))
PnodeProbs(theta) <- rep(1/PnodeNumStates(theta),PnodeNumStates(theta))

J <- 10 ## Number of items
items <- NewDiscreteNode(IRT10.2PL,paste("item",1:J,sep=""),

c("Correct","Incorrect"))
for (j in 1:J) {

PnodeParents(items[[j]]) <- list(theta)
PnodeStateValues(items[[j]]) <- c(1,0)
PnodeLabels(items[[j]]) <- c("observables")

}

Convert into a Pnet

PnetSerialize 71

IRT10.2PL <- as.Pnet(IRT10.2PL)
PnetPriorWeight(IRT10.2PL) <- 10

Convert nodes to Pnodes
for (j in 1:J) {

items[[j]] <- Pnode(items[[j]])
}

PnodePriorWeight(items[[2]]) <- 5
5 states in parent, so 5 rows
PnodePriorWeight(items[[3]]) <- c(10,7,5,7,10)

stopifnot(
abs(PnetPriorWeight(IRT10.2PL)-10) < .0001,
is.null(PnodePriorWeight(items[[1]])),
abs(GetPriorWeight(items[[1]])-10) < .0001,
abs(GetPriorWeight(items[[2]])-5) < .0001,
any(abs(GetPriorWeight(items[[3]])-c(10,7,5,7,10)) < .0001)

)

PnetPriorWeight(IRT10.2PL) <- 15

stopifnot(
abs(PnetPriorWeight(IRT10.2PL)-15) < .0001,
is.null(PnodePriorWeight(items[[1]])),
abs(GetPriorWeight(items[[1]])-15) < .0001,
abs(GetPriorWeight(items[[2]])-5) < .0001,
any(abs(GetPriorWeight(items[[3]])-c(10,7,5,7,10)) < .0001)

)

DeleteNetwork(IRT10.2PL)
stopSession(sess)

End(Not run)

PnetSerialize Writes/restores network from a string.

Description

The PnetSerialize method writes the network to a string and returns a list containting both the
serialized data and type information. The PnetUnserialize method restores the data. Note that the
serialized form must contain either the name of the type or the name of the factory used to restore
the object (see details).

Usage

PnetSerialize(net)
PnetUnserialize(serial)

72 PnetSerialize

unserializePnet(factory,data)
WarehouseUnpack(warehouse, serial)

Arguments

net A Pnet to be serialized.

factory A character scalar containing the name of a global variable which contains a
factory object capable of recreating the network from the data.

warehouse A object of the type PnetWarehouse which will contain a link to the appropriate
factory.

serial A list containing at least three elements. One is the name of the network. One
is the data element which contains the serialized data as a raw vector. The third
is either a factory element containing the name of a global symbol contain-
ing a factory for reading the object or a type argument giving the name of the
constructor.

data A list containing at least two elements. One is the name of the network. One is
the data element which contains the serialized data as a raw vector.

Details

The intention of this function is to serialize the network in such a way that it can be saved to a
database and restored. The result of a call to PnetSerialize is a list with three elements. One
element is called data and contains the actual serialize data. The second element is called name
and it should be an identifier for the network (the result of PnetName). The last element is either
factory or type. In either case, they should be a string. The list may contain other elements, but
these may be ignored by other programs.

The intent is to provide a representation that can be saved to a database. The data element should be
a raw vector (e.g., the output of serialize(...,NULL)) and will be stored as a blob (binary large
object) and the other elements should be strings. Document based databases (e.g., mongo) may
handle the additional fields but relational database will have difficulty with them, so implementers
should only rely on the three fields.

The function PnetUnserialize reverses this operation. If factory is supplied, then the factory
protocol is used for restoration. If type is supplied instead, then the type string protocol is used.
If both are supplied, then the factory protocol is preferred, and if neither is supplied, an error is
signaled. The function unserializePnet is a generic function used by the factory protocol. If a
Pnet already exists with the given name, then it is replaced, otherwise a new one is created.

Value

The PnetSerialize function returns a list with the following elements:

name The name of the network. If this matches an existing network, then it will be
replaced on unserialize, otherwise a new network will be created.

data Serialized data for the network. This should be a raw vector.

factory The name of a global object which can restore networks from serialized data.

type The name of a class for which an PnetUnserialize.type method exits.

PnetSerialize 73

... There may be other data, but note that programs saving/restoring the serialized
representation may not know how to handle these extra fields.

The PnetUnserialize and unserializePnet functions return an object of type Pnet.

Factory Protocol

A factory is an object of a class for which a method for the unserializePnet generic function is
defined. This method should return an object of type Pnet. Thus the Peanut package doesn’t need
to know the implementaiton details.

Typically factories are global (static in java lanugage) objects. In this case the factory object
should be the name of the factory (as it will need to be serialized). The get function is used to
retrieve its value, so typically it is stored in .GlobalEnv.

The factory protocol allows other kind of flexibility as well, including being able to encapsulate a
reference to loaded objects, so this is the preferred method.

Type String Protocol

This mechanism mimics the S3 method dispatch method, although it doesn’t really use it. If the
argument to PnetUnserialize has a type field (but no factory field) then it will call a funciton
called PnetUnserialize.type.

Note

The first use of this function was designed to save/restore a network from a mongo database. This
format easily supports extra fields in the return list. The samething is true if the network is serialized
using either JSON/BSON or the normal R dump mechanism.

On the other hand, if the network is to be stored in a SQL database, the using program will not have
places to store the extra fields.

Author(s)

Russell Almond

See Also

Pnet, Warehouse

Examples

Not run:
library(mongolite)
library(jsonlite)
library(PNetica)
sess <- NeticaSession()
startSession(sess)

collect <- mongo("studentModels","test",
"mongodb://127.0.0.1:27017/test")

Or "mongodb://user:pwd@127.0.0.1:27017/test"

74 PnetTitle

An example network manifest.
netman1 <- read.csv(paste(library(help="Peanut")$path, "auxdata",

"Mini-PP-Nets.csv", sep=.Platform$file.sep),
row.names=1, stringsAsFactors=FALSE)

netpath <- file.path(library(help="PNetica")$path, "testnets")
netman1$Pathname <- file.path(netpath,netman1$Pathname)

Nethouse <- BNWarehouse(manifest=netman1,session=sess,key="Name")

pm.net <- WarehouseSupply(Nethouse, "miniPP_CM")
sm.net <- CopyNetworks(pm.net,"Student1")

sm.ser <- PnetSerialize(sm.net)
base 64 encode the data to make it easier to store.
sm.ser$data <- base64_enc(sm.ser$data)

collect$replace(paste('{"name":"',sm.ser$name,'"}'),
toJSON(lapply(sm.ser,unbox)),
upsert=TRUE)

Use iterator method to find, so we get in list rather than data frame
representation.

it <- collect$iterate(sprintf('{"name":"%s"}',"Student1"),limit=1)
sm1.ser <- it$one()
Decode back to the raw vector.
sm1.ser$data <- base64_dec(sm1.ser$data)

DeleteNetwork(sm.net)
sm1 <- WarehouseUnpack(Nethouse,sm1.ser)
stopifnot(PnetName(sm1)=="Student1")

DeleteNetwork(sm1)
sm1a <- unserializePnet(sess,sm1.ser)
stopifnot(PnetName(sm1a)=="Student1")

DeleteNetwork(sm1a)
#Unserialize needs a reference to the "factory" (in this case session.).
sm1.ser$factory <- "sess"
sm1b <- PnetUnserialize(sm1.ser)
stopifnot(PnetName(sm1b)=="Student1")

stopSession(sess)

End(Not run)

PnetTitle Gets the title or comments associated with a parameterized network.

PnetTitle 75

Description

The title is a longer name for a network which is not subject to naming restrictions. The description
is free form text used to document the network. Both fields are optional.

Usage

PnetTitle(net)
PnetTitle(net) <- value
PnetDescription(net)
PnetDescription(net) <- value

Arguments

net A Pnet object.

value A character object giving the new title or description.

Details

The title is meant to be a human readable alternative to the name, which is not limited to the network
naming restrictions.

The text is any text the user chooses to attach to the network. If value has length greater than 1, the
vector is collapsed into a long string with newlines separating the components.

Value

A character vector of length 1 providing the title or description.

Setter methods return the object.

Author(s)

Russell Almond

See Also

Pnet, PnetName()

Examples

Not run:
library(PNetica) ## Requires PNetica
sess <- NeticaSession()
startSession(sess)

firstNet <- CreateNetwork("firstNet",sess)

PnetTitle(firstNet) <- "My First Bayesian Network"
stopifnot(PnetTitle(firstNet)=="My First Bayesian Network")

now <- date()

76 PnetWarehouse-class

PnetDescription(firstNet)<-c("Network created on",now)
Print here escapes the newline, so is harder to read
cat(PnetDescription(firstNet),"\n")
stopifnot(PnetDescription(firstNet) ==

paste(c("Network created on",now),collapse="\n"))

DeleteNetwork(firstNet)

stopSession(sess)

End(Not run)

PnetWarehouse-class Class "PnetWarehouse"

Description

A Warehouse object which holds and builds Pnet objects. In particular, its WarehouseManifest
contains a network manifest (see BuildNetManifest) which contains information about how to
either load the networks from the file system, or build them on demand.

Details

The PnetWarehouse either supplies prebuilt nets or builds them from the instructions found in the
manifest. In particular, the function WarehouseSupply will attempt to:

1. Find an existing network with name.
2. Try to read the network from the location given in the Pathname column of the manifest.
3. Build a blank network, using the metadata in the manifest.

The manifest is an object of type data.frame where the columns have the values show below.
The key is the “Name” column which should be unique for each row. The name argument to
WarehouseData should be a character scalar corresponding to name, and it will return a data.frame
with a single row.

Name A character value giving the name of the network. This should be unique for each row
and normally must conform to variable naming conventions. Corresponds to the function
PnetName.

Title An optional character value giving a longer human readable name for the netowrk. Corre-
sponds to the function PnetTitle.

Hub If this model is incomplete without being joined to another network, then the name of the hub
network. Otherwise an empty character vector. Corresponds to the function PnetHub.

Pathname The location of the file from which the network should be read or to which it should be
written. Corresponds to the function PnetPathname.

Description An optional character value documenting the purpose of the network. Corresponds to
the function PnetDescription.

The function BuildNetManifest will build a manifest for an existing collection of networks.

PnetWarehouse-class 77

Objects from the Class

A virtual Class: No objects may be created from it.

Classes can register as belonging to this abstract class. The trick for doing this is: setIs("NethouseClass","PnetWarehouse")

Currently BNWarehouse is an example of an object of this class.

Methods

WarehouseSupply signature(warehouse = "PnetWarehouse", name = "character").
This finds a network with the appropriate name. If one does not exist, it is created by reading
it from the pathname specified in the manifest. If no file exists at the pathname, a new blank
network with the properities specified in the manifest is created.

WarehouseFetch signature(warehouse = "PnetWarehouse", name = "character").
This fetches the network with the given name, or returns NULL if it has not been built.

WarehouseMake signature(warehouse = "PnetWarehouse", name = "character").
This loads the network from a file or builds the network using the data in the Manifest.

WarehouseFree signature(warehouse = "PnetWarehouse", name = "character").
This removes the network from the warehouse inventory.

ClearWarehouse signature(warehouse = "PnetWarehouse"). This removes all
networks from the warehouse inventory.

is.PnetWarehouse signature(obj = "PnetWarehouse"). This returns TRUE.

WarehouseManifest signature(warehouse = "PnetWarehouse"). This returns the
data frame with instructions on how to build networks. (see Details)

WarehouseManifest<- signature(warehouse = "PnetWarehouse", value="data.frame").
This sets the data frame with instructions on how to build networks.(see Details)

WarehouseData signature(warehouse = "PnetWarehouse", name="character").
This returns the portion of the data frame with instructions on how to build a particular net-
work. (see Details)

WarehouseUnpack signature(warehouse = "PnetWarehouse", serial="list").
This restores a serialized network, in particular, it is used for saving network state across
sessions. See PnetSerialize for an example.

Note

In the PNetica implementation, the BNWarehouse implementatation contains an embedded NeticaSession
object. When WarehouseSupply is called, it attempts to satisfy the demand by trying in order:

1. Search for the named network in the active networks in the session.

2. If not found in the session, it will attempt to load the network from the Pathname field in the
manifest.

3. If the network is not found and there is not file at the target pathename, a new blank network
is built and the appropriate fields are set from the metadata.

Author(s)

Russell Almond

78 Pnode

See Also

Warehouse, WarehouseManifest, BuildNetManifest

Implementation in the PNetica package: BNWarehouse, MakePnet.NeticaBN

Examples

Not run:
library(PNetica) ## Example requires PNetica

sess <- NeticaSession()
startSession(sess)

BNWarehouse is the PNetica Net Warehouse.
This provides an example network manifest.
netman1 <- read.csv(paste(library(help="Peanut")$path, "auxdata",

"Mini-PP-Nets.csv", sep=.Platform$file.sep),
row.names=1, stringsAsFactors=FALSE)

Nethouse <- BNWarehouse(manifest=netman1,session=sess,key="Name")

CM <- WarehouseSupply(Nethouse, "miniPP_CM")
EM <- WarehouseSupply(Nethouse, "PPcompEM")

DeleteNetwork(list(CM,EM))
stopSession(sess)

End(Not run)

Pnode A Parameterized Bayesian network node

Description

A node in a parameterized Bayesian network. Note that this is a abstract class. If an object imple-
ments the Pnode protocol, then is.Pnode(node) should return TRUE.

Usage

is.Pnode(x)
as.Pnode(x)
Pnode (node, lnAlphas, betas, rules="Compensatory",

link="partialCredit",Q=TRUE,linkScale=NULL,
priorWeight=NULL)

Pnode 79

Arguments

x A object to test to see if it is a parameterized node, or to coerce it to a parame-
terized node.

node An object that will become the base of the parameterized node. This should
already be a parameterized node, e.g., a NeticaNode object.

lnAlphas A numeric vector of list of numeric vectors giving the log slope parameters. See
PnodeLnAlphas for a description of this parameter. If missing, the constructor
will try to create a pattern of zero values appropriate to the rules argument and
the number of parent variables.

betas A numeric vector or list of numeric vectors giving the intercept parameters. See
PnodeBetas for a description of this parameter. If missing, the constructor will
try to create a pattern of zero values appropriate to the rules argument and the
number of parent variables.

rules The combination rule or a list of combination rules. These should either be
names of functions or function objects. See PnodeRules for a description of
this argument.

link The name of the link function or the link function itself. See PnodeLink for a
description of the link function.

Q A logical matrix or the constant TRUE (indicating that the Q-matrix should be a
matrix of TRUEs). See PnodeQ for a description of this parameter.

linkScale A numeric vector of link scale parameters or NULL if scale parameters are not
needed for the chosen link function. See PnodeLinkScale for a description of
this parameter.

priorWeight A numeric vector of weights given to the prior parameter values for each row
of the conditional probability table when learning from data (or a scalar if all
rows have equal prior weight). See PnodePriorWeight for a description of this
parameter.

Details

The Pnode class is basically a protocol which any Bayesian network node object can follow to work
with the tools in the Peanut package. This is really an abstract class (in the java language, Pnode
would be an interface rather than a class). In particular, a Pnode is any object for which is.Pnode
returns true. The default method looks for the string "Pnode" in the class list.

Fields. A Pnode object has eight “fields” (implemented through the accessor methods), which
all Pnode objects are meant to support. These correspond to the arguments of the calcDPCTable
function.

The function PnodeNet returns the Pnet object which contains the nodes.

The function PnodeQ gets or sets a Q-matrix describing which parent variables are relevant for which
state transitions. The default value is TRUE which indicates that all parent variables are relevant.

The function PnodePriorWeight gets or sets the prior weights associated with the node. This gives
the relative weighting of the parameterized table as a prior and the observed data in the GEMfit
algorithm.

The function PnodeRules gets or sets the combination rules used to combine the influence of the
parent variables.

80 Pnode

The functions PnodeLnAlphas and PnodeAlphas get or set the slope parameters associated with
the combination rules. Note that in many applications, the slope parameters are constrained to be
positive and maximization is done over the log of the slope parameter.

The function PnodeBetas gets or sets the difficulty (negative intercept) parameter associated with
the combination rule.

The function PnodeLink gets or sets the link function used to translate between the output of the
combination rule and a row of the conditional probability table.

The function PnodeLinkScale gets or sets a scale parameter associated with the link function.

There are some additional optional fields which describe metadata about the node and its states. The
generic functions PnodeName(), PnodeTitle(), and PnodeDescription() access basic metadata
about the node.

The generic function PnodeLabels() accesses a set of character labels associated with the node.
This is useful for identifying sets of nodes (e.g., observables, high-level proficiency variables.)

The generic functions PnodeStates(), PnodeStateTitles(), and PnodeStateDescriptions()
access basic information about the states of the node. The generic function PnodeNumStates()
returns the number of states. The generic function PnodeStateValues() access the numeric values
associated with the states.

The generic function PnodeParents(node) access the parent set of the node . Note that this func-
tion has a setter form which changes the topology of the graph. The generic functions PnodeParentNames()
and PnodeNumParents() return the corresponding information about the parent variable.

Generic Functions. The importance of the Pnode object is that it supports the GEMfit method
which adjust the parameters of the Pnode objects to fit a set of case data. In order to be compatible
with GEMfit, the Pnode object must support three methods: PnodeParentTvals, BuildTable, and
maxCPTParam.

The generic function PnodeParentTvals returns a list of effective theta values (vectors of real
numbers) associated with the states of the parent variables. These are used to build the conditional
probability tables.

The generic function BuildTable calls the function calcDPCTable to generate a conditional prob-
ability table for the node using the current parameter values. It also sets the node experience.

The generic function maxCPTParam calls the function mapDPC to calculate the optimal parameter
values for the CPT for the node and the updates the parameter values.

Value

The function is.Pnet returns a logical scalar indicating whether or not the object claims to follow
the Pnet protocol.

Author(s)

Russell Almond

References

Almond, R. G. (2015) An IRT-based Parameterization for Conditional Probability Tables. Paper
presented at the 2015 Bayesian Application Workshop at the Uncertainty in Artificial Intelligence
Conference.

Pnode 81

See Also

Parameter Fields: PnodeQ, PnodePriorWeight, PnodeRules, PnodeLink, PnodeLnAlphas, PnodeAlphas,
PnodeBetas, PnodeLinkScale

Metadata fields:PnodeNet, PnodeParents, PnodeParentNames, PnodeNumParents, PnodeName,
PnodeTitle, PnodeDescription, PnodeLabels, PnodeStates, PnodeNumStates, PnodeStateTitles,
PnodeStateDescriptions, PnodeStateValues, isPnodeContinuous, PnodeStateBounds

Generic Functions: BuildTable, PnodeParentTvals, maxCPTParam

Functions: GetPriorWeight, calcDPCTable, mapDPC

Related Classes: Pnet

Examples

Not run:

These are the implementations of the two key generic functions in
PNetica

BuildTable.NeticaNode <- function (node) {
node[] <- calcDPCFrame(ParentStates(node),NodeStates(node),

PnodeLnAlphas(node), PnodeBetas(node),
PnodeRules(node),PnodeLink(node),
PnodeLinkScale(node),PnetQ(node),
PnodeParentTvals(node))

NodeExperience(node) <- GetPriorWeight(node)
invisible(node)

}

maxCPTParam.NeticaNode <- function (node, Mstepit=3,
tol=sqrt(.Machine$double.eps)) {

Get the posterior pseudo-counts by multiplying each row of the
node's CPT by its experience.
counts <- sweep(node[[]],1,NodeExperience(node),"*")
est <- mapDPC(counts,ParentStates(node),NodeStates(node),

PnodeLnAlphas(node), PnodeBeta(node),
PnodeRules(node),PnodeLink(node),
PnodeLinkScale(node),PnodeQ(node),
control=list(reltol=tol,maxits=Mstepit)
)

PnodeLnAlphas(node) <- est$lnAlphas
PnodeBetas(node) <- est$betas
PnodeLinkScale(node) <- est$linkScale
invisible(node)

}

End(Not run)

82 Pnode-class

Pnode-class Class "Pnode"

Description

This is a virtual class. Classes implementing the Pnet protocol should attach themselves using
setIs.

Note that NULL is always considered a member so that uninitialized in containers.

Objects from the Class

A virtual Class: No objects may be created from it.

Classes can register as belonging to this abstract class. The trick for doing this is: setIs("NodeClass","Pnode")

Currently NeticaNode is an example of an object of this class (but requires the PNetica package
to provide all of the required functionality).

Methods

No methods defined with class "Pnode" in the signature; however, the following generic functions
are available:

PnodeName signature(node = "Pnode"): Fetches node name.

PnodeName<- signature(node = "Pnode", value="character"): Sets node name.

PnodeTitle signature(node = "Pnode"): Fetches node title.

PnodeTitle<- signature(node = "Pnode", value="character"): Sets node title.

PnodeDescription signature(node = "Pnode"): Fetches documentation string for node.

PnodeDescription<- signature(node = "Pnode", value="character"): Sets documenta-
tion string for node.

PnodeLabels signature(node = "Pnode"): Fetches a vector of lables assigned to this node.

PnodeLabels<- signature(node = "Pnode", value = "character"): Sets vector of
labels assigned to this node. hub model.

PnodeNumStates signature(node = "Pnode"): Fetches length of vector of states available for
this node.

PnodeStates signature(node = "Pnode"): Fetches vector of states available for this node.

PnodeStates<- signature(node = "Pnode", value): Sets vector of states for this node.

PnodeStateTitles signature(node = "Pnode"): Fetches vector of states available for this node.

PnodeStateTitles<- signature(node = "Pnode", value): Sets vector of states for this node.

PnodeStateDescriptions signature(node = "Pnode"): Fetches vector of states available for this
node.

PnodeStateDescriptions<- signature(node = "Pnode", value): Sets vector of states for
this node.

Pnode-class 83

PnodeStateValues signature(node = "Pnode"): Fetches vector of numeric values associated
with states for this node.

PnodeStateValues<- signature(node = "Pnode", value): Sets vector of numeric values asso-
ciated with states for this node.

PnodeStateBounds signature(node = "Pnode"): Fetches matrix of upper and lower bounds for
discritized states of a continuous node.

PnodeStateBounds<- signature(node = "Pnode", value): Sets matrix of upper and lower
bounds for discritized states of a continuous node.

PnodeParents signature(node = "Pnode"): Fetches a list of the nodes parents.

PnodeParents<- signature(node = "Pnode", value = "list"): Sets a list of the nodes
parents.

PnodeParentNames signature(node = "Pnode"): Lists the names of the parents.

PnodeNumParents signature(node = "Pnode"): The length of the parent vector.

isPnodeContinuous signature(node = "Pnode"): Copies nodes from hub model into spoke
model.

PnodeProbs signature(node = "Pnode"): Fetchs the conditional probability table for the node.

PnodeProbs<- signature(node = "Pnode", value = "array"): Sets the conditional
probability table for the node.

PnodeEvidence signature(node = "Pnode"): Fetches the current instantiated evidence for this
node.

PnodeEvidence<- signature(node = "Pnode", value): Sets the instantiated evidence for this
node.

PnodeMargin signature(node = "Pnode"): Computes the vector of marginal beliefs associated
with the state of this node given the evidence.

PnodeEAP signature(node = "Pnode"): Computes the expected value of a node given the
evidence. This assumes node states are assigned numeric values.

PnodeSD signature(node = "Pnode"): Computes the standard deviation of a node given the
evidence. This assumes node states are assigned numeric values.

PnodeMedian signature(node = "Pnode"): Computes the median of a node given the evidence.
This assumes node states are ordered.

PnodeMedian signature(node = "Pnode"): Computes the most likely state of a node given the
evidence.

Author(s)

Russell Almond

See Also

Pnode.

The class NeticaNode implements this protocol.

84 PnodeBetas

Examples

showClass("Pnode")
Not run:
setIs("NeticaNode","Pnode")

End(Not run)

PnodeBetas Access the combination function slope parameters for a Pnode

Description

In constructing a conditional probability table using the discrete partial credit framework (see
calcDPCTable), the effective thetas for each parent variable are combined into a single effect theta
using a combination rule. The expression PnodeAlphas(node) accesses the intercept parameters
associated with the combination function PnodeRules(node).

Usage

PnodeBetas(node)
PnodeBetas(node) <- value

Arguments

node A Pnode object.

value A numeric vector of intercept parameters or a list of such vectors (see details).
The length of the vector depends on the combination rules (see PnodeRules). If
a list, it should have length one less than the number of states in node.

Details

Following the framework laid out in Almond (2015), the function calcDPCTable calculates a con-
ditional probability table using the following steps:

1. Each set of parent variable states is converted to a set of continuous values called effective
thetas (see PnodeParentTvals). These are built into an array, eTheta, using expand.grid
where each column represents a parent variable and each row a possible configuration of
parents.

2. For each state of the node except the last, the set of effective thetas is filtered using the local
Q-matrix, PnodeQ(node) = Q. Thus, the actual effect thetas for state s is eTheta[,Q[s,]].

3. For each state of the node except the last, the corresponding rule is applied to the effective
thetas to get a single effective theta for each row of the table. This step is essentially calls the
expression: do.call(rules[[s]], list(eThetas[,Q[s,]]), PnodeAlphas(node)[[s]],
PnodeBetas(node)[[s]]).

4. The resulting set of effective thetas are converted into conditional probabilities using the link
function PnodeLink(node).

PnodeBetas 85

The function PnodeRules accesses the function used in step 3. It should should be the name
of a function or a function with the general signature of a combination function described in
Compensatory. The compensatory function is a useful model for explaining the roles of the slope
parameters, beta. Let thetai,j be the effective theta value for the jth parent variable on the ith row
of the effective theta table, and let betaj be the corresponding slope parameter. Then the effective
theta for that row is:

Z(thetai) = (alpha1thetai,1 + . . .+ alphaJ thetaJ,1)/C − beta,

where C =
√

(J) is a variance stabilization constant and alphas are derived from PnodeAlphas.
The functions Conjunctive and Disjunctive are similar replacing the sum with a min or max
respectively.

In general, when the rule is one of Compensatory, Conjunctive, or Disjunctive, the the value of
PnodeBetas(node) should be a scalar.

The rules OffsetConjunctive, and OffsetDisjunctive, work somewhat differently, in that they
assume there is a single slope and multiple intercepts. Thus, the OffsetConjunctive has equation:

Z(thetai) = alphamin(thetai,1 − beta1, . . . , thetaJ,1 − betaJ).

In this case the assumption is that PnodeAlphas(node) will be a scalar and PnodeBetas(node)
will be a vector of length equal to the number of parents. As a special case, if it is a vector of length
1, then a model with a common slope is used. This looks the same in calcDPCTable but has a
different implication in mapDPC where the parameters are constrained to be the same.

When node has more than two states, there is a a different combination function for each transition.
(Note that calcDPCTable assumes that the states are ordered from highest to lowest, and the transi-
tion functions represent transition to the corresponding state, in order.) There are always one fewer
transitions than there states. The meaning of the transition functions is determined by the the value
of PnodeLink, however, both the partialCredit and the gradedResponse link functions allow
for different intercepts for the different steps, and the gradedResponse link function requires that
the intercepts be in decreasing order (highest first). To get a different intercept for each transition,
the value of PnodeBetas(node) should be a list.

If the value of PnodeRules(node) is a list, then a different combination rule is used for each
transition. Potentially, this could require a different number of intercept parameters for each row.
Also, if the value of PnodeQ(node) is not a matrix of all TRUE values, then the effective number
of parents for each state transition could be different. In this case, if the OffsetConjunctive or
OffsetDisjunctive rule is used the value of PnodeBetas(node) should be a list of vectors of
different lengths (corresponding to the number of true entries in each row of PnodeQ(node)).

Value

A list of numeric vectors giving the intercepts for the combination function of each state transi-
tion. The vectors may be of different lengths depending on the value of PnodeRules(node) and
PnodeQ(node). If the intercepts are the same for all transitions then a single numeric vector instead
of a list is returned.

Note that the setter form may destructively modify the Pnode object (this depends on the imple-
mentation).

86 PnodeBetas

Note

The functions PnodeLnBetas and PnodeLnBetas<- are abstract generic functions, and need specific
implementations. See the PNetica-package for an example.

The values of PnodeLink, PnodeRules, PnodeQ, PnodeParentTvals, PnodeLnAlphas, and PnodeBetas
all need to be consistent for this to work correctly, but no error checking is done on any of the setter
methods.

Author(s)

Russell Almond

References

Almond, R. G. (2015) An IRT-based Parameterization for Conditional Probability Tables. Paper
presented at the 2015 Bayesian Application Workshop at the Uncertainty in Artificial Intelligence
Conference.

Almond, R.G., Mislevy, R.J., Steinberg, L.S., Williamson, D.M. and Yan, D. (2015) Bayesian
Networks in Educational Assessment. Springer. Chapter 8.

See Also

Pnode, PnodeQ, PnodeRules, PnodeLink, PnodeLnAlphas, BuildTable, PnodeParentTvals, maxCPTParam
calcDPCTable, mapDPC Compensatory, OffsetConjunctive

Examples

Not run:
library(PNetica) ## Requires implementation
sess <- NeticaSession()
startSession(sess)

tNet <- CreateNetwork("TestNet",session=sess)

theta1 <- NewDiscreteNode(tNet,"theta1",
c("VH","High","Mid","Low","VL"))

PnodeStateValues(theta1) <- effectiveThetas(PnodeNumStates(theta1))
PnodeProbs(theta1) <- rep(1/PnodeNumStates(theta1),PnodeNumStates(theta1))
theta2 <- NewDiscreteNode(tNet,"theta2",

c("VH","High","Mid","Low","VL"))
PnodeStateValues(theta2) <- effectiveThetas(PnodeNumStates(theta2))
PnodeProbs(theta2) <- rep(1/PnodeNumStates(theta2),PnodeNumStates(theta2))

partial3 <- NewDiscreteNode(tNet,"partial3",
c("FullCredit","PartialCredit","NoCredit"))

PnodeParents(partial3) <- list(theta1,theta2)

Usual way to set rules is in constructor
partial3 <- Pnode(partial3,rules="Compensatory", link="gradedResponse")
PnodePriorWeight(partial3) <- 10

PnodeBetas 87

BuildTable(partial3)

increasing intercepts for both transitions
PnodeBetas(partial3) <- list(FullCredit=1,PartialCredit=0)
BuildTable(partial3)

stopifnot(
all(abs(do.call("c",PnodeBetas(partial3)) -c(1,0)) <.0001)

)

increasing intercepts for both transitions
PnodeLink(partial3) <- "partialCredit"
Full Credit is still rarer than partial credit under the partial
credit model
PnodeBetas(partial3) <- list(FullCredit=0,PartialCredit=0)
BuildTable(partial3)

stopifnot(
all(abs(do.call("c",PnodeBetas(partial3)) -c(0,0)) <.0001)

)

Switch to rules which use multiple intercepts
PnodeRules(partial3) <- "OffsetConjunctive"

Make Skill 1 more important for the transition to ParitalCredit
And Skill 2 more important for the transition to FullCredit
PnodeLnAlphas(partial3) <- 0
PnodeBetas(partial3) <- list(FullCredit=c(-.25,.25),

PartialCredit=c(.25,-.25))
BuildTable(partial3)

Set up so that first skill only needed for first transition, second
skill for second transition; Adjust betas to match
PnodeQ(partial3) <- matrix(c(TRUE,TRUE,

TRUE,FALSE), 2,2, byrow=TRUE)
PnodeBetas(partial3) <- list(FullCredit=c(-.25,.25),

PartialCredit=0)
BuildTable(partial3)

Can also do this with special parameter values
PnodeQ(partial3) <- TRUE
PnodeBetas(partial3) <- list(FullCredit=c(-.25,.25),

PartialCredit=c(0,Inf))
BuildTable(partial3)

DeleteNetwork(tNet)
stopSession(sess)

88 PnodeEvidence

End(Not run)

PnodeEvidence Accesses the value to which a given node has been instantiated.

Description

Inference is a Bayesian network involves setting the state of a particular node to one of its possible
states, either because the state has been observed, or because it has been hypothesized. This pro-
cessis is often called instantiaion. This function returns the value (state) to which the node has been
instantiated, or in the setter form set it. Depending on the implementation logic, the beliefs may be
immediately updated or be updated on demand.

Usage

PnodeEvidence(node)
PnodeEvidence(node) <- value

Arguments

node A Pnode object whose instantiated value will be accessed.

value The value that the node will be instantiated to, see details.

Details

Currently, Peanut supports two ways of representing nodes, discrete and continuous (see isPnodeContinuous).
The current PNetica-package implemenation discritizes continuous nodes, using the PnodeStateBounds
to map real numbers to states of the observables. Functions implementing these generic functions
may treat these values differently.

The behavior depends on the class of the value argument:

character or factor The character of factor should represent a state of the node. The node will be
instantiated to that state.

numeric scalar For continuous nodes, the node will be instantiated to that value. For discritized
continuous nodes, the node will be instantiated to the state in which the value lies (see PnodeStateBounds).

difftime scalar The value is first converted to a numeric value with units of seconds. This can be
overridden in the implementation.

numeric vector of length PnodeNumStates The number should represent likelihoods, and this will
enter appropriate virual evidence for the node.

NULL This will retract any existing evidence associated with the node.

Value

The getter function PnodeEvidence will return one of the value forms described in details. If the
node is not instantiated, it will return NULL.

The setter function PnodeEvidence<- returns the node argument invisibly.

PnodeEvidence 89

Note

The current options for this function make a lot of sense with Netica. There may be other modes
that are not covered for other implementations.

Author(s)

Russell Almond

See Also

The function PnetCompile usually needs to be run before this function has meaning.

The functions PnodeStates and PnodeStateBounds define the legal values for the value argument.

Examples

Not run:

library(PNetica) ## Need a specific implementation
sess <- NeticaSession()
startSession(sess)

irt10.base <- ReadNetworks(paste(library(help="PNetica")$path,
"testnets","IRT10.2PL.base.dne",
sep=.Platform$file.sep),session=sess)

irt10.base <- as.Pnet(irt10.base) ## Flag as Pnet, fields already set.
irt10.theta <- PnetFindNode(irt10.base,"theta")
irt10.items <- PnetPnodes(irt10.base)
Flag items as Pnodes
for (i in 1:length(irt10.items)) {

irt10.items[[i]] <- as.Pnode(irt10.items[[i]])

}

BuildAllTables(irt10.base)
PnetCompile(irt10.base) ## Netica requirement

stopifnot (is.na(PnodeEvidence(irt10.items[[1]])))

PnodeEvidence(irt10.items[[1]]) <- "Correct"
stopifnot(PnodeEvidence(irt10.items[[1]])=="Correct")

PnodeEvidence(irt10.items[[1]]) <- NULL
stopifnot (is.na(PnodeEvidence(irt10.items[[1]])))

PnodeEvidence(irt10.items[[1]]) <- c(Correct=.6,Incorrect=.3)
stopifnot(all.equal(PnodeEvidence(irt10.items[[1]]),

c(Correct=.6,Incorrect=.3),
tol=3*sqrt(.Machine$double.eps)))

foo <- NewContinuousNode(irt10.base,"foo")

90 PnodeLabels

stopifnot(is.na(PnodeEvidence(foo)))

PnodeEvidence(foo) <- 1
stopifnot(PnodeEvidence(foo)==1)

DeleteNetwork(irt10.base)
stopSession(sess)

End(Not run)

PnodeLabels Lists or changes the labels associated with a parameterize node.

Description

A label is a character identifier associated with a node which provides information about its role in
the models. This function returns or sets the labels associated with a node.

Usage

PnodeLabels(node)
PnodeLabels(node) <- value

Arguments

node A Pnode object.

value A character vector containing the names of the labels that node should be asso-
ciated with. These names should follow the variable naming rules.

Details

Netica node sets are a collection of string labels that can be associated with various nodes in a
network. These have proved to be very useful on writing code as often it is useful to perform some
operation on only a certain kind of nodes. One purpose of node sets is to label a set of nodes that
play a similar role in the model. For example, "ReportingVariable" or "Observable".

The PnodeLabels function is an attempt to generalize that mechanism. The expression PnodeLabels(node)
returns the labels currently associated with node , thus provides a general mechanism for identifying
the roles that a node might play.

The expression PnodeLabels(node)<-value removes any labels previously associated with node
and adds the new labels named in value . The elements of value need not correspond to existing
labels, new node sets will be created for new values. (Warning: this implies that if the name of
the node set is spelled incorrectly in one of the calls, this will create a new node set. For example,
"Observable" and "Observables" would be two distinct labels.)

Two labels have special meaning in the Peanut package. The function BuildAllTables(net) re-
builds the tables for nodes which are labeled “pnode” (i.e., parameterized nodes). The function
GEMfit attempts to fit the parameters for nodes labeled “pnodes”, and associates values in the cases
argument with the nodes labeled “onodes”.

PnodeLabels 91

Value

A character vector giving the names of the labels node is associated with. The setter form returns
node .

Author(s)

Russell Almond

See Also

Pnode, BuildAllTables, GEMfit, PnetPnodes

Examples

Not run:
library(PNetica)##Requires PNetica
sess <- NeticaSession()
startSession(sess)

nsnet <- CreateNetwork("NodeSetExample", session=sess)

Ability <- NewDiscreteNode(nsnet,"Ability",c("High","Med","Low"))

EssayScore <- NewDiscreteNode(nsnet,"EssayScore",paste("level",5:0,sep="_"))

stopifnot(
length(PnodeLabels(Ability)) == 0L ## Nothing set yet

)

PnodeLabels(Ability) <- "ReportingVariable"
stopifnot(

PnodeLabels(Ability) == "ReportingVariable"
)
PnodeLabels(EssayScore) <- "Observable"
stopifnot(

PnodeLabels(EssayScore) == "Observable"
)
Make EssayScore a reporting variable, too
PnodeLabels(EssayScore) <- c("ReportingVariable",PnodeLabels(EssayScore))
stopifnot(

setequal(PnodeLabels(EssayScore),c("Observable","ReportingVariable"))
)

Clear out the node set
PnodeLabels(Ability) <- character()
stopifnot(

length(PnodeLabels(Ability)) == 0L
)

DeleteNetwork(nsnet)
stopSession(sess)

92 PnodeLink

End(Not run)

PnodeLink Accesses the link function associated with a Pnode

Description

In constructing a conditional probability table using the discrete partial credit framework (see
calcDPCTable), the effective thetas for each row of the table is converted into a vector of prob-
abilities using the link function. The function PnodeLink accesses the link function associated with
a Pnode.

Usage

PnodeLink(node)
PnodeLink(node) <- value

Arguments

node A Pnode object.

value The name of a link function or function object which can serve as the link func-
tion.

Details

Following the framework laid out in Almond (2015), the function calcDPCTable calculates a con-
ditional probability table using the following steps:

1. Each set of parent variable states is converted to a set of continuous values called effective
thetas (see PnodeParentTvals). These are built into an array, eTheta, using expand.grid
where each column represents a parent variable and each row a possible configuration of
parents.

2. For each state of the node except the last, the set of effective thetas is filtered using the local
Q-matrix, PnodeQ(node) = Q. Thus, the actual effect thetas for state s is eTheta[,Q[s,]].

3. For each state of the node except the last, the corresponding rule is applied to the effective
thetas to get a single effective theta for each row of the table. This step is essentially calls the
expression: do.call(rules[[s]], list(eThetas[,Q[s,]]), PnodeAlphas(node)[[s]],
PnodeBetas(node)[[s]]).

4. The resulting set of effective thetas are converted into conditional probabilities using the link
function.

A link function is a function of three arguments. The first is a matrix of effective theta values with
number of rows equal to the number of rows of the conditional probability matrix and number of
columns equal to the number of states of node minus one (ordered from highest to lowest). The
second is an optional link scale, the third is a set of names for the states which is used to give column
names to the output matrix. The second and third both default to NULL.

PnodeLink 93

Currently two link functions are partialCredit and gradedResponse. Note that the function
gradedResponse assumes that the effective thetas in each row are in increasing order. This puts
certain restrictions on the parameter values. Generally, this can only be guaranteed if each state
of the variable uses the same combination rules (see PnodeRules(node)), slope parameters (see
PnodeAlphas(node)) and Q-matrix (see PnodeQ(node)). Also, the intercepts (see PnodeBetas(node))
should be in decreasing order. The partialCredit model has fewer restrictions.

The value of PnodeLinkScale(node) is fed to the link function. Currently, this is unused; but
the DiBello-normal model (see calcDNTable) uses it. So the link scale parameter is for future
expansion.

Value

A character scalar giving the name of a combination function or a combination function object.

Note that the setter form may destructively modify the Pnode object (this depends on the imple-
mentation).

Note

The functions PnodeLink and PnodeLink<- are abstract generic functions, and need specific im-
plementations. See the PNetica-package for an example.

A third normal link function, which would use the scale parameter, is planned but not yet imple-
mented.

Author(s)

Russell Almond

References

Almond, R. G. (2015) An IRT-based Parameterization for Conditional Probability Tables. Paper
presented at the 2015 Bayesian Application Workshop at the Uncertainty in Artificial Intelligence
Conference.

Almond, R.G., Mislevy, R.J., Steinberg, L.S., Williamson, D.M. and Yan, D. (2015) Bayesian
Networks in Educational Assessment. Springer. Chapter 8.

See Also

Pnode, PnodeQ, PnodeRules PnodeLinkScale, PnodeLnAlphas, PnodeBetas, BuildTable, PnodeParentTvals,
maxCPTParam calcDPCTable, mapDPC Compensatory, OffsetConjunctive

Examples

Not run:
library(PNetica) ## Requires implementation
sess <- NeticaSession()
startSession(sess)

tNet <- CreateNetwork("TestNet",session=sess)

94 PnodeLinkScale

theta1 <- NewDiscreteNode(tNet,"theta1",
c("VH","High","Mid","Low","VL"))

PnodeStateValues(theta1) <- effectiveThetas(PnodeNumStates(theta1))
PnodeProbs(theta1) <- rep(1/PnodeNumStates(theta1),PnodeNumStates(theta1))
theta2 <- NewDiscreteNode(tNet,"theta2",

c("VH","High","Mid","Low","VL"))
PnodeStateValues(theta2) <- effectiveThetas(PnodeNumStates(theta2))
PnodeProbs(theta2) <- rep(1/PnodeNumStates(theta2),PnodeNumStates(theta2))

partial3 <- NewDiscreteNode(tNet,"partial3",
c("FullCredit","PartialCredit","NoCredit"))

PnodeParents(partial3) <- list(theta1,theta2)

Usual way to set link is in constructor
partial3 <- Pnode(partial3,rules="Compensatory", link="gradedResponse")
PnodePriorWeight(partial3) <- 10
PnodeBetas(partial3) <- list(FullCredit=1,PartialCredit=0)
BuildTable(partial3)

increasing intercepts for both transitions
PnodeLink(partial3) <- "partialCredit"
Full Credit is still rarer than partial credit under the partial
credit model
PnodeBetas(partial3) <- list(FullCredit=0,PartialCredit=0)
BuildTable(partial3)

Can use different slopes with partial credit
Make Skill 1 more important for the transition to ParitalCredit
And Skill 2 more important for the transition to FullCredit
PnodeLnAlphas(partial3) <- list(FullCredit=c(-.25,.25),

PartialCredit=c(.25,-.25))
BuildTable(partial3)

Can also use Q-matrix to select skills
Set up so that first skill only needed for first transition, second
skill for second transition; Adjust alphas to match
PnodeQ(partial3) <- matrix(c(TRUE,TRUE,

TRUE,FALSE), 2,2, byrow=TRUE)
PnodeLnAlphas(partial3) <- list(FullCredit=c(-.25,.25),

PartialCredit=0)
BuildTable(partial3)

DeleteNetwork(tNet)

End(Not run)

PnodeLinkScale Accesses the link function scale parameter associated with a Pnode

PnodeLinkScale 95

Description

In constructing a conditional probability table using the discrete partial credit framework (see
calcDPCTable), the effective thetas for each row of the table is converted into a vector of prob-
abilities using the link function. The function PnodeLink accesses the scale parameter of the link
function associated with a Pnode.

Usage

PnodeLinkScale(node)
PnodeLinkScale(node) <- value

Arguments

node A Pnode object.

value A positive numeric value, or NULL if the scale parameter is not used for the link
function.

Details

The link function used in constructing the conditional probability table is controlled by the value of
PnodeLink(node). One of the arguments to the link function is a scale parameter, the expression
PnodeLinkScale(node) provides the link scale parameter associated with the node.

This is mostly for future expansion. Currently, neither of the two link functions defined in the
CPTtools package, partialCredit and gradedResponse, require a link scale parameter. How-
ever, the DiBello-normal model (see calcDNTable) uses a link scale parameter so it may be useful
in the future.

Value

The value of the link scale parameter, or NULL if it is not needed.

Note that the setter form may destructively modify the Pnode object (this depends on the imple-
mentation).

Note

The functions PnodeLinkScale and PnodeLinkScale<- are abstract generic functions, and need
specific implementations. See the PNetica-package for an example. Even though they are not
currently used, they must be defined and return a value (even just NULL).

A third normal link function, which would use the scale parameter, is planned but not yet imple-
mented.

Author(s)

Russell Almond

96 PnodeLinkScale

References

Almond, R. G. (2015) An IRT-based Parameterization for Conditional Probability Tables. Paper
presented at the 2015 Bayesian Application Workshop at the Uncertainty in Artificial Intelligence
Conference.

Almond, R.G., Mislevy, R.J., Steinberg, L.S., Williamson, D.M. and Yan, D. (2015) Bayesian
Networks in Educational Assessment. Springer. Chapter 8.

See Also

Pnode, PnodeQ, PnodeRules, PnodeLinkScale, PnodeLnAlphas, PnodeBetas, BuildTable, PnodeParentTvals,
maxCPTParam, calcDPCTable, mapDPC, Compensatory, OffsetConjunctive

Examples

Not run:
library(PNetica) ## Requires implementation
sess <- NeticaSession()
startSession(sess)

tNet <- CreateNetwork("TestNet",session=sess)

theta1 <- NewDiscreteNode(tNet,"theta1",
c("VH","High","Mid","Low","VL"))

PnodeStateValues(theta1) <- effectiveThetas(PnodeNumStates(theta1))
PnodeProbs(theta1) <- rep(1/PnodeNumStates(theta1),PnodeNumStates(theta1))
theta2 <- NewDiscreteNode(tNet,"theta2",

c("VH","High","Mid","Low","VL"))
PnodeStateValues(theta2) <- effectiveThetas(PnodeNumStates(theta2))
PnodeProbs(theta2) <- rep(1/PnodeNumStates(theta2),PnodeNumStates(theta2))

partial3 <- NewDiscreteNode(tNet,"partial3",
c("FullCredit","PartialCredit","NoCredit"))

PnodeParents(partial3) <- list(theta1,theta2)
partial3 <- Pnode(partial3,rules="Compensatory", link="gradedResponse")
PnodePriorWeight(partial3) <- 10

stopifnot(
is.null(PnodeLinkScale(partial3))

)

PnodeLinkScale(partial3) <- 1.0

stopifnot(
all(abs(PnodeLinkScale(partial3)-1)<.0001)

)

DeleteNetwork(tNet)

End(Not run)

PnodeLnAlphas 97

PnodeLnAlphas Access the combination function slope parameters for a Pnode

Description

In constructing a conditional probability table using the discrete partial credit framework (see
calcDPCTable), the effective thetas for each parent variable are combined into a single effect theta
using a combination rule. The expression PnodeAlphas(node) accesses the slope parameters asso-
ciated with the combination function PnodeRules(node). The expression PnodeLnAlphas(node)
which is used in mapDPC.

Usage

PnodeLnAlphas(node)
PnodeLnAlphas(node) <- value
PnodeAlphas(node)
PnodeAlphas(node) <- value
Default S3 method:
PnodeAlphas(node)
Default S3 replacement method:
PnodeAlphas(node) <- value

Arguments

node A Pnode object.

value A numeric vector of (log) slope parameters or a list of such vectors (see details).
The length of the vector depends on the combination rules (see PnodeRules).
If a list, it should have length one less than the number of states in node. For
PnodeAlphas(node) <- value, value should only contain positive numbers.

Details

Following the framework laid out in Almond (2015), the function calcDPCTable calculates a con-
ditional probability table using the following steps:

1. Each set of parent variable states is converted to a set of continuous values called effective
thetas (see PnodeParentTvals). These are built into an array, eTheta, using expand.grid
where each column represents a parent variable and each row a possible configuration of
parents.

2. For each state of the node except the last, the set of effective thetas is filtered using the local
Q-matrix, PnodeQ(node) = Q. Thus, the actual effect thetas for state s is eTheta[,Q[s,]].

3. For each state of the node except the last, the corresponding rule is applied to the effective
thetas to get a single effective theta for each row of the table. This step is essentially calls the
expression: do.call(rules[[s]], list(eThetas[,Q[s,]]), PnodeAlphas(node)[[s]],
PnodeBetas(node)[[s]]).

98 PnodeLnAlphas

4. The resulting set of effective thetas are converted into conditional probabilities using the link
function PnodeLink(node).

The function PnodeRules accesses the function used in step 3. It should should be the name
of a function or a function with the general signature of a combination function described in
Compensatory. The compensatory function is a useful model for explaining the roles of the slope
parameters, alpha. Let thetai,j be the effective theta value for the jth parent variable on the ith row
of the effective theta table, and let alphaj be the corresponding slope parameter. Then the effective
theta for that row is:

Z(thetai) = (alpha1thetai,1 + . . .+ alphaJ thetaJ,1)/C − beta,

where C =
√

(J) is a variance stabilization constant and beta is a value derived from PnodeBetas.
The functions Conjunctive and Disjunctive are similar replacing the sum with a min or max
respectively.

In general, when the rule is one of Compensatory, Conjunctive, or Disjunctive, the the value of
PnodeAlphas(node) should be a vector of the same length as the number of parents. As a special
case, if it is a vector of length 1, then a model with a common slope is used. This looks the same
in calcDPCTable but has a different implication in mapDPC where the parameters are constrained to
be the same.

The rules OffsetConjunctive, and OffsetDisjunctive, work somewhat differently, in that they
assume there is a single slope and multiple intercepts. Thus, the OffsetConjunctive has equation:

Z(thetai) = alphamin(thetai,1 − beta1, . . . , thetaJ,1 − betaJ).

In this case the assumption is that PnodeAlphas(node) will be a scalar and PnodeBetas(node)
will be a vector of length equal to the number of parents.

If the value of PnodeLink is partialCredit, then the link function can be different for each state of
the node. (If it is gradedResponse then the curves need to be parallel and the slopes should be the
same.) If the value of PnodeAlphas(node) is a list (note: list, not numeric vector or matrix), then
a different set of slopes is used for each state transition. (This is true whether PnodeRules(node)
is a single function or a list of functions. Note that if there is a different rule for each transition,
they could require different numbers of slope parameters.) The function calcDPCTable assumes
the states are ordered from highest to lowest, and no transition is needed into the lowest state.

Node that if the value of PnodeQ(node) is not a matrix of all TRUE values, then the effective number
of parents for each state transition could be different. In this case the value of PnodeAlphas(node)
should be a list of vectors of different lengths (corresponding to the number of true entries in each
row of PnodeQ(node)).

Finally, note that if we want the conditional probability table associated with node to be monotonic,
then the PnodeAlphas(node) must be positive. To ensure this, mapDPC works with the log of
the slopes, not the raw slopes. Similarly, calcDPCTable expects the log slope parameters as its
lnAlphas argument, not the raw slopes. For that reason PnodeLnAlphas(node) is considered the
primary function and a default method for PnodeAlphas(node) which simply takes exponents (or
logs in the setter) is provided. Note that a sensible range for the slope parameters is usually between
1/2 and 2, with 1 (0 on the log scale) as a sensible first pass value.

Value

A list of numeric vectors giving the slopes for the combination function of each state transi-
tion. The vectors may be of different lengths depending on the value of PnodeRules(node) and

PnodeLnAlphas 99

PnodeQ(node). If the slopes are the same for all transitions (as is required with the gradedResponse
link function) then a single numeric vector instead of a list is returned.

Note that the setter form may destructively modify the Pnode object (this depends on the imple-
mentation).

Note

The functions PnodeLnAlphas and PnodeLnAlphas<- are abstract generic functions, and need spe-
cific implementations. The default methods for the functions PnodeAlphas and PnodeAlphas<-.
Depend on PnodeLnAlphas and PnodeLnAlphas<-, respectively. See the PNetica-package for an
example.

The values of PnodeLink, PnodeRules, PnodeQ, PnodeParentTvals, PnodeLnAlphas, and PnodeBetas
all need to be consistent for this to work correctly, but no error checking is done on any of the setter
methods.

Author(s)

Russell Almond

References

Almond, R. G. (2015) An IRT-based Parameterization for Conditional Probability Tables. Paper
presented at the 2015 Bayesian Application Workshop at the Uncertainty in Artificial Intelligence
Conference.

Almond, R.G., Mislevy, R.J., Steinberg, L.S., Williamson, D.M. and Yan, D. (2015) Bayesian
Networks in Educational Assessment. Springer. Chapter 8.

See Also

Pnode, PnodeQ, PnodeRules, PnodeLink, PnodeBetas, BuildTable, PnodeParentTvals, maxCPTParam
calcDPCTable, mapDPC Compensatory, OffsetConjunctive

Examples

Not run:
library(PNetica) ## Requires implementation
sess <- NeticaSession()
startSession(sess)

tNet <- CreateNetwork("TestNet",sess)

theta1 <- NewDiscreteNode(tNet,"theta1",
c("VH","High","Mid","Low","VL"))

PnodeStateValues(theta1) <- effectiveThetas(PnodeNumStates(theta1))
PnodeProbs(theta1) <- rep(1/PnodeNumStates(theta1),PnodeNumStates(theta1))
theta2 <- NewDiscreteNode(tNet,"theta2",

c("VH","High","Mid","Low","VL"))
PnodeStateValues(theta2) <- effectiveThetas(PnodeNumStates(theta2))
PnodeProbs(theta2) <- rep(1/PnodeNumStates(theta1),PnodeNumStates(theta2))

100 PnodeLnAlphas

partial3 <- NewDiscreteNode(tNet,"partial3",
c("FullCredit","PartialCredit","NoCredit"))

PnodeParents(partial3) <- list(theta1,theta2)

Usual way to set rules is in constructor
partial3 <- Pnode(partial3,rules="Compensatory", link="partialCredit")
PnodePriorWeight(partial3) <- 10
BuildTable(partial3)

slopes of 1 for both transitions
PnodeLnAlphas(partial3) <- c(0,0)
BuildTable(partial3)

log slope 0 = slope 1
stopifnot(

all(abs(PnodeAlphas(partial3) -1) <.0001)
)

Make Skill 1 more important than Skill 2
PnodeLnAlphas(partial3) <- c(.25,-.25)
BuildTable(partial3)

Make Skill 1 more important for the transition to ParitalCredit
And Skill 2 more important for the transition to FullCredit
PnodeLnAlphas(partial3) <- list(FullCredit=c(-.25,.25),

PartialCredit=c(.25,-.25))
BuildTable(partial3)

Set up so that first skill only needed for first transition, second
skill for second transition; Adjust alphas to match
PnodeQ(partial3) <- matrix(c(TRUE,TRUE,

TRUE,FALSE), 2,2, byrow=TRUE)
PnodeLnAlphas(partial3) <- list(FullCredit=c(-.25,.25),

PartialCredit=0)
BuildTable(partial3)

Using OffsetConjunctive rule requires single slope
PnodeRules(partial3) <- "OffsetConjunctive"
Single slope parameter for each transition
PnodeLnAlphas(partial3) <- 0
PnodeQ(partial3) <- TRUE
PnodeBetas(partial3) <- c(0,1)
BuildTable(partial3)

Separate slope parameter for each transition;
Note this will only different from the previous transition when
mapDPC is called. In the former case, it will learn a single slope
parameter, in the latter, it will learn a different slope for each
transition.
PnodeLnAlphas(partial3) <- list(0,0)
BuildTable(partial3)

PnodeName 101

DeleteNetwork(tNet)

End(Not run)

PnodeName Gets or sets name of a parameterized node.

Description

Gets or sets the name of the node. Rules for names are implementation dependent, but they should
generally conform to variable naming conventions (begin with a letter and only contain alphanu-
meric characters, no embeded spaces.)

Usage

PnodeName(node)
PnodeName(node)<- value

Arguments

node A Pnode object that references the node.

value An character vector of length 1 giving the new name.

Details

The PnodeTitle() function provides another way to name a node which is not subject to naming
restrictions.

Value

The name of the node as a character vector of length 1.

The setter method returns the node argument.

True Names

True names are the names in the secret ancient lanugage which hold power over an object (Le Guin,
1968).

Actually, this is a difficulty with implementations that place restrictions on the name of a network
or node. In particular, Netica restricts node names to alphanumeric characters and limits the length.
This may make it difficult to match nodes by name with other parts of the system which do not have
this restriction. In this case the object may have both a true name, which is returned by PnodeName
and an internal use name which is used by the implementation.

Author(s)

Russell Almond

102 PnodeParents

References

Le Guin, U. K. (1968). A Wizard of Earthsea. Parnassus Press.

See Also

Pnode, PnetFindNode(), PnodeTitle(),

Examples

Not run:
library(PNetica) # Requires PNetica
sess <- NeticaSession()
startSession(sess)
net <- CreateNetwork("funNet", session=sess)

pnode <- NewDiscreteNode(net,"play")

stopifnot(PnodeName(pnode)=="play")
stopifnot(PnetFindNode(net,"play")==pnode)

PnodeName(pnode)<-"work"
stopifnot(PnetFindNode(net,"work")==pnode)

PnodeName(pnode) <- "Non-Netica Name"
stopifnot(PnetFindNode(net,"Non-Netica Name")==pnode)

DeleteNetwork(net)
stopSession(sess)

End(Not run)

PnodeParents Gets or sets the parents of a parameterized node.

Description

A parent of a child node is another node which has a link from the parent to the child. This function
returns the list of parents parents of the the node. It allows the list of parents for the node to be set,
altering the topology of the network (see details).

Usage

PnodeParents(node)
PnodeParents(node) <- value
PnodeNumParents(node)
PnodeParentNames(node)

PnodeParents 103

Arguments

node A Pnode object whose parents are of interest.

value A list of Pnode objects (or NULLs) which will become the new parents. Order of
the nodes is important. See details.

Details

At its most basic level, PnodeParents() reports on the topology of a network. Suppose we add the
links A1 --> B, A2 --> B, and A3 --> B to the network. Then PnodeParents(B) should return
list(A1, A2, A3). The order of the inputs is important, because that this determines the order of
the dimensions in the conditional probability table (BuildTable()).

The parent list can be set. This can accomplishes a number of different goals: it can replace a
parent variable, it can add additional parents, it can remove extra parents, and it can reorder parents.
Changing the parents alters the topology of the network. Note that the network must always be
acyclic directed graphs. In particular, if changing the parent structure will result in a directed
cycle,it will likely raise an error).

Value

PnodeParents list of Pnode objects representing the parents in the order that they will be used to
establish dimensions for the conditional probability table.

The setting variant returns the modified child object.

The expression PnodeNumParents(node) returns an integer scalar giving the number of parents of
node.

The expression PnodeParentNames(node) is a shortcut fo sapply(PnodeParents(node), PnodeName).

Author(s)

Russell Almond

See Also

Pnode, PnodeParentTvals

Examples

Not run:
library(PNetica) ## Requires PNetica
sess <- NeticaSession()
startSession(sess)
abnet <- CreateNetwork("AB", session=sess)

anodes <- NewDiscreteNode(abnet, paste("A",1:3,sep=""))
B <- NewDiscreteNode(abnet,"B")

Should be empty list
stopifnot(length(PnodeParents(B))==0)

PnodeParents(B) <- anodes

104 PnodeParentTvals

stopifnot(
length(PnodeParents(B))==3,
PnodeParents(B)[[2]] == anodes[[2]]

)

Reorder nodes
PnodeParents(B) <- anodes[c(2:3,1)]
stopifnot(

length(PnodeParents(B))==3,
PnodeName(PnodeParents(B)[[2]])=="A3",
all(nchar(names(PnodeParents(B)))==0)

)

Remove a node.
PnodeParents(B) <- anodes[2:1]
stopifnot(

length(PnodeParents(B))==2,
PnodeName(PnodeParents(B)[[2]])=="A1",
all(nchar(names(PnodeParents(B)))==0)

)

Add a node
PnodeParents(B) <- anodes[3:1]
stopifnot(

length(PnodeParents(B))==3,
PnodeName(PnodeParents(B)[[3]])=="A1",
all(nchar(names(PnodeParents(B)))==0)

)

Remove all parents
PnodeParents(B) <- list()
stopifnot(

length(PnodeParents(B))==0
)

DeleteNetwork(abnet)
stopSession(sess)

End(Not run)

PnodeParentTvals Fetches a list of numeric variables corresponding to parent states

Description

In constructing a conditional probability table using the discrete partial credit framework (see
calcDPCTable), each state of each parent variable is mapped onto a real value called the effec-
tive theta. The function PnodeParentTvals returns a list of effective theta values for each parent
variable.

PnodeParentTvals 105

Usage

PnodeParentTvals(node)

Arguments

node A Pnode object.

Details

Following the framework laid out in Almond (2015), the function calcDPCTable calculates a con-
ditional probability table using the following steps:

1. Each set of parent variable states is converted to a set of continuous values called effective
thetas. These are built into an array, eTheta, using expand.grid where each column repre-
sents a parent variable and each row a possible configuration of parents.

2. For each state of the node except the last, the set of effective thetas is filtered using the local
Q-matrix, PnodeQ(node) = Q. Thus, the actual effect thetas for state s is eTheta[,Q[s,]].
The value of PnodeRules(node) determines which combination function is used.

3. For each state of the node except the last, the corresponding rule is applied to the effective
thetas to get a single effective theta for each row of the table. This step is essentially calls the
expression: do.call(rules[[s]], list(eThetas[,Q[s,]]), PnodeAlphas(node)[[s]],
PnodeBetas(node)[[s]]).

4. The resulting set of effective thetas are converted into conditional probabilities using the link
function.

This function is responsible for the first step of this process. PnodeParentTvals(node) should
return a list corresponding to the parents of node, and each element should be a numeric vector cor-
responding to the states of the appropriate parent variable. It is passed to expand.grid to produce
the table of parent variables for each row of the CPT.

Note that in item response theory, ability (theta) values are assumed to have a unit normal distri-
bution in the population of interest. Therefore, appropriate theta values are quantiles of the normal
distribution. In particular, they should correspond to the marginal distribution of the parent vari-
able. The function effectiveThetas produces equally spaced (wrt the normal measure) theta
values (corresponding to a uniform distribution of the parent). Unequally spaced values can be
produced by using appropriate values of the qnorm function, e.g. qnorm(c(.875,.5,.125)) will
produce effective thetas corresponding to a marginal distribution of (0.25, 0.5, 0.25) (note that each
value is in the midpoint of the interval).

Continuous variables are handled

Value

PnodeParentTvals(node) should return a list corresponding to the parents of node, and each
element should be a numeric vector corresponding to the states of the appropriate parent variable.
If there are no parent variables, this will be a list of no elements.

106 PnodeParentTvals

Note

The function PnodeParentTvals is an abstract generic functions, and need specific implementa-
tions. See the PNetica-package for an example.

In particular, it is probably a mistake to using different effective theta values for different parent
variables in different contexts, therefor, the cleanest implementation is to associate the effective
thetas with the parent variables and simply have PnodeParentTvals fetch them on demand. Thus
the implementation in PNetica is simply, lapply(NodeParents(node), PnodeStateValues).

This is probably less than ideal, as the function PnodeStateValues calculates midpoints wrt Lebesque
measure and not normal measure (used by effectiveTheta.

Author(s)

Russell Almond

References

Almond, R. G. (2015) An IRT-based Parameterization for Conditional Probability Tables. Paper
presented at the 2015 Bayesian Application Workshop at the Uncertainty in Artificial Intelligence
Conference.

Almond, R.G., Mislevy, R.J., Steinberg, L.S., Williamson, D.M. and Yan, D. (2015) Bayesian
Networks in Educational Assessment. Springer. Chapter 8.

See Also

Pnode, PnodeStateValues, PnodeStateBounds, effectiveThetas, PnodeQ, PnodeRules, PnodeLink,
PnodeLnAlphas, PnodeBetas, BuildTable, maxCPTParam calcDPCTable, mapDPC expand.grid,
qnorm

Examples

Not run:
library(PNetica) ## Requires implementation
sess <- NeticaSession()
startSession(sess)

tNet <- CreateNetwork("TestNet",session=sess)

theta1 <- NewDiscreteNode(tNet,"theta1",
c("VH","High","Mid","Low","VL"))

This next function sets the effective thetas for theta1
PnodeStateValues(theta1) <- effectiveThetas(PnodeNumStates(theta1))
PnodeProbs(theta1) <- rep(1/PnodeNumStates(theta1),PnodeNumStates(theta1))
theta2 <- NewDiscreteNode(tNet,"theta2",

c("High","Mid","Low"))
This next function sets the effective thetas for theta2
PnodeStateValues(theta2) <- effectiveThetas(PnodeNumStates(theta2))
PnodeProbs(theta2) <- rep(1/PnodeNumStates(theta2),PnodeNumStates(theta2))

PnodePostWeight 107

partial3 <- NewDiscreteNode(tNet,"partial3",
c("FullCredit","PartialCredit","NoCredit"))

PnodeParents(partial3) <- list(theta1,theta2)

Usual way to set rules is in constructor
partial3 <- Pnode(partial3,rules="Compensatory", link="partialCredit")

PnodeParentTvals(partial3)
do.call("expand.grid",PnodeParentTvals(partial3))

DeleteNetwork(tNet)
stopSession(sess)

End(Not run)

PnodePostWeight Fetches the posterior weight associated with a node

Description

Before running GEMfit, nodes are given a prior weight (PnodePriorWeight) indicating how much
weight should be given to the prior distribution. After running the calcExpTables step, there will
be a posterior weight giving the total weight of the prior plus data.

Usage

PnodePostWeight(node)

Arguments

node A Pnode object.

Details

Let s be a configuration of the parent variables, which corresponds to a row of the CPT of node
(PnodeProbs(node)). Let ps = (ps,1, . . . , ps,K) be the corresponding row of the conditional prob-
ability table and let ns be the corresponding prior weight (an element of codePnodePriorWeight(node)).
The corresponding row of the effective Dirichlet prior for that row is αs = (αs,1, . . . , αs,K), where
αs,1 = ps,1ns. Note that the matrix P and the vector n (stacking the conditional probability vectors
and the prior weights) are sufficient statistics for the conditional probability distribution of node.

The function calcExpTables does the E-step (and some of the M-step) of the GEMfit algorithm.
Its output is new values for the sufficient statistics, P̃ and ñ. At this point, the function PnodeProbs
should return P̃ (although possibly as an array rather than a matrix) and PnodePostWeight(node)
returns ñ.

Although the PnodePostWeight(node) is used in the next step, maxAllTableParams, it is not
retained for the next round of the GEMfit algorithm, instead the PnodePriorWeight(node) is used
for the next time calcExpTables is run.

108 PnodePostWeight

Often, PnodePriorWeight(node) is set to a scalar, indicating that every row should be given the
same weight, e.g., 10. In this case, PnodePostWeight(node) will usually be vector valued as
different numbers of data points correspond to each row of the CPT. Furthermore, unless the parent
variables are fully observed, the PnodePostWeight(node) are unlikely to be integer valued even if
the prior weights are integers. However, the posterior weights should always be at least as large as
the prior weights.

Value

A vector of numeric values corresponding to the rows of the CPT of node. An error may be pro-
duced if calcExpTables has not yet been run.

Author(s)

Russell Almond

References

Almond, R. G. (2015) An IRT-based parameterization for conditional probability tables. In Agosta,
J. M. and Carvalho, R. N. (Eds.) Proceedings of the Twelfth UAI Bayesian Modeling Application
Workshop (BMAW 2015). CEUR Workshop Proceedings, 1565, 14–23. http://ceur-ws.org/
Vol-1565/bmaw2015_paper4.pdf.

See Also

PnodePriorWeight, GEMfit, calcExpTables, maxAllTableParams

Examples

Not run:
library(PNetica) ## Need a specific implementation
sess <- NeticaSession()
startSession(sess)

irt10.base <- ReadNetworks(paste(library(help="PNetica")$path,
"testnets","IRT10.2PL.base.dne",
sep=.Platform$file.sep),
session=sess)

irt10.base <- as.Pnet(irt10.base) ## Flag as Pnet, fields already set.
irt10.theta <- PnetFindNode(irt10.base,"theta")
irt10.items <- PnetPnodes(irt10.base)
Flag items as Pnodes
for (i in 1:length(irt10.items)) {

irt10.items[[i]] <- as.Pnode(irt10.items[[i]])
Add node to list of observed nodes
PnodeLabels(irt10.items[[1]]) <-

union(PnodeLabels(irt10.items[[1]]),"onodes")
}
PnetCompile(irt10.base) ## Netica requirement

casepath <- paste(library(help="PNetica")$path,

http://ceur-ws.org/Vol-1565/bmaw2015_paper4.pdf
http://ceur-ws.org/Vol-1565/bmaw2015_paper4.pdf

PnodeProbs 109

"testdat","IRT10.2PL.200.items.cas",
sep=.Platform$file.sep)

item1 <- irt10.items[[1]]

priorcounts <- sweep(PnodeProbs(item1),1,GetPriorWeight(item1),"*")

calcExpTables(irt10.base,casepath)

postcounts <- sweep(PnodeProbs(item1),1,PnodePostWeight(item1),"*")

Posterior row sums should always be larger.
stopifnot(

all(apply(postcounts,1,sum) >= apply(priorcounts,1,sum))
)

DeleteNetwork(irt10.base)
stopSession(sess)

End(Not run)

PnodeProbs Gets or sets the conditional probability table associated with a Netica
node.

Description

A complete Bayesian networks defines a conditional probability distribution for a node given its
parents. If all the nodes are discrete, this comes in the form of a conditional probability table a
multidimensional array whose first several dimensions follow the parent variable and whose last
dimension follows the child variable.

Usage

PnodeProbs(node)
PnodeProbs(node) <- value

Arguments

node An active, discrete Pnode whose conditional probability table is to be accessed.

value The new conditional probability table. See details for the expected dimensions.

Details

Let node be the node of interest and parent1 , parent2 , ..., parentp , where p is the number of
parents. Let pdim = sapply(PnodeParents(node), PnodeNumStates) be a vector with the
number of states for each parent. A parent configuration is defined by assigning each of the parent

110 PnodeProbs

values to one of its possible states. Each parent configuration defines a (conditional) probability
distribution over the possible states of node .

The result of PnodeProbs(node) will be an array with dimensions c(pdim, PnodeNumStates(node)).
The first p dimensions will be named according to the PnodeParentNames(node). The last di-
mension will be named according to the node itself. The dimnames for the resulting array will
correspond to the state names.

In the CPTtools package, this known as the CPA format, and tools exist to convert between this form
an a two dimensional matrix, or CPF format.

The setter form expects an array of the same dimensions as an argument, although it does not need
to have the dimnames set.

Value

A conditional probability array of class c("CPA","array"). See CPA.

Note

All of this assumes that these are discrete nodes, that is isPnodeContinuous(node) will return
false for both node and all of the parents, or that the continuous nodes have been discritized through
the use of PnodeStateBounds.

Author(s)

Russell Almond

See Also

Pnode, BuildTable, CPA, CPF, normalize(), PnodeParents(), PnodeStates()

Examples

Not run: ## Requires implementation
sess <- NeticaSession()
startSession(sess)
abc <- CreateNetwork("ABC", session=sess)
A <- NewDiscreteNode(abc,"A",c("A1","A2","A3","A4"))
B <- NewDiscreteNode(abc,"B",c("B1","B2","B3"))
C <- NewDiscreteNode(abc,"C",c("C1","C2"))

PnodeParents(A) <- list()
PnodeParents(B) <- list(A)
PnodeParents(C) <- list(A,B)

PnodeProbs(A)<-c(.1,.2,.3,.4)
PnodeProbs(B) <- normalize(matrix(1:12,4,3))
PnodeProbs(C) <- normalize(array(1:24,c(A=4,B=3,C=2)))

Aprobs <- PnodeProbs(A)
Bprobs <- PnodeProbs(B)

PnodeQ 111

Cprobs <- PnodeProbs(C)
stopifnot(

CPTtools::is.CPA(Aprobs),
CPTtools::is.CPA(Bprobs),
CPTtools::is.CPA(Cprobs)

)

DeleteNetwork(abc)
stopSession(sess)

End(Not run)

PnodeQ Accesses a state-wise Q-matrix associated with a Pnode

Description

The function calcDPCTable has an argument Q, which allows the designer to specify that only
certain parent variables are relevant for the state transition. The function PnodeQ accesses the local
Q-matrix for the Pnode node.

Usage

PnodeQ(node)
PnodeQ(node) <- value

Arguments

node A Pnode whose local Q-matrix is of interest

value A logical matrix with number of rows equal to the number of outcome states of
node minus one and number of columns equal to the number of parents of node.
As a special case, if it has the value TRUE this is interpreted as a matrix of true
values of the correct shape.

Details

Consider a partialCredit model, that is a Pnode for which the value of PnodeLink is "partialCredit".
This model is represented as a series of transitions between the states s+1 and s (in calcDPCTable
states are ordered from high to low). The log odds of this transition is expressed with a function
Zs(eTheta) where Zs() is the value of PnodeRules(node) and eTheta is the result of the call
PnodeParentTvals(node).

Let qsj be true if the parent variable xj is relevant for the transition between states s+1 and s. Thus
the function which is evaluated to calculate the transition probabilities is Zs(eTheta[, Q[s,]]); that
is, the parent variables for which qsj is false are filtered out. The default value of TRUE means that
no values are filtered.

Note that this currently makes sense only for the partialCredit link function. The gradedResponse
link function assumes that the curves are parallel and therefore all of the curves must have the same
set of variables (and values for PnodeAlphas.

112 PnodeQ

Value

A logical matrix with number of rows equal to the number of outcome states of node minus one and
number of columns equal to the number of parents of node, or the logical scalar TRUE if all parent
variables are used for all transitions.

Note

The functions PnodeQ and PnodeQ<- are abstract generic functions, and need specific implementa-
tions. See the PNetica-package for an example.

The values of PnodeLink, PnodeRules, PnodeQ, PnodeParentTvals, PnodeLnAlphas, and PnodeBetas
all need to be consistent for this to work correctly, but no error checking is done on any of the setter
methods.

Note that the setter form may destructively modify the Pnode object (this depends on the imple-
mentation).

Author(s)

Russell Almond

References

Almond, R. G. (2013) Discretized Partial Credit Models for Bayesian Network Conditional Proba-
bility Tables. Draft manuscript available from author.

Almond, R. G. (2015) An IRT-based Parameterization for Conditional Probability Tables. Paper
presented at the 2015 Bayesian Application Workshop at the Uncertainty in Artificial Intelligence
Conference.

See Also

Pnode, PnodeRules, PnodeLink, PnodeLnAlphas, PnodeAlphas, BuildTable, PnodeParentTvals,
maxCPTParam calcDPCTable, mapDPC

Examples

Not run:
library(PNetica) ## Requires implementation
sess <- NeticaSession()
startSession(sess)

tNet <- CreateNetwork("TestNet",session=sess)

theta1 <- NewDiscreteNode(tNet,"theta1",
c("VH","High","Mid","Low","VL"))

PnodeStateValues(theta1) <- effectiveThetas(PnodeNumStates(theta1))
PnodeProbs(theta1) <- rep(1/PnodeNumStates(theta1),PnodeNumStates(theta1))
theta2 <- NewDiscreteNode(tNet,"theta2",

c("VH","High","Mid","Low","VL"))

PnodeRules 113

PnodeStateValues(theta2) <- effectiveThetas(PnodeNumStates(theta2))
PnodeProbs(theta2) <- rep(1/PnodeNumStates(theta2),PnodeNumStates(theta2))

partial3 <- NewDiscreteNode(tNet,"partial3",
c("FullCredit","PartialCredit","NoCredit"))

PnodeParents(partial3) <- list(theta1,theta2)

partial3 <- Pnode(partial3,Q=TRUE, link="partialCredit")
PnodePriorWeight(partial3) <- 10
BuildTable(partial3)

Default is all nodes relevant for all transitions
stopifnot(

length(PnodeQ(partial3)) == 1,
PnodeQ(partial3) == TRUE

)

Set up so that first skill only needed for first transition, second
skill for second transition; adjust alphas to match
PnodeQ(partial3) <- matrix(c(TRUE,TRUE,

TRUE,FALSE), 2,2, byrow=TRUE)
PnodeLnAlphas(partial3) <- list(FullCredit=c(-.25,.25),

PartialCredit=0)
BuildTable(partial3)

partial4 <- NewDiscreteNode(tNet,"partial4",
c("Score4","Score3","Score2","Score1"))

PnodeParents(partial4) <- list(theta1,theta2)
partial4 <- Pnode(partial4, link="partialCredit")
PnodePriorWeight(partial4) <- 10

Skill 1 used for first transition, Skill 2 used for second
transition, both skills used for the 3rd.

PnodeQ(partial4) <- matrix(c(TRUE,TRUE,
FALSE,TRUE,
TRUE,FALSE), 3,2, byrow=TRUE)

PnodeLnAlphas(partial4) <- list(Score4=c(.25,.25),
Score3=0,
Score2=-.25)

BuildTable(partial4)

DeleteNetwork(tNet)
stopSession(sess)

End(Not run)

PnodeRules Accesses the combination rules for a Pnode

114 PnodeRules

Description

In constructing a conditional probability table using the discrete partial credit framework (see
calcDPCTable), the effective thetas for each parent variable are combined into a single effect theta
using a combination rule. The function PnodeRules accesses the combination function associated
with a Pnode.

Usage

PnodeRules(node)
PnodeRules(node) <- value

Arguments

node A Pnode object.

value The name of a combination function, the combination function or a list of names
or combination functions (see details). If a list, it should have length one less
than the number of states in node.

Details

Following the framework laid out in Almond (2015), the function calcDPCTable calculates a con-
ditional probability table using the following steps:

1. Each set of parent variable states is converted to a set of continuous values called effective
thetas (see PnodeParentTvals). These are built into an array, eTheta, using expand.grid
where each column represents a parent variable and each row a possible configuration of
parents.

2. For each state of the node except the last, the set of effective thetas is filtered using the local
Q-matrix, PnodeQ(node) = Q. Thus, the actual effect thetas for state s is eTheta[,Q[s,]].

3. For each state of the node except the last, the corresponding rule is applied to the effective
thetas to get a single effective theta for each row of the table. This step is essentially calls the
expression: do.call(rules[[s]], list(eThetas[,Q[s,]]), PnodeAlphas(node)[[s]],
PnodeBetas(node)[[s]]).

4. The resulting set of effective thetas are converted into conditional probabilities using the link
function PnodeLink(node).

The function PnodeRules accesses the function used in step 3. It should should be the name
of a function or a function with the general signature of a combination function described in
Compensatory. Predefined choices include Compensatory, Conjunctive, Disjunctive, OffsetConjunctive,
and OffsetDisjunctive. Note that the first three choices expect that there will be multiple alphas,
one for each parent, and the latter two expect that there will be multiple betas, one for each beta.
The value of PnodeAlphas and PnodeBetas should be set to match.

If the value of PnodeLink is partialCredit, then the link function can be different for state of the
node. (If it is gradedResponse then the curves need to be parallel and it should be the same.) If the
value of PnodeRules(node) is a list (note: list, not character vector), then a different rule is used
for each state transition. The function calcDPCTable assumes the states are ordered from highest
to lowest, and no transition is needed into the lowest state.

PnodeRules 115

Value

A character scalar giving the name of a combination function or a combination function object, or
a list of the same. If a list, its length is one less than the number of states of node.

Note that the setter form may destructively modify the Pnode object (this depends on the imple-
mentation).

Note

The functions PnodeRules and PnodeRules<- are abstract generic functions, and need specific
implementations. See the PNetica-package for an example.

The values of PnodeLink, PnodeRules, PnodeQ, PnodeParentTvals, PnodeLnAlphas, and PnodeBetas
all need to be consistent for this to work correctly, but no error checking is done on any of the setter
methods.

Author(s)

Russell Almond

References

Almond, R. G. (2015) An IRT-based Parameterization for Conditional Probability Tables. Paper
presented at the 2015 Bayesian Application Workshop at the Uncertainty in Artificial Intelligence
Conference.

Almond, R.G., Mislevy, R.J., Steinberg, L.S., Williamson, D.M. and Yan, D. (2015) Bayesian
Networks in Educational Assessment. Springer. Chapter 8.

See Also

Pnode, PnodeQ, PnodeLink, PnodeLnAlphas, PnodeBetas, BuildTable, PnodeParentTvals, maxCPTParam,
calcDPCTable, mapDPC, Compensatory, OffsetConjunctive

Examples

Not run:
library(PNetica) ## Requires implementation
sess <- NeticaSession()
startSession(sess)

tNet <- CreateNetwork("TestNet",session=sess)

theta1 <- NewDiscreteNode(tNet,"theta1",
c("VH","High","Mid","Low","VL"))

PnodeStateValues(theta1) <- effectiveThetas(PnodeNumStates(theta1))
PnodeProbs(theta1) <- rep(1/PnodeNumStates(theta1),PnodeNumStates(theta1))
theta2 <- NewDiscreteNode(tNet,"theta2",

c("VH","High","Mid","Low","VL"))
PnodeStateValues(theta2) <- effectiveThetas(PnodeNumStates(theta2))
PnodeProbs(theta2) <- rep(1/PnodeNumStates(theta2),PnodeNumStates(theta2))

116 PnodeStates

partial3 <- NewDiscreteNode(tNet,"partial3",
c("FullCredit","PartialCredit","NoCredit"))

PnodeParents(partial3) <- list(theta1,theta2)

Usual way to set rules is in constructor
partial3 <- Pnode(partial3,rules="Compensatory", link="partialCredit")
PnodePriorWeight(partial3) <- 10
BuildTable(partial3)

stopifnot(
PnodeRules(partial3) == "Compensatory"

)

Use different rules for different levels
Compensatory for 2nd transition, conjunctive for 1st
Note: Position is important, names are just for documentation.
PnodeRules(partial3) <- list(FullCredit="Compensatory",

PartialCredit="Conjunctive")
BuildTable(partial3)

DeleteNetwork(tNet)

End(Not run)

PnodeStates Accessor for states of a parameterized node.

Description

This function returns a list associated with a Pnode. The function PnodeStates returns or manipu-
lates them. Depending on the implementation, states may have restrictions on the names to it is best
to stick with variable naming conventions (start with a letter, no embedded spaces or punctuation).

Usage

PnodeStates(node)
PnodeStates(node) <- value
PnodeNumStates(node)

Arguments

node A Pnode object whose states are to be accessed.

value A character vector giving the names of the new states. the names of the states.
State names may be restricted by the implementing package and should probably
stick to variable naming conventions.

PnodeStates 117

Details

The states are important when building conditional probability tables (CPTs). In particular, the
state names are used to label the columns of the CPT. Thus, state names can be used to address
arrays in the same way that dimnames can. In particular, the state names can be used to in-
dex the vectors returned by PnodeStates(), PnodeStateTitles(), PnodeStateTitles(), and
PnodeStateValues().

Value

The function PnodeStates() returns a character vector whose values and names are both set to the
state names. The setter version of this function invisibly returns the node object.

The expression PnodeNumStates(node) returns an integer scalar giving the number of states of
node.

Note

Changing the number of states once a conditional probability table is set will change the dimensions
of the table, and hence will likely remove it.

Author(s)

Russell Almond

See Also

Pnode, PnodeName(), PnodeStateTitles(), PnodeStateValues(), PnodeStateDescriptions(),

Examples

Not run:
library(PNetica)##Requires PNetica
sess <- NeticaSession()
startSession(sess)
anet <- CreateNetwork("Annette", session=sess)

Discrete Nodes
nodel2 <- NewDiscreteNode(anet,"TwoLevelNode")
stopifnot(

length(PnodeStates(nodel2))==2,
PnodeStates(nodel2)==c("Yes","No")

)

PnodeStates(nodel2) <- c("True","False")
stopifnot(

PnodeNumStates(nodel2) == 2L,
PnodeStates(nodel2)==c("True","False")

)

118 PnodeStateTitles

nodel3 <- NewDiscreteNode(anet,"ThreeLevelNode",c("High","Med","Low"))
stopifnot(

PnodeNumStates(nodel3) == 3L,
PnodeStates(nodel3)==c("High","Med","Low"),
PnodeStates(nodel3)[2]=="Med"

)

PnodeStates(nodel3)[2] <- "Median"
stopifnot(

PnodeStates(nodel3)[2]=="Median"
)

PnodeStates(nodel3)["Median"] <- "Medium"
stopifnot(

PnodeStates(nodel3)[2]=="Medium"
)

DeleteNetwork(anet)
stopSession(sess)

End(Not run)

PnodeStateTitles Accessors for the titles and descriptions associated with states of a
parameterized node.

Description

Each state of a Pnode has a short name (which could be restricted by the implementation) and a
longer title (which generally can contain emedded spaces and other details to make it more read-
able). Each state also can have a description associated with it. These functions get or set the state
titles or descriptions.

Usage

PnodeStateTitles(node)
PnodeStateTitles(node) <- value
PnodeStateDescriptions(node)
PnodeStateDescriptions(node) <- value

Arguments

node A Pnode object whose state titles or descriptions will be accessed.

value A character vector of the same length as the number of states length(PnodeStates(node))
which provides the new state titles or descriptions.

PnodeStateTitles 119

Details

The titles are meant to be a more human readable version of the state names and are not subject the
variable naming restrictions. The descriptions are meant to be a longer free form notes.

Both titles and descriptions are returned as a named character vector with names corresponding to
the state names. Therefore one can change a single state title or description by accessing it either
using the state number or the state name.

Value

Both PnodeStateTitles() and PnodeStateDescriptions() return a character vector of length
length(PnodeStates(node)) giving the titles or descriptions respectively. The names of this
vector are PnodeStates(node).

The setter methods return the modified Pnode object invisibly.

Author(s)

Russell Almond

See Also

Pnode, PnodeStates(), PnodeStateValues()

Examples

Not run:
library(PNetica)##Requires PNetica
sess <- NeticaSession()
startSession(sess)
cnet <- CreateNetwork("CreativeNet", session=sess)

orig <- NewDiscreteNode(cnet,"Originality", c("H","M","L"))
PnodeStateTitles(orig) <- c("High","Medium","Low")
PnodeStateDescriptions(orig)[1] <- "Produces solutions unlike those typically seen."

stopifnot(
PnodeStateTitles(orig) == c("High","Medium","Low"),
grep("solutions unlike", PnodeStateDescriptions(orig))==1,
PnodeStateDescriptions(orig)[3]==""
)

sol <- NewDiscreteNode(cnet,"Solution",
c("Typical","Unusual","VeryUnusual"))

stopifnot(
all(PnodeStateTitles(sol) == ""),
all(PnodeStateDescriptions(sol) == "")
)

PnodeStateTitles(sol)["VeryUnusual"] <- "Very Unusual"
PnodeStateDescriptions(sol) <- paste("Distance from typical solution",

c("<1", "1--2", ">2"))

120 PnodeStateValues

stopifnot(
PnodeStateTitles(sol)[3]=="Very Unusual",
PnodeStateDescriptions(sol)[1] == "Distance from typical solution <1"
)

DeleteNetwork(cnet)
stopSession(sess)

End(Not run)

PnodeStateValues Accesses the numeric values associated with the state of a parameter-
ized node.

Description

The values are a numeric value (on a standard normal scale) associated with the levels of a discrete
Pnode. This function fetches or retrieves the numeric values for the states of node .

Note that the default method for the funciton PnodeParentTvals uses the values of PnodeStateValues
on the parent nodes.

Usage

PnodeStateValues(node)
PnodeStateValues(node) <- value

Arguments

node A Pnode whose levels are to be accessed.

value A numeric vector of values which should have length length(PnodeStates(node)).

Details

This function behaves differently for discrete and continuous nodes (see isPnodeContinuous). For
discrete nodes, the states are numeric values associated with the states. These are used in a number
of ways, most importantly, as PnodeParentTvals. Note that the first time the PnodeStateValues()
are set, the entire vector must be set. After that point individual values may be changed.

For continuous nodes, the state values are set by setting the PnodeStateBounds for the node. The
value is the midpoint of each interval. (Note this produces an infinite state value if one of the state
bounds in infinite).

Value

A numeric vector of length length(Pnodetates()), with names equal to the state names. If levels
have not be set, NAs will be returned.

PnodeStateValues 121

Author(s)

Russell Almond

See Also

Pnode, PnodeStates(), PnodeName(), PnodeStateTitles(), PnodeParentTvals()

Examples

Not run:
library(PNetica)##Requires PNetica
sess <- NeticaSession()
startSession(sess)
lnet <- CreateNetwork("LeveledNet", session=sess)

vnode <- NewDiscreteNode(lnet,"volt_switch",c("Off","Reverse","Forwards"))
stopifnot(

length(PnodeStateValues(vnode))==3,
names(PnodeStateValues(vnode)) == PnodeStates(vnode),
all(is.na(PnodeStateValues(vnode)))

)

Don't run this until the levels for vnode have been set,
it will generate an error.
try(PnodeStateValues(vnode)[2] <- 0)

PnodeStateValues(vnode) <- 1:3
stopifnot(

length(PnodeStateValues(vnode))==3,
names(PnodeStateValues(vnode)) == PnodeStates(vnode),
PnodeStateValues(vnode)[2]==2

)

PnodeStateValues(vnode)["Reverse"] <- -2

Continuous nodes get the state values from the bounds.
theta0 <- NewContinuousNode(lnet,"theta0")
stopifnot(length(PnodeStateValues(theta0))==0L)
norm5 <-

matrix(c(qnorm(c(.001,.2,.4,.6,.8)),
qnorm(c(.2,.4,.6,.8,.999))),5,2,

dimnames=list(c("VH","High","Mid","Low","VL"),
c("LowerBound","UpperBound")))

PnodeStateBounds(theta0) <- norm5
PnodeStateValues(theta0) ## Note these are medians not mean wrt normal!
PnodeStateBounds(theta0)[1,1] <- -Inf
PnodeStateValues(theta0) ## Infinite value!

DeleteNetwork(lnet)
stopSession(sess)

122 PnodeStats

End(Not run)

PnodeStats Pnode Marginal Statistics

Description

These functions compute statistics of the marginal distribution of the corresponding node. These
are designed to be used with Statistic objects.

Usage

PnodeMargin(net, node)
PnodeEAP(net, node)
PnodeSD(net, node)
PnodeMedian(net, node)
PnodeMode(net, node)

Arguments

net A Pnet object representing the network.

node A Pnode object describing the node whose statistics are desired.

Details

These are the functions that implement the statistics. These are typically called by calcStat which
finds the nodes corresponding to the named nodes in the statistics. Both the net and node are passes
as arguments as this may be needed in some implementations.

Value

PnodeMargin returns a vector corresponding to the states of node giving the marginal probabilities
of the states.

PnodeEAP returns a numeric scalar giving the expected a posteriori value (mean) of the PnodeStateValues
of the node. PnodeSD gives the standard deviation.

PnodeMedian assumes the states are ordered, and returns the state at the 50th percentile. This is a
factor (character) value.

PnodeMode returns the most likely state as a factor (character) value.

Author(s)

Russell Almond

References

Almond, R.G., Mislevy, R.J. Steinberg, L.S., Yan, D. and Willamson, D. M. (2015). Bayesian
Networks in Educational Assessment. Springer. Chapter 13.

PnodeStats 123

See Also

Statistics Class: Statistic

Constructor function: Statistic

calcStat

These statistics will likely produce errors unless PnetCompile has been run first.

Examples

Not run:

library(PNetica) ## Need a specific implementation
sess <- NeticaSession()
startSession(sess)

irt10.base <- ReadNetworks(paste(library(help="PNetica")$path,
"testnets","IRT10.2PL.base.dne",
sep=.Platform$file.sep),session=sess)

irt10.base <- as.Pnet(irt10.base) ## Flag as Pnet, fields already set.
irt10.theta <- PnetFindNode(irt10.base,"theta")
irt10.items <- PnetPnodes(irt10.base)
Flag items as Pnodes
for (i in 1:length(irt10.items)) {

irt10.items[[i]] <- as.Pnode(irt10.items[[i]])

}
Make some statistics
marginTheta <- Statistic("PnodeMargin","theta","Pr(theta)")
meanTheta <- Statistic("PnodeEAP","theta","EAP(theta)")
sdTheta <- Statistic("PnodeSD","theta","SD(theta)")
medianTheta <- Statistic("PnodeMedian","theta","Median(theta)")
modeTheta <- Statistic("PnodeMedian","theta","Mode(theta)")

BuildAllTables(irt10.base)
PnetCompile(irt10.base) ## Netica requirement

calcStat(marginTheta,irt10.base)
calcStat(meanTheta,irt10.base)
calcStat(sdTheta,irt10.base)
calcStat(medianTheta,irt10.base)
calcStat(modeTheta,irt10.base)

DeleteNetwork(irt10.base)
stopSession(sess)

End(Not run)

124 PnodeTitle

PnodeTitle Gets the title or Description associated with a parameterized node
node.

Description

The title is a longer name for a node which is not subject to the naming restrictions. The description
is a free form text associated with a node.

Usage

PnodeTitle(node)
PnodeTitle(node) <- value
PnodeDescription(node)
PnodeDescription(node) <- value

Arguments

node A Pnode object.

value A character object giving the new title or description.

Details

The title is meant to be a human readable alternative to the name, which is not limited to the variable
name restrictions (i.e., it can contain spaces and punctuation). The title may also affect how the node
is displayed.

The description is any text the user chooses to attach to the node. If value has length greater than 1,
the vector is collapsed into a long string with newlines separating the components.

Value

A character vector of length 1 providing the title or description.

Author(s)

Russell Almond

See Also

Pnode, PnodeName()

Examples

Not run:
library(PNetica) ## Requires PNetica
sess <- NeticaSession()
startSession(sess)
net2 <- CreateNetwork("secondNet", session=sess)

PnodeWarehouse-class 125

firstNode <- NewDiscreteNode(net2,"firstNode")

PnodeTitle(firstNode) <- "My First Bayesian Network Node"
stopifnot(PnodeTitle(firstNode)=="My First Bayesian Network Node")

now <- date()
PnodeDescription(firstNode)<-c("Node created on",now)
stopifnot(PnodeDescription(firstNode) ==

paste(c("Node created on",now),collapse="\n"))

Print here escapes the newline, so is harder to read
cat(PnodeDescription(firstNode),"\n")

DeleteNetwork(net2)
stopSession(sess)

End(Not run)

PnodeWarehouse-class Class "PnodeWarehouse"

Description

A Warehouse objects which holds and builds Pnode objects. In particular, its WarehouseManifest
contains a node manifest (see BuildNodeManifest) which contains information about how to build
the nodes if they are not present. Note that the key of the node manifest is the name of both the
network and the node.

Details

The PnetWarehouse either supplies prebuilt nodes or builds them from the instructions found in the
manifest. Nodes exist inside networks, so the key for a node is a pair (Model,NodeName). Thus,
two nodes in different networks can have identical names.

The function WarehouseSupply will attempt to:

1. Find an existing node with name NodeName in a network with name Model.

2. Build a new node in the named network using the metadata in the manifest.

The manifest is an object of type data.frame where the columns have the values show below. The
key is the combination of the “Model” and “NodeName” columns. There should be one row with
this combination of variables for each state of the variable. In particular, the number of rows should
equal the value of the Nstates column in the first row with that model–variable combination. The
“StateName” column should be unique for each row.

The arguments to WarehouseData should be a character vector of length two, (Model,NodeName).
It will return a data.frame with one row for each state of the variable.

Node-level Key Fields :

126 PnodeWarehouse-class

Model A character value giving the name of the Bayesian network to which this node belongs.
Corresponds to the value of PnodeNet.

NodeName A character value giving the name of the node. All rows with the same value in the
model and node name columns are assumed to reference the same node. Corresponds to the
value of PnodeName.

Node-level Fields :

ModelHub If this is a spoke model (meant to be attached to a hub) then this is the name of the
hub model (i.e., the name of the proficiency model corresponding to an evidence model).
Corresponds to the value of PnetHub(PnodeNet(node)).

NodeTitle A character value containing a slightly longer description of the node, unlike the name
this is not generally restricted to variable name formats. Corresponds to the value of PnodeTitle.

NodeDescription A character value describing the node, meant for human consumption (docu-
mentation). Corresponds to the value of PnodeDescription.

NodeLabels A comma separated list of identifiers of sets which this node belongs to. Used to
identify special subsets of nodes (e.g., high-level nodes or observeable nodes). Corresponds
to the value of PnodeLabels.

State-level Key Fields :

Continuous A logical value. If true, the variable will be continuous, with states corresponding to
ranges of values. If false, the variable will be discrete, with named states.

Nstates The number of states. This should be an integer greater than or equal to 2. Corresponds to
the value of PnodeNumStates.

StateName The name of the state. This should be a string value and it should be different for every
row within the subset of rows corresponding to a single node. Corresponds to the value of
PnodeStates.

State-level Fields :

StateTitle A longer name not subject to variable naming restrictions. Corresponds to the value of
PnodeStateTitles.

StateDescription A human readable description of the state (documentation). Corresponds to the
value of PnodeStateDescriptions.

StateValue A real numeric value assigned to this state. PnodeStateValues. Note that this has
different meaning for discrete and continuous variables. For discrete variables, this associates
a numeric value with each level, which is used in calculating the PnodeEAP and PnodeSD
functions. In the continuous case, this value is ignored and the midpoint between the “Lower-
Bounds” and “UpperBounds” are used instead.

LowerBound This servers as the lower bound for each partition of the continuous variagle. -Inf
is a legal value for the first or last row.

UpperBound This is only used for continuous variables, and the value only is needed for one of
the states. This servers as the upper bound of range each state. Note the upper bound needs to
match the lower bounds of the next state. Inf is a legal value for the first or last row.

Objects from the Class

A virtual Class: No objects may be created from it.

PnodeWarehouse-class 127

Classes can register as belonging to this abstract class. The trick for doing this is: setIs("NodehouseClass","PnodeWarehouse")

Currently NNWarehouse is an example of an object of this class.

Methods

Note that for all of these methods, the name should be a vector of two elements, the network name
and the node name. Thus each network defines its own namespace for variables.

WarehouseSupply signature(warehouse = "PnodeWarehouse", name = "character").
This finds a node with the appropriate name in the specified network. If one does not exist, it
is created using the metadata in the manifest.

WarehouseFetch signature(warehouse = "PnodeWarehouse", name = "character").
This fetches the node with the given name in the named network, or returns NULL if it has not
been built.

WarehouseMake signature(warehouse = "PnodeWarehouse", name = "character").
This creates the node using the meta-data in the Manifest.

WarehouseFree signature(warehouse = "PnodeWarehouse", name = "character").
This removes the node from the warehouse inventory.

ClearWarehouse signature(warehouse = "PnodeWarehouse"). This removes all
nodes from the warehouse inventory.

is.PnodeWarehouse signature(obj = "PnodeWarehouse"). This returns TRUE.

WarehouseManifest signature(warehouse = "PnodeWarehouse"). This returns the
data frame with instructions on how to build nodes. (see Details)

WarehouseManifest<- signature(warehouse = "PnodeWarehouse", value="data.frame").
This sets the data frame with instructions on how to build nodes.(see Details)

WarehouseData signature(warehouse = "PnodeWarehouse", name="character").
This returns the portion of the data frame with instructions on how to build a particular node.
This is generally one row for each state of the node. (see Details)

Note

The test for matching upper and lower bounds is perhaps too strict. In particular, if the upper
and lower bounds mismatch by the least significant digit (e.g., a rounding difference) they will not
match. This is a frequent cause of errors.

Author(s)

Russell Almond

See Also

Warehouse, WarehouseManifest, BuildNodeManifest

Implementation in the PNetica package: NNWarehouse, MakePnode.NeticaNode

128 Qmat2Pnet

Examples

showClass("PnodeWarehouse")
Not run:
library(PNetica) ## Requires PNetica
sess <- NeticaSession()
startSession(sess)

This expression provides an example Node manifest
nodeman1 <- read.csv(file.path(library(help="Peanut")$path, "auxdata",

"Mini-PP-Nodes.csv"),
row.names=1,stringsAsFactors=FALSE)

nodeman1 <- read.csv(paste(library(help="Peanut")$path, "auxdata",
"Mini-PP-Nodes.csv", sep=.Platform$file.sep),

row.names=1,stringsAsFactors=FALSE)

Network and node warehouse, to create networks and nodes on demand.
Nethouse <- BNWarehouse(manifest=netman1,session=sess,key="Name")

Nodehouse <- NNWarehouse(manifest=nodeman1,
key=c("Model","NodeName"),
session=sess)

CM <- WarehouseSupply(Nethouse,"miniPP_CM")
WarehouseSupply(Nethouse,"PPdurAttEM")

WarehouseData(Nodehouse,c("miniPP_CM","Physics"))
WarehouseSupply(Nodehouse,c("miniPP_CM","Physics"))

WarehouseData(Nodehouse,c("PPdurAttEM","Attempts"))
WarehouseSupply(Nodehouse,c("PPdurAttEM","Attempts"))

WarehouseData(Nodehouse,c("PPdurAttEM","Duration"))
WarehouseSupply(Nodehouse,c("PPdurAttEM","Duration"))

End(Not run)

Qmat2Pnet Makes or adjusts parameterized networks based on augmented Q-
matrix

Description

In augmented Q-matrix, there is a set of rows for each Pnode which describes the conditional
probability table for that node in terms of the model parameters (see BuildTable). As the Pnodes

Qmat2Pnet 129

could potentially come from multiple nets, the key for the table is (“Model”, “Node”). As there are
multiple rows per node, “State” is the third part of the key.

The function Qmat2Pnet adjusts the conditional probability tables of a node to conform to the
supplied Q-matrix.

Usage

Qmat2Pnet(Qmat, nethouse, nodehouse, defaultRule = "Compensatory", defaultLink = "partialCredit", defaultAlpha = 1, defaultBeta = NULL, defaultLinkScale = NULL, defaultPriorWeight=10, debug = FALSE, override = FALSE)

Arguments

Qmat A data.frame containing an augmented Q-matrix (See below).

nethouse A Warehouse containing instructions for building the Pnet objects named in the
“Model” column of Qmat.

nodehouse A Warehouse containing instructions for building the Pnode objects named in
the (“Model”, “Name”) columns of Qmat.

defaultRule This should be a character scalar giving the name of a CPTtools combination
rule (see Compensatory).

defaultLink This should be a character scalar giving the name of a CPTtools link function
(see partialCredit).

defaultAlpha A numeric scalar giving the default value for slope parameters.

defaultBeta A numeric scalar giving the default value for difficulty (negative intercept) pa-
rameters.

defaultLinkScale

A positive number which gives the default value for the link scale parameter.
defaultPriorWeight

A positive number which gives the default value for the node prior weight hyper-
parameter.

debug A logical value. If true, extra information will be printed during process of
building the Pnet.

override A logical value. If false, differences between any exsiting structure in the graph
and the Qmat will raise an error. If true, the graph will be modified to conform
to the matrix.

Details

A Q-matrix is a 0-1 matrix which describes which proficiency (latent) variables are connected to
which observable outcome variables; qjk = 1 if and only if proficiency variable k is a parent of
observable variable j. Almond (2010) suggested that augmenting the Q-matrix with additional
columns representing the combination rules (PnodeRules), link function (PnodeLink), link scale
parameter (if needed, PnodeLinkScale) and difficulty parameters (PnodeBetas). The discrimina-
tion parameters (PnodeAlphas) could be overloaded with the Q-matrix, with non-zero parameters
in places where there were 1’s in the Q-matrix.

This arrangement worked fine with combination rules (e.g., Compensatory) which contained mul-
tiple alpha (discrimination) parameters, one for each parent variable, and a single beta (difficulty).
The introduction of a new type of offset rule (e.g., OffsetDisjunctive) which uses a multiple

130 Qmat2Pnet

difficulty parameters, one for each parent variable, and a single alpha. Almond (2016) suggested
a new augmentation which has three matrixes in a single table (a Qmat): the Q-matrix, which
contains structural information; the A-matrix, which contains discrimination parameters; and the
B-matrix, which contains the difficulty parameters. The names for the columns for these matrixes
contain the names of the proficiency variables, prepended with “A.” or “B.” in the case of the A-
matrix and B-matrix. There are two additional columns marked “A” and “B” which are used for
the discrimination and difficulty parameter in the multiple-beta and multiple-alpha cases. There is
some redundancy between the Q, A and B matrixes, but this provides an opportunity for checking
the validity of the input.

The introduction of the partial credit link function (partialCredit) added a further complication.
With the partial credit model, there could be a separate set of discrimination or difficulty parame-
ters for each transition for a polytomous item. Even the gradedResponse link function requires a
separate difficulty parameter for each level of the varaible save the first. The rows of the Qmat data
structure are hence augmented to include one row for every state but the lowest-level state. There
should be of fewer rows of associated with the node than the value in the “Nstates” column, and
the names of the states (values in the “State” column) should correspond to every state of the target
variable except the first. It is an error if the number of states does not match the existing node, or
if the state names do not match what is already used for the node or is in the manifest for the node
Warehouse.

Note that two nodes in different networks may share the same name, and two states in two different
nodes may have the same name as well. Thus, the formal key for the Qmat data frame is (“Model”,
“Node”, “State”), however, the rows which share the values for (“Model”, “Node”) form a subtable
for that particular node. In particular, the rows of the Q-matrix subtable for that node form the
inner Q-matrix for that node. The inner Q-matrix shows which variables are relevant for each state
transition in a partial credit model. The column-wise maximum of the inner Q-matrix forms the
row of the outer Q-matrix for that node. This shows which proficiency nodes are the parent of the
observable node. This corresponds to PnodeQ(node).

The function Qmat2Pnet creates and sets the parameters of the observable Pnodes referenced in the
Qmat argument. As it needs to reference, and possibly create, a number of Pnets and Pnodes, it
requires both a network and a node Warehouse. If the override parameter is true, the networks
will be modified so that each node has the correct parents, otherwise Qmat2Pnet will signal an error
if the existing network structure is inconsistent with the Q-matrix.

As there is only one link function for each node , the values of PnodeLink(node) and PnodeLinkScale(node)
are set based on the values in the “Link” and “LinkScale” columns and the first row corresponding
to node . Note that the choice of link functions determines what is sensible for the other values but
this is not checked by the code.

The value of PnodeRules(node) can either be a single value or a list of rule names. The first value
in the sub-Qmat must a character value, but if the other values are missing then a single value is
used. If not, all of the entries should be non-missing. If this is a single value, then effectively the
same combination rule is used for each transition.

The interpretation of the A-matrix and the B-matrix depends on the value in the “Rules” col-
umn. There are two types of rules, multiple-A rules and multiple-B rules (offset rules). The
CPTtools funciton isOffsetRule checks to see what kind of a rule it is. The multiple-A rules,
of which Compensatory is the canonical example, have one discrimination (or slope) parameter
for every parent variable (values of 1 in the Q-matrix) and have a single difficulty (negative inter-
cept) parameter which is in the “B” column of the Qmat. The multiple-B or offset rules, of which
OffsetConjunctive is the canonical example, have a difficulty (negative intercept) parameter for

Qmat2Pnet 131

each parent variable and a single discrimination (slope) parameter which is in the “A” column. The
function Qmat2Pnet uses the value of isOffsetRule to determine whether to use the multiple-B
(true) or multiple-A (false) paradigm.

A simple example is a binary observable variable which uses the Compensatory rule. This is
essentially a regression model (logistic regression with partialCredit or gradedResponse link
funcitons, linear regression with normalLink link function) on the parent variables. The linear
predictor is:

1√
K

(a1θ1 + . . .+ aKθK)− b.

The values θ1, . . . , θK are effective thetas, real values corresponding to the states of the parent
variables. The value ai is stored in the column “A.namei” where namei is the name of the ith
proficiency variable; the value of PnodeAlphas(node) is the vector a1, . . . , ak with names cor-
responding to the parent variables. The value of b is stored in the “B” column; the value of
PnodeBetas(node) is b.

The multiple-B pattern replaces the A-matrix with the B-matrix and the column “A” with “B”.
Consider binary observable variable which uses the OffsetConjunctive rule. The linear predictor
is:

amin(θ1 − b+ 1, . . . , θK − bK).

The value bi is stored in the column “B.namei” where namei is the name of the ith proficiency
variable; the value of PnodeBetas(node) is the vector b1, . . . , bk with names corresponding to the
parent variables. The value of a is stored in the “A” column; the value of PnodeBetas(node) is a.

When there are more than two states in the output varible, PnodeRules, PnodeAlphas(node) and
PnodeBetas(node) become lists to indicate that a different value should be used for each transi-
tion between states. If there is a single value in the “Rules” column, or equivalently the value of
PnodeRules is a scalar, then the same rule is repeated for each state transition. The same is true
for PnodeAlphas(node) and PnodeBetas(node). If these values are a list, that indicates that a
different value is to be used for each transition. If they are a vector that means that different values
(of discriminations for multiple-a rules or difficulties for multiple-b rules) are needed for the parent
variables, but the same set of values is to be used for each state transition. If different values are to
be used then the values are a list of vectors.

The necessary configuration of a’s and b’s depends on the type of link function. Here are the rules
for the currently existing link funcitons:

normal (normalLink) This link function uses the same linear predictor for each transition, so
there should be a single rule, and PnodeAlphas(node) and PnodeBetas(node) should both
be vectors (with b of length 1 for a multiple-a rule). This rule also requires a positive value for
the PnodeLinkScale(node) in the “"LinkScale"” column. The values in the “A.name” and
“B.name” for rows after the first can be left as NA’s to indicate that the same values are reused.

graded response (gradedResponse) This link function models the probability of getting at or
above each state and then calculates the differences between them to produce the conditional
probability table. In order to avoid negative probabilities, the probability of being in a higher
state must always be nonincreasing. The surest way to ensure this is to both use the same
combination rules at each state and the same set of discrimination parameters for each state.
The difficulty parameters must be nondecreasing. Again, values for rows after the first can be
left as NAs to indicate that the same value should be resused.

132 Qmat2Pnet

partial credit (partialCredit) This link function models the conditional probability from mov-
ing from the previous state to the current state. As such, there is no restriction on the rules or
parameters. In particular, it can alternate between multiple-a and multiple-b style rules from
row to row.
Another restriction that the use of the partial credit rule lifts is the restriction that all parent
variable must be used in each transition. Note that there is one row of the Q-matrix (the
inner Q-matrix) for each state transition. Only the parent variables with 1’s in the particular
state row are considered when building the PnodeAlphas(node) and PnodeBetas(node) for
this model. Note that only the partial credit link function can take advantage of the multiple
parents, the other two require all parents to be used for every state.

The function Qmat2Pnet takes a data frame containing a Qmat sets the properties of the corre-
sponding nodes to match the description in the Qmat. It assumes that the proficiency variables have
already been built, so it is almost always a good idea to first run Omega2Pnet to build the proficiency
variables.

The function Qmat2Pnet loops through the values in the “Model” column, calling on the network
Warehouse argument to supply (fetch or build) the requested network. It then loops through the
values in the “Node” column, calling on the node Warehouse to supply them. First, it attempts to
adjust the parents of node to match the Q-matrix. If the parent nodes are not in the current model,
stub nodes are created by referencing the corresponding nodes in the proficiency model (the model
corresponding to PnetHub). If override is TRUE, the network will be modified so that node has
the indicated parents; if it is FALSE an error will be signaled if the pattern in the Q-matrix does not
match the network structure. Then the values of various properties of a Pnode, in particular, the
link function, the combination rules and the parameters, are set based on the values in Qmat (as
described above).

Value

Invisibly returns a list of models visited.

Q-Matrix (Qmat) Structure

The output augmented Q-matrix is a data frame with the columns described below. The number of
columns is variable, with items marked prof actually corresponding to a number of columns with
names taken from the proficiency variables (the prof argument).

Model The name of the Pnet in which the node in this row lives.

Node The name of the Pnode described in this row. Except for the multiple rows corresponding to
the same node, the value of this column needs to be unique within “Model”.

Nstates The number of states for this node. Generally, each node should have one fewer rows than
this number.

State The name of the state for this row. This should be unique within the (“Model”,“Node”)
combination.

Link The name of a link function. This corresponds to PnodeLink(node).

LinkScale Either a positive number giving the link scale parameter or an NA if the link function
does not need scale parameters. This corresponds to PnodeLinkScale(node).

Qmat2Pnet 133

prof There is one column for each proficiency variable. This corresponds to the structural part of
the Q-matrix. There should be 1 in this column if the named proficiency is used in calculating
the transition to this state for this particular node, and a 0 otherwise.

Rules The name of the combination rule to use for this row. This corresponds to PnodeRules(node).

A.prof There is one column for each proficiency with the proficiency name appended to “A.”. If
a multiple-alpha style combination rule (e.g., Compensatory) this column should contain the
appropriate discriminations, otherwise, its value should be NA.

A If a multiple-beta style combination rule (e.g., OffsetConjunctive) this column should contain
the single discrimination, otherwise, its value should be NA.

B.prof There is one column for each proficiency with the proficiency name appended to “B.”. If
a multiple-bet style combination rule (e.g., OffsetConjunctive) this column should contain
the appropriate difficulty (negative intercept), otherwise, its value should be NA.

B If a multiple-beta style combination rule (e.g., Compensatory) this column should contain the
single difficulty (negative intercept), otherwise, its value should be NA.

PriorWeight The amount of weight which should be given to the current values when learning
conditional probability tables. See PnodePriorWeight.

Side Effects

This function destructively modifies the networks and nodes referenced in the Qmat and supplied
by the warehouses.

Note that unlike typical R implementations, this is not necessarily safe. In particular, if the Qmat
references 10 models, and an error is raised when trying to modify the 5th model, the first 4 models
will be modifid, the last 5 will not be and the 5th model may be partially modified. This is different
from most R functions where changes are not committed unless the function returns successfully.

Author(s)

Russell Almond

References

Almond, R. G. (2010). ‘I can name that Bayesian network in two matrixes.’ International Journal
of Approximate Reasoning. 51, 167-178.

Almond, R. G. (presented 2017, August). Tabular views of Bayesian networks. In John-Mark
Agosta and Tomas Singlair (Chair), Bayeisan Modeling Application Workshop 2017. Symposium
conducted at the meeting of Association for Uncertainty in Artificial Intelligence, Sydney, Australia.
(International) Retrieved from http://bmaw2017.azurewebsites.net/

See Also

The inverse operation is Pnet2Qmat.

See Warehouse for description of the network and node warehouse arguments. The functions
PnetMakeStubNodes and PnetRemoveStubNodes are used internally to create the stub nodes in
evidence models.

See partialCredit, gradedResponse, and normalLink for currently available link functions. See
Conjunctive and OffsetConjunctive for more information about available combination rules.

http://bmaw2017.azurewebsites.net/

134 Qmat2Pnet

The node attributes set from the Omega matrix include: PnodeParents(node), PnodeLink(node),
PnodeLinkScale(node), PnodeQ(node), PnodeRules(node), PnodeAlphas(node), PnodeBetas(node),
and PnodePriorWeight(node)

Examples

Sample Q matrix
Q1 <- read.csv(paste(library(help="Peanut")$path, "auxdata",

"miniPP-Q.csv", sep=.Platform$file.sep),
stringsAsFactors=FALSE)

Not run:
library(PNetica) ## Needs PNetica
sess <- NeticaSession()
startSession(sess)
curd <- getwd()

netman1 <- read.csv(paste(library(help="Peanut")$path, "auxdata",
"Mini-PP-Nets.csv", sep=.Platform$file.sep),

row.names=1,stringsAsFactors=FALSE)

nodeman1 <- read.csv(paste(library(help="Peanut")$path, "auxdata",
"Mini-PP-Nodes.csv", sep=.Platform$file.sep),

row.names=1,stringsAsFactors=FALSE)

omegamat <- read.csv(paste(library(help="Peanut")$path, "auxdata",
"miniPP-omega.csv", sep=.Platform$file.sep),

row.names=1,stringsAsFactors=FALSE)

Insures we are building nets from scratch
setwd(tempdir())
Network and node warehouse, to create networks and nodes on demand.
Nethouse <- BNWarehouse(manifest=netman1,session=sess,key="Name")

Nodehouse <- NNWarehouse(manifest=nodeman1,
key=c("Model","NodeName"),
session=sess)

Build the proficiency model first:
CM <- WarehouseSupply(Nethouse,"miniPP_CM")
CM1 <- Omega2Pnet(omegamat,CM,Nodehouse,override=TRUE,debug=TRUE)

Build the nets from the Qmat

Qmat2Pnet(Q1, Nethouse,Nodehouse,debug=TRUE)

Build the Qmat from the nets
Generate a list of nodes
obs <-unlist(sapply(list(sess$nets$PPcompEM,sess$nets$PPconjEM,

sess$nets$PPtwostepEM,sess$nets$PPdurAttEM),
NetworkAllNodes))

Statistic 135

Q2 <- Pnet2Qmat(obs,NetworkAllNodes(CM))

stopSession(sess)
setwd(curd)

End(Not run)

Statistic Key functions for the Statistics class

Description

A Statistic is a functional that when applied to a Bayesian network returns a value. Usually, the
statistic is a function of the distribution of a single node, but it could also be a function of several
nodes. Statistic objets have a calcStat method, which when applied to a network, produces the
value. Lists of statistics are often maintained by Bayes net engines to report values at designated
times (e.g., after new evidence arrives). The Statistic function is the constructor or Statistic
objects.

Usage

Statistic(fun, node, name = sprintf("%s(%s)", fun, node), ...)
calcStat(stat, net)

Arguments

fun Object of class "character" giving a function to be applied to the nodes. The
function should have signature(net="Pnet", node), where node could be
either a Pnode or a list of Pnodes (See details).

node Object of class "character" giving the name(s) of the node(s) that are refer-
enced by the statistic. Note that these are not the actual node objects, as the
network could be different at each call.

name Object of class "character" giving a function to be applied to the nodes. The
function should have signature(net="Pnet", node), where node could be
either a Pnode or a list of Pnodes.

... Other optional arguments for later extension.

stat An object of class Statistic which will be applied to the net

net A Pnet to which the statistic will be applied.

Details

The Statistic class represents a functional which can be applied to a Bayes net (a distribution,
Pnet), which returns a value of interest. Usually the functional is a function of the marginal or joint
distribution of a number of nodes, Pnode. Some connonical examples are the expected value and
the median of the marginal distribution for a node.

136 Statistic

Because the functional can be applied to different networks, the nodes are referenced by name
instead of actual node objects. The calcStat method finds the nodes in the network, and then
calls the refenced fun with arguments signature(net="Pnet", node), where node can either be
a node or list of nodes. (Note that the network object may or may not be needed to calculate the
statistic value).

Note that the statistic is free to return any kind of value. The mean of a discrete variable is typically
numeric (using PnodeStateValues to link states of the node with numeric values). The mode and
median return a factor variable, and the margin is a vector of values on the unit simplex.

The current statistics are currently supported are:

PnodeMargin Provides the marginal distribution of a node.

PnodeEAP Provides the expected a posteriori (i.e., mean) of a node using numeric values for the
state from PnodeStateValues.

PnodeSD Provides the standard deviation of a node using numeric values for the state from PnodeStateValues.

PnodeMedian Provides the median value for a node, that is if the states are ordered, the one which
is reached at a probability mass of 0.5.

PnodeMode Returns the most likely state for (the marginal distribution of) node.

Value

The Statistic function returns an object of class Statistic.

Author(s)

Russell Almond

References

Almond, R.G., Mislevy, R.J. Steinberg, L.S., Yan, D. and Willamson, D. M. (2015). Bayesian
Networks in Educational Assessment. Springer. Chapter 13.

See Also

Class: Statistic

calcStat

Avaliable Statistic functions: PnodeMargin, PnodeEAP, PnodeSD, PnodeMedian, PnodeMode.

These statistics will likely produce errors unless PnetCompile has been run first.

Examples

Not run:

library(PNetica) ## Need a specific implementation
sess <- NeticaSession()
startSession(sess)

irt10.base <- ReadNetworks(paste(library(help="PNetica")$path,

Statistic-class 137

"testnets","IRT10.2PL.base.dne",
sep=.Platform$file.sep),session=sess)

irt10.base <- as.Pnet(irt10.base) ## Flag as Pnet, fields already set.
irt10.theta <- PnetFindNode(irt10.base,"theta")
irt10.items <- PnetPnodes(irt10.base)
Flag items as Pnodes
for (i in 1:length(irt10.items)) {

irt10.items[[i]] <- as.Pnode(irt10.items[[i]])

}
Make some statistics
marginTheta <- Statistic("PnodeMargin","theta","Pr(theta)")
meanTheta <- Statistic("PnodeEAP","theta","EAP(theta)")
sdTheta <- Statistic("PnodeSD","theta","SD(theta)")
medianTheta <- Statistic("PnodeMedian","theta","Median(theta)")
modeTheta <- Statistic("PnodeMedian","theta","Mode(theta)")

BuildAllTables(irt10.base)
CompileNetwork(irt10.base) ## Netica requirement

calcStat(marginTheta,irt10.base)
calcStat(meanTheta,irt10.base)
calcStat(sdTheta,irt10.base)
calcStat(medianTheta,irt10.base)
calcStat(modeTheta,irt10.base)

DeleteNetwork(irt10.base)
stopSession(sess)

End(Not run)

Statistic-class Class "Statistic"

Description

A statistic is a functional that when applied to a Bayesian network returns a value. Usually, the
statistic is a function of the distribution of a single node, but it could also be a function of several
nodes. Statistic objets have a calcStat method, which when applied to a network, produces the
value. Lists of statistics are often maintained by Bayes net engines to report values at designated
times (e.g., after new evidence arrives).

Objects from the Class

Objects are created using the function Statistic(fun, node, name, ...).

138 Statistic-class

Slots

name: Object of class "character" giving an identifier for the statistic.

node: Object of class "character" giving the name(s) of the node(s) that are referenced by the
statistic. Note that these are not the actual node objects, as the network could be different at
each call.

fun: Object of class "character" giving a function to be applied to the nodes. The function
should have signature(net="Pnet", node), where node could be either a Pnode or a list
of Pnodes.

Methods

calcStat signature(stat = "Statistic", net): This method (a) finds the nodes referenced in
node, (b) applies fun (using do.call to net and the actual nodes.

StatName signature(x = "Statistic"): Returns the name of the statistic.

show signature(objet = "Statistic"): Returns a printable representation of the statistic.

Author(s)

Russell Almond

References

Almond, R.G., Mislevy, R.J. Steinberg, L.S., Yan, D. and Willamson, D. M. (2015). Bayesian
Networks in Educational Assessment. Springer. Chapter 13.

See Also

Avaliable Statistic functions: PnodeMargin, PnodeEAP, PnodeSD, PnodeMedian, PnodeMode.

Constructor function: Statistic

calcStat

Examples

Not run:

library(PNetica) ## Need a specific implementation
sess <- NeticaSession()
startSession(sess)

irt10.base <- ReadNetworks(paste(library(help="PNetica")$path,
"testnets","IRT10.2PL.base.dne",
sep=.Platform$file.sep),session=sess)

irt10.base <- as.Pnet(irt10.base) ## Flag as Pnet, fields already set.
irt10.theta <- NetworkFindNode(irt10.base,"theta")
irt10.items <- PnetPnodes(irt10.base)
Flag items as Pnodes
for (i in 1:length(irt10.items)) {

topsort 139

irt10.items[[i]] <- as.Pnode(irt10.items[[i]])

}
Make some statistics
marginTheta <- Statistic("PnodeMargin","theta","Pr(theta)")
meanTheta <- Statistic("PnodeEAP","theta","EAP(theta)")
sdTheta <- Statistic("PnodeSD","theta","SD(theta)")
medianTheta <- Statistic("PnodeMedian","theta","Median(theta)")
modeTheta <- Statistic("PnodeMedian","theta","Mode(theta)")

BuildAllTables(irt10.base)
CompileNetwork(irt10.base) ## Netica requirement

calcStat(marginTheta,irt10.base)
calcStat(meanTheta,irt10.base)
calcStat(sdTheta,irt10.base)
calcStat(medianTheta,irt10.base)
calcStat(modeTheta,irt10.base)

DeleteNetwork(irt10.base)
stopSession(sess)

End(Not run)

topsort Topologically sorts the rows and columns of an Omega matrix

Description

The structural part of the Ω-matrix is an incidence matrix where the entry is 1 if the node represented
by the column is a parent of the node represented by the child. This sorts the rows and columns of
the matrix (which should have the same names) so that the ancestors of a node always appear prior
to it in the sequence. As a consequence, the values in the upper triangle of the Ω-matrix are always
zero after sorting.

Usage

topsort(Omega, noisy = FALSE)

Arguments

Omega A square matrix of 1’s and zeros which corresponds to an acyclic directed graph.

noisy A logical value. If true, details of progress through the algorithm are printed.

Value

An ordering of the rows and columns which will sort the matrix.

140 Warehouse

Note

This will generate an error if the graph represented by the matrix is cyclic.

Author(s)

Russell Almond

See Also

Pnet2Omega uses this function to sort the columns in the Omega matrix.

Examples

Sample Omega matrix.
omegamat <- read.csv(paste(library(help="Peanut")$path, "auxdata",

"miniPP-omega.csv", sep=.Platform$file.sep),
row.names=1,stringsAsFactors=FALSE)

omega <- as.matrix(omegamat[,2:6])

omega is already sorted so scramble it.
shuffle <- sample.int(5)
omegas <- omega[shuffle,shuffle]

ord <- topsort(omegas)
omegas[ord,ord]

Warehouse A cache for Pnets or Pnodes

Description

A warehouse is an object which stores a collection of Pnodes or Pnets. When requested, it will
supply the given object. If the object already exists, it is returned. If it does not yet exist, it is built
using meta-data in the warehouse’s manifest.

Usage

WarehouseSupply(warehouse, name)
S4 method for signature 'ANY'
WarehouseSupply(warehouse, name)
WarehouseFetch(warehouse, name)
WarehouseMake(warehouse, name)
WarehouseFree(warehouse, name)
ClearWarehouse(warehouse)
is.valid(warehouse,object)
is.PnetWarehouse(obj)
is.PnodeWarehouse(obj)

Warehouse 141

Arguments

warehouse A warehouse object from which the object is to be created.

name A character vector giving the name of the object. Note that for net warehouses,
the key is usually has length one, but for node warehouses, this usuall has the
form (model ,node).

obj An object whose type is to be determined.

object An object to be tested to see if it a valid object from this warehouse.

Details

The warehouse is a combination of a cache and a factory. The idea is that when a Pnet or Pnode
object is needed, it is requested from the corresponding warehouse. If the object exists, it is returned.
If the object does not exist, then the information in the manifest (see WarehouseManifest() is used
to create a new object. The key function is WarehouseSupply(warehouse,name); this function
looks for an object corresponding to name in warehouse. If it exists, it is returned, if not a new one
is created.

The generic functions WarehouseFetch(warehouse,name) and WarehouseMake(warehouse,name)
implement the supply protocol. WarehouseFetch(warehouse,name) searches for an object corre-
sponding to name in the warehouse and returns it if it exists or returns NULL if it does not. The
generic function WarehouseMake(warehouse,name) creates the object using the data in the mani-
fest.

The WarehouseFree and WarehouseClear functions complete the Warehouse prototocl. These
respectively remove the named object from the cache, and clear the cache. Note that these may our
may not make sense with the implementation. (In the current PNetica-package implementation, the
cache is maintained by the underlying RNetica objects, and hence it doesn’t make sense to free an
object without deleting it.)

Each warehouse has a manifest which supplies the necessary data to build a praticular object. The
generic function WarehouseManifest() accesses the manifest, which generally takes the form of a
data.frame object. The functions BuildNetManifest() and BuildNodeManifest() build mani-
fests for network and node objects respectively. The generic function WarehouseData(warehouse,name)
returns the rows of the manifest which correspond to a paraticular name.

The Peanut package is concerned with two kinds of warehouses: Pnet warehouses and Pnode ware-
houses. Pnet warehouses contain Pnets, and the key is the name of the network. Each Pnet corre-
sponds to a single line in the manifest, and the name is a character scalar. A Pnet warehouse should
return true when the generic function is.PnetWarehouse() is called.

Pnode warehouses contain Pnodes, and the name is a character vector of length 2, with structure
(netname , nodename). This is because nodes with the same name will frequently exist in two
different networks. Currently the manifest for a node contains one line for each possible state of the
node. A Pnode warehouse should return true when the generic function is.PnodeWarehouse() is
called.

The function is.valid checks to see if the object is of a type mananged by the warehouse, and
that it has valid data. In particular, the RNetica package uses pointers to objects in Netica space (as
might other implementations). The is.valid() function checks that the current Pnet and Pnode
object point to valid objects in the external heap if this is applicable to the application.

142 Warehouse

The warehouse object is an abstract class, and implementing classes need to provide methods for the
generic functions WarehouseFetch(), WarehouseMake(), WarehouseFree(), WarehouseData(),
WarehouseManifest(), WarehouseCopy(), is.legal.name(),as.legal.name(), is.valid() and
ClearWarehouse() as well as one of the generic functions is.PnetWarehouse or is.PnodeWarehouse.

There are two reference implementations in BNWarehouse and NNWarehouse (network and node
warehouses respectively). Both of these take advantage of the fact that the session and network
objects in RNetica have built in environments which cache the networks and nodes respectively.
The Warehouse-class object is a generic implementation that also may be of some use to potential
implementors.

Value

The return type of most functions will depend on the type of the warehouse. In most cases, the
functions return an object of the type of the warehouse.

Pnet Warehouses

These return TRUE from the function is.PnetWarehouse(), and an object of
type Pnet or NULL from the functions WarehouseSupply(), WarehouseFetch(),
and WarehouseMake(). NULL is returned when the requested net is not in the
warehouse or the manifest.

Pnode Warehouses

These return TRUE from the function is.PnodeWarehouse(), and an object of
type Pnode or NULL from the functions WarehouseSupply(), WarehouseFetch(),
and WarehouseMake(). NULL is returned when the requested net is not in the
warehouse or the manifest.

The returns from the functions WarehouseFree() and ClearWarehouse() are arbitrary depending
on the implementation.

Note

The cache part of the warehouse, almost certainly needs to be implemented using the reference
class system of Chambers (2016). In particular, an environment object provides the kind of per-
sistent storage and object persistance and uniqueness necessary (this breaks the usual functional
programming paradigm of R).

Author(s)

Russell G. Almond

References

Almond, R. G. (presented 2017, August). Tabular views of Bayesian networks. In John-Mark
Agosta and Tomas Singlair (Chair), Bayeisan Modeling Application Workshop 2017. Symposium
conducted at the meeting of Association for Uncertainty in Artificial Intelligence, Sydney, Australia.
(International) Retrieved from http://bmaw2017.azurewebsites.net/

Chambers, J. M. (2016) Extending R. CRC Press.

http://bmaw2017.azurewebsites.net/

Warehouse 143

See Also

Other warehouse functions: WarehouseCopy, is.legal.name

These functions support the manifest process. WarehouseManifest(), WarehouseData()

These functions construct manifests: BuildNetManifest(), BuildNodeManifest()

These functions use the warehouse to build networks: Omega2Pnet Qmat2Pnet

Examples

Not run:
Requires PNetica package
library(PNetica)
sess <- NeticaSession()
startSession(sess)

This tests the manifest and factory protocols.

nodeman1 <- read.csv(paste(library(help="Peanut")$path, "auxdata",
"Mini-PP-Nodes.csv", sep=.Platform$file.sep),

row.names=1,stringsAsFactors=FALSE)

netman1 <- read.csv(paste(library(help="Peanut")$path, "auxdata",
"Mini-PP-Nets.csv", sep=.Platform$file.sep),

row.names=1, stringsAsFactors=FALSE)

Test Net building
Nethouse <- BNWarehouse(manifest=netman1,session=sess,key="Name")
stopifnot(is.PnetWarehouse(Nethouse))

setwd(paste(library(help="PNetica")$path, "testnets",sep=.Platform$file.sep))
CM <- WarehouseSupply(Nethouse,"miniPP_CM")
stopifnot(is.null(WarehouseFetch(Nethouse,"PPcompEM")))
EM1 <- WarehouseMake(Nethouse,"PPcompEM")

EMs <- lapply(c("PPcompEM","PPconjEM", "PPtwostepEM", "PPdurAttEM"),
function(nm) WarehouseSupply(Nethouse,nm))

Test Node Building with already loaded nets

Nodehouse <- NNWarehouse(manifest=nodeman1,
key=c("Model","NodeName"),
session=sess)

stopifnot(is.PnodeWarehouse(Nodehouse))

phyd <- WarehouseData(Nodehouse,c("miniPP_CM","Physics"))

p3 <- MakePnode.NeticaNode(CM,"Physics",phyd)

phys <- WarehouseSupply(Nodehouse,c("miniPP_CM","Physics"))
stopifnot(p3==phys)

144 WarehouseCopy

for (n in 1:nrow(nodeman1)) {
name <- as.character(nodeman1[n,c("Model","NodeName")])
if (is.null(WarehouseFetch(Nodehouse,name))) {
cat("Building Node ",paste(name,collapse="::"),"\n")
WarehouseSupply(Nodehouse,name)

}
}

WarehouseFree(Nethouse,PnetName(EM1))
stopifnot(!is.valid(Nethouse,EM1))

stopSession(sess)

End(Not run)

WarehouseCopy Copies and object in the warehouse

Description

The creates an object with a new name that shares the appropriate properties with the original object.
How this is handled depends on the type of objects conatined in the Warehouse. The new object is
placed in the warehouse inventory, although not in the manifest.

Usage

WarehouseCopy(warehouse, obj, newname)

Arguments

warehouse A Warehouse object.

obj An object generated from the warehouse.

newname A new name for the warehouse object.

Details

For the PnetWarehouse, this is essentially a copy net function. The newname is the name of the new
network, and it will be an error if this is the same as the name of an existing network.

For the PnodeWarehouse, this is essentially a copy node function. Note that in this case, the new
name must be a character vector with two element: the new net name, and the new node name. If
the new net name is not the same as the net containing the obj argument, then the node will be
copied into the new net. If it is the same, then a new node will be added to the existing net. Note
that at least one part of the name (the net name or the node name) must be different.

WarehouseCopy 145

Value

A new object of the same type as obj, that is a new object managed by the warehouse.

Author(s)

Russell Almond

See Also

Warehouse, WarehouseFree

Examples

Not run: ## Requires implementation
library(PNetica)

sess <- NeticaSession()
startSession(sess)

BNWarehouse is the PNetica Net Warehouse.
This provides an example network manifest.
table.dir <- file.path(library(help="Peanut")$path, "auxdata")
net.dir <- file.path(library(help="PNetica")$path, "testnets")

netman1 <- read.csv(file.path(table.dir,"Mini-PP-Nets.csv"),
row.names=1, stringsAsFactors=FALSE)

Nethouse <- BNWarehouse(manifest=netman1,session=sess,key="Name",
address=net.dir)

CM <- WarehouseSupply(Nethouse, "miniPP_CM")
SM1 <- WarehouseCopy(Nethouse, CM, "Student1")

stopifnot(length(NetworkAllNodes(CM))==length(NetworkAllNodes(SM1)))

This expression provides an example Node manifest
nodeman1 <- read.csv(file.path(table.dir,"Mini-PP-Nodes.csv"),

row.names=1,stringsAsFactors=FALSE)
Nodehouse <- NNWarehouse(manifest=nodeman1,

key=c("Model","NodeName"),
session=sess)

NNodes <- length(NetworkAllNodes(CM))

IterD <- NetworkAllNodes(CM)$IterativeD

Copy within net.
Explain <- WarehouseCopy(Nodehouse,IterD,c("miniPP_CM","Explanation"))
stopifnot(PnodeName(Explain)=="Explanation",

PnetName(PnodeNet(Explain))=="miniPP_CM",
all.equal(PnodeStates(IterD),PnodeStates(Explain)))

146 WarehouseManifest

Copy betwee nets.
Explain1 <- WarehouseCopy(Nodehouse,Explain,c("Student1","Explanation"))
stopifnot(PnodeName(Explain1)=="Explanation",

PnetName(PnodeNet(Explain1))=="Student1",
all.equal(PnodeStates(IterD),PnodeStates(Explain1)))

End(Not run)

WarehouseManifest Manipulates the manifest for a warehouse

Description

A Warehouse is an object which can either retrieve an existing object or create a new one on de-
mand. The manifest is a data.frame which contains data used for building the objects managed
by the warehouse on demand. The function WarehouseManifest access the entire manifest and
WarehouseData extracts the warehouse data for a single item. WarehouseInventory returns a list
of objects which have already been built.

Usage

WarehouseManifest(warehouse)
WarehouseManifest(warehouse) <- value
WarehouseData(warehouse, name)
WarehouseInventory(warehouse)

Arguments

warehouse A Warehouse object

value A data.frame which provides the new manifest data. The required columns
depend on the type of data managed by the warehouse

name A character vector which provides a key for a single object in the warehouse.

Details

The Warehouse design pattern is a combination of a factory and a cache. The idea is that if an object
is needed, the warehouse will search the cache and return it if it already exists. If it does not exits,
the warehouse will create it using the data in the manifest. The manifest is a data.frame with one
or more columns serving as keys. The function ManifestData extracts the data necessary to create
a given object.

Two kinds of warehouses are needed in the Peanut interface: net warehouses and node warehouses.

Net Warehouse. A network warehouse will return an already existing network, read the network
from disk, or build it from scratch as needed. The required fields for a network warehouse manifest

WarehouseManifest 147

are given in the documentation for BuildNetManifest. The key is the “Name” column which
should be unique for each row. The name argument to WarehouseData should be a character scalar
corresponding to name, and it will return a data.frame with a single row.

Node Warehouse. A network warehouse will return an already existing node in a network, or build
it from scratch as needed. The required fields for a network warehouse manifest are given in the
documentation for BuildNodeManifest. Note that node names are only unique within a network,
so the key is the pair of columns “Model” and “NodeName”. If the variable has more than 2 states,
there may be more than two rows of the manifest which correspond to that node. These should
have unique values for the field “StateName”. The name argument to WarehouseData should be a
character vector with the first element being the model name and the section the node name. That
function will return a data.frame with multiple rows (depending on the number of states).

Value

The function WarehouseManifest returns a data.frame giving the complete warehouse manifest.
The function WarehouseData returns selected rows from that data.frame.

The setter function returns the warehouse object.

The function WarehouseInventory returns a data frame where each row corresponds to the key of
an object which has been built.

Note

The best way to build a manifest is probably to call BuildNetManifest or BuildNodeManifest
on a couple of objects and use that to build a skeleton, which can then be edited with the specific
needed data.

Author(s)

Russell Almond

References

Almond, R. G. (presented 2017, August). Tabular views of Bayesian networks. In John-Mark
Agosta and Tomas Singlair (Chair), Bayeisan Modeling Application Workshop 2017. Symposium
conducted at the meeting of Association for Uncertainty in Artificial Intelligence, Sydney, Australia.
(International) Retrieved from http://bmaw2017.azurewebsites.net/

See Also

Warehouse, BuildNetManifest, BuildNodeManifest

Examples

This provides an example network manifest.
netman1 <- read.csv(paste(library(help="Peanut")$path, "auxdata",

"Mini-PP-Nets.csv", sep=.Platform$file.sep),
row.names=1, stringsAsFactors=FALSE)

This provides an example node manifest

http://bmaw2017.azurewebsites.net/

148 WarehouseManifest

nodeman1 <- read.csv(paste(library(help="Peanut")$path, "auxdata",
"Mini-PP-Nodes.csv", sep=.Platform$file.sep),

row.names=1,stringsAsFactors=FALSE)

Not run:
library(PNetica) ## Example requires PNetica
sess <- NeticaSession()
startSession(sess)

BNWarehouse is the PNetica Net Warehouse.
Nethouse <- BNWarehouse(manifest=netman1,session=sess,key="Name")
stopifnot(all.equal(WarehouseManifest(Nethouse),netman1))

stopifnot(all.equal(WarehouseData(Nethouse,"miniPP_CM"),
netman1["miniPP_CM",]))

netman2 <- netman1
netman2["miniPP_CM","Pathname"] <- "mini_CM.dne"
WarehouseManifest(Nethouse) <- netman2

stopifnot(all.equal(WarehouseData(Nethouse,"miniPP_CM"),
netman2["miniPP_CM",]))

Nodehouse <- NNWarehouse(manifest=nodeman1,
key=c("Model","NodeName"),
session=sess)

WarehouseData(Nodehouse,c("miniPP_CM","Physics"))

stopSession(sess)

End(Not run)

Index

∗Topic IO
PnetSerialize, 71

∗Topic attributes
PnodeLabels, 90

∗Topic attribute
PnetHub, 60
PnetName, 64
PnetPathname, 66
PnetTitle, 74
PnodeName, 101
PnodeStateTitles, 118
PnodeStateValues, 120
PnodeTitle, 124

∗Topic attrib
defaultAlphas, 18
PnetPnodes, 67
PnetPriorWeight, 69
PnodeBetas, 84
PnodeLink, 92
PnodeLinkScale, 94
PnodeLnAlphas, 97
PnodeParentTvals, 104
PnodeQ, 111
PnodeRules, 113

∗Topic classes
Pnet, 40
Pnet-class, 43
PnetWarehouse-class, 76
Pnode, 78
Pnode-class, 82
PnodeWarehouse-class, 125
Statistic, 135
Statistic-class, 137

∗Topic class
Warehouse, 140

∗Topic distribution
BuildTable, 11
Omega2Pnet, 35
Pnet2Omega, 44

Pnet2Qmat, 48
Qmat2Pnet, 128

∗Topic graphs
BuildNetManifest, 5
BuildNodeManifest, 8
calcPnetLLike, 16
GEMfit, 21
Peanut-package, 3
Pnet, 40
PnetAdjoin, 55
PnetCompile, 57
PnetFindNode, 59
PnetSerialize, 71
PnetWarehouse-class, 76
Pnode, 78
PnodeEvidence, 88
PnodeParents, 102
PnodeStates, 116
PnodeStats, 122
Statistic, 135
Statistic-class, 137
WarehouseManifest, 146

∗Topic graph
defaultAlphas, 18
Omega2Pnet, 35
Pnet2Omega, 44
Pnet2Qmat, 48
PnetHub, 60
PnetMakeStubNodes, 62
PnetName, 64
PnetPathname, 66
PnetTitle, 74
PnodePostWeight, 107
Qmat2Pnet, 128
topsort, 139

∗Topic interface
BuildNetManifest, 5
BuildNodeManifest, 8
NodeGadget, 32

149

150 INDEX

Pnet, 40
PnetFindNode, 59
PnetHub, 60
PnetName, 64
PnetPathname, 66
PnetTitle, 74
Pnode, 78
PnodeLabels, 90
PnodeName, 101
PnodeParents, 102
PnodeProbs, 109
PnodeStates, 116
PnodeStateTitles, 118
PnodeStateValues, 120
PnodeTitle, 124
Warehouse, 140
WarehouseManifest, 146

∗Topic language
flog.try, 19

∗Topic manip
calcExpTables, 13
GEMfit, 21
is.legal.name, 25
isPnodeContinuous, 26
maxAllTableParams, 29
NodeGadget, 32
PnetAdjoin, 55
PnetMakeStubNodes, 62
WarehouseCopy, 144

∗Topic model
PnodeProbs, 109

∗Topic objects
WarehouseCopy, 144

∗Topic package
Peanut-package, 3

∗Topic utilities
PnetFindNode, 59

∗Topic util
flog.try, 19

as.legal.name, 142
as.legal.name (is.legal.name), 25
as.Pnet (Pnet), 40
as.Pnode (Pnode), 78

barchart.CPF, 32, 33
BNWarehouse, 25, 77, 78, 142
BuildAllTables, 3, 14, 16, 22, 23, 29, 41, 42,

67, 68, 90, 91

BuildAllTables (BuildTable), 11
BuildNetManifest, 5, 10, 41, 42, 76, 78, 141,

143, 147
BuildNodeManifest, 6, 7, 8, 125, 127, 141,

143, 147
BuildTable, 11, 14, 27, 41, 49, 70, 80, 81, 86,

93, 96, 99, 103, 106, 110, 112, 115,
128

calcDNTable, 93, 95
calcDPCFrame, 33
calcDPCTable, 3, 12, 13, 79–81, 84–86, 92,

93, 95–99, 104–106, 111, 112, 114,
115

calcExpTables, 13, 17, 22, 23, 29, 31, 41, 42,
107, 108

calcPnetLLike, 14, 15, 16, 22, 23, 29, 31, 41,
42

calcStat, 58, 122, 123, 135–138
calcStat (Statistic), 135
calcStat,Statistic-method

(Statistic-class), 137
ClearWarehouse, 77, 127
ClearWarehouse (Warehouse), 140
Compensatory, 18, 32, 33, 35–39, 45–47,

49–53, 85, 86, 93, 96, 98, 99, 114,
115, 129–131, 133

CompensatoryGadget (NodeGadget), 32
Conjunctive, 38, 47, 53, 85, 98, 114, 133
CPA, 110
CPF, 110
CPTtools, 3

data.frame, 6, 8, 36, 37, 45, 46, 76, 125, 129,
141, 146, 147

DBI, 3
defaultAlphas, 18
defaultBetas (defaultAlphas), 18
dimnames, 117
Disjunctive, 85, 98, 114
DPCGadget (NodeGadget), 32
dump, 73

effectiveThetas, 36, 105, 106
environment, 142
expand.grid, 84, 92, 97, 105, 106, 114

factor, 136
flog.appender, 23

INDEX 151

flog.logger, 6, 10, 12, 19–21, 23, 30, 38
flog.namespace, 19
flog.threshold, 6, 10, 12, 21, 23, 30, 38
flog.try, 19

GEMfit, 3, 14–17, 21, 22, 29, 31, 41, 42,
67–70, 79, 80, 90, 91, 107, 108

get, 73
GetPriorWeight, 12–14, 67, 68, 81
GetPriorWeight (PnetPriorWeight), 69
gradedResponse, 32, 33, 50, 51, 53, 85, 93,

95, 98, 99, 111, 114, 130, 131, 133

is.legal.name, 25, 142, 143
is.Pnet, 44
is.Pnet (Pnet), 40
is.PnetWarehouse, 77
is.PnetWarehouse (Warehouse), 140
is.Pnode (Pnode), 78
is.PnodeWarehouse, 127
is.PnodeWarehouse (Warehouse), 140
is.valid (Warehouse), 140
isOffsetRule, 18, 50, 130
isPnodeContinuous, 26, 81, 83, 88, 110, 120

MakePnet.NeticaBN, 78
MakePnode.NeticaNode, 127
mapDPC, 14, 21, 22, 29–31, 80, 81, 85, 86, 93,

96–99, 106, 112, 115
maxAllTableParams, 14, 15, 17, 20, 22, 23,

29, 41, 42, 107, 108
maxCPTParam, 41, 80, 81, 86, 93, 96, 99, 106,

112, 115
maxCPTParam (maxAllTableParams), 29
mongo, 72, 73

NeticaBN, 40, 43, 44
NeticaNode, 79, 82, 83
NeticaSession, 77
NNWarehouse, 25, 127, 142
NodeExperience, 30
NodeGadget, 32
NodeProbs, 30
normalize, 110
normalLink, 33, 35–39, 45–47, 51, 53, 131,

133

OffsetConjunctive, 18, 38, 47, 50–53, 85,
86, 93, 96, 98, 99, 114, 115, 130,
131, 133

OffsetDisjunctive, 49, 85, 98, 114, 129
OffsetGadget (NodeGadget), 32
Omega2Pnet, 6, 8, 35, 42, 46, 47, 132, 143

partialCredit, 32, 33, 49–51, 53, 85, 93, 95,
98, 111, 114, 129–133

Peanut (Peanut-package), 3
Peanut-package, 3
Pnet, 3, 6, 12, 14–17, 21, 23, 29, 31, 35, 37,

40, 44–46, 49, 50, 52, 55, 56, 58–62,
64–70, 72, 73, 75, 76, 79, 81, 122,
129, 130, 132, 135, 140–142

Pnet,ANY-method (Pnet), 40
Pnet-class, 43
Pnet2Omega, 6, 8, 35, 37, 39, 42, 44, 44, 140
Pnet2Qmat, 6, 8, 38, 42, 47, 48, 61, 133
PnetAdjoin, 41, 42, 44, 55, 61–63
PnetCompile, 13, 44, 57, 89, 123, 136
PnetDescription, 6, 7, 40, 42, 43, 76
PnetDescription (PnetTitle), 74
PnetDescription<-, 43
PnetDescription<- (PnetTitle), 74
PnetDetach, 41, 42, 44
PnetDetach (PnetAdjoin), 55
PnetFindNode, 42, 43, 59, 102
PnetHub, 6, 7, 9, 10, 40, 41, 43, 56, 60, 63, 76,

126, 132
PnetHub<-, 43
PnetHub<- (PnetHub), 60
PNetica, 3
PNetica-package, 141
PnetMakeStubNodes, 41–43, 56, 62, 133
PnetName, 6, 7, 40, 42, 43, 64, 72, 75, 76
PnetName<-, 43
PnetName<- (PnetName), 64
PnetPathname, 6, 7, 40, 42, 43, 66, 76
PnetPathname<-, 43
PnetPathname<- (PnetPathname), 66
PnetPnodes, 12, 22, 29, 30, 41, 42, 67, 91
PnetPnodes<- (PnetPnodes), 67
PnetPriorWeight, 40, 42, 69
PnetPriorWeight<- (PnetPriorWeight), 69
PnetRemoveStubNodes, 41, 42, 44, 133
PnetRemoveStubNodes

(PnetMakeStubNodes), 62
PnetSerialize, 44, 71, 77
PnetTitle, 6, 7, 40, 42, 43, 64, 65, 74, 76
PnetTitle<-, 43
PnetTitle<- (PnetTitle), 74

152 INDEX

PnetUnserialize, 44
PnetUnserialize (PnetSerialize), 71
PnetWarehouse, 72, 144
PnetWarehouse (PnetWarehouse-class), 76
PnetWarehouse-class, 76
Pnode, 3, 8, 12, 13, 18, 21, 27–29, 31–33, 40,

42, 45, 49, 50, 52, 55, 60, 62, 67–70,
78, 83, 84, 86, 88, 90–93, 95–97, 99,
101–103, 105–107, 109–112,
114–122, 124, 125, 128–130, 132,
135, 138, 140–142

Pnode-class, 82
PnodeAlphas, 13, 37, 39, 46, 47, 49, 51–53,

80, 81, 85, 93, 111, 112, 114, 129,
131, 132, 134

PnodeAlphas (PnodeLnAlphas), 97
PnodeAlphas<- (PnodeLnAlphas), 97
PnodeBetas, 13, 18, 22, 30, 36, 37, 39, 46, 47,

49, 51–53, 79–81, 84, 86, 93, 96, 98,
99, 106, 112, 114, 115, 129, 131,
132, 134

PnodeBetas<- (PnodeBetas), 84
PnodeDescription, 9, 10, 80–82, 126
PnodeDescription (PnodeTitle), 124
PnodeDescription<-, 82
PnodeDescription<- (PnodeTitle), 124
PnodeEAP, 9, 10, 58, 83, 126, 136, 138
PnodeEAP (PnodeStats), 122
PnodeEvidence, 58, 83, 88
PnodeEvidence<-, 83
PnodeEvidence<- (PnodeEvidence), 88
PnodeLabels, 9, 10, 80–82, 90, 126
PnodeLabels<-, 82
PnodeLabels<- (PnodeLabels), 90
PnodeLink, 13, 37, 39, 46, 47, 49, 50, 52, 53,

79–81, 84–86, 92, 95, 98, 99, 106,
111, 112, 114, 115, 129, 130, 132,
134

PnodeLink<- (PnodeLink), 92
PnodeLinkScale, 13, 37, 39, 46, 47, 49–53,

79–81, 93, 94, 96, 129–132, 134
PnodeLinkScale<- (PnodeLinkScale), 94
PnodeLnAlphas, 13, 18, 22, 30, 79–81, 86, 93,

96, 97, 99, 106, 112, 115
PnodeLnAlphas<- (PnodeLnAlphas), 97
PnodeMargin, 58, 83, 136, 138
PnodeMargin (PnodeStats), 122
PnodeMedian, 58, 83, 136, 138

PnodeMedian (PnodeStats), 122
PnodeMode, 58, 136, 138
PnodeMode (PnodeStats), 122
PnodeName, 9, 10, 46, 60, 80–82, 101, 117,

121, 124, 126
PnodeName<-, 82
PnodeName<- (PnodeName), 101
PnodeNet, 8, 10, 60, 69, 70, 79, 81, 126
PnodeNet (PnetPnodes), 67
PnodeNumParents, 80, 81, 83
PnodeNumParents (PnodeParents), 102
PnodeNumStates, 9, 10, 80–82, 88, 109, 126
PnodeNumStates (PnodeStates), 116
PnodeParentNames, 80, 81, 83, 110
PnodeParentNames (PnodeParents), 102
PnodeParents, 39, 46, 47, 53, 80, 81, 83, 102,

109, 110, 134
PnodeParents<-, 83
PnodeParents<- (PnodeParents), 102
PnodeParentTvals, 28, 33, 80, 81, 84, 86, 92,

93, 96, 97, 99, 103, 104, 111, 112,
114, 115, 120, 121

PnodePostWeight, 107
PnodePriorWeight, 13, 37, 39, 46, 47, 53, 79,

81, 107, 108, 133, 134
PnodePriorWeight (PnetPriorWeight), 69
PnodePriorWeight<- (PnetPriorWeight), 69
PnodeProbs, 13, 83, 107, 109
PnodeProbs<-, 83
PnodeProbs<- (PnodeProbs), 109
PnodeQ, 13, 32, 33, 50, 53, 79, 81, 84–86, 92,

93, 96–99, 105, 106, 111, 112, 114,
115, 130, 134

PnodeQ<- (PnodeQ), 111
PnodeRules, 13, 37, 39, 46, 47, 49–53, 79, 81,

84–86, 93, 96–99, 105, 106, 111,
112, 113, 115, 129–131, 133, 134

PnodeRules<- (PnodeRules), 113
PnodeSD, 9, 10, 58, 83, 126, 136, 138
PnodeSD (PnodeStats), 122
PnodeStateBounds, 81, 83, 88, 89, 106, 110,

120
PnodeStateBounds (isPnodeContinuous), 26
PnodeStateBounds<-, 83
PnodeStateBounds<- (isPnodeContinuous),

26
PnodeStateDescriptions, 9, 10, 80–82, 117,

126

INDEX 153

PnodeStateDescriptions
(PnodeStateTitles), 118

PnodeStateDescriptions<-, 82
PnodeStateDescriptions<-

(PnodeStateTitles), 118
PnodeStates, 9, 80–82, 89, 110, 116,

117–121, 126
PnodeStates<-, 82
PnodeStates<- (PnodeStates), 116
PnodeStateTitles, 9, 10, 80–82, 117, 118,

121, 126
PnodeStateTitles<-, 82
PnodeStateTitles<- (PnodeStateTitles),

118
PnodeStateValues, 9, 10, 28, 80, 81, 83, 106,

117, 119, 120, 122, 126, 136
PnodeStateValues<-, 83
PnodeStateValues<- (PnodeStateValues),

120
PnodeStats, 122
PnodeTitle, 9, 10, 80–82, 101, 102, 124, 126
PnodeTitle<-, 82
PnodeTitle<- (PnodeTitle), 124
PnodeWarehouse, 144
PnodeWarehouse (PnodeWarehouse-class),

125
PnodeWarehouse-class, 125

Qmat2Pnet, 6, 8, 41, 42, 53, 56, 61–63, 128,
143

qnorm, 105, 106

recover, 12, 29, 30, 36, 38
RegressionGadget (NodeGadget), 32
RNetica, 3, 141, 142

serialize, 72
setIs, 43, 82
show,Statistic-method

(Statistic-class), 137
Statistic, 122, 123, 135, 135, 136–138
Statistic-class, 137
StatName (Statistic-class), 137
StatName,Statistic-method

(Statistic-class), 137

topsort, 139
try, 19, 20

unserializePnet, 44

unserializePnet (PnetSerialize), 71

Warehouse, 5–8, 10, 35, 37, 39, 42, 50, 53, 73,
76, 78, 125, 127, 129, 130, 132, 133,
140, 144–147

WarehouseCopy, 142, 143, 144
WarehouseCopy,default-method

(WarehouseCopy), 144
WarehouseData, 8, 77, 127, 141, 143
WarehouseData (WarehouseManifest), 146
WarehouseFetch, 77, 127
WarehouseFetch (Warehouse), 140
WarehouseFree, 77, 127, 145
WarehouseFree (Warehouse), 140
WarehouseInventory (WarehouseManifest),

146
WarehouseMake, 77, 127
WarehouseMake (Warehouse), 140
WarehouseManifest, 7, 10, 76–78, 125, 127,

141, 143, 146
WarehouseManifest<-, 77, 127
WarehouseManifest<-

(WarehouseManifest), 146
WarehouseSupply, 77, 127
WarehouseSupply (Warehouse), 140
WarehouseSupply,ANY-method (Warehouse),

140
WarehouseUnpack, 77
WarehouseUnpack (PnetSerialize), 71
write.CaseFile, 17, 22

	Peanut-package
	BuildNetManifest
	BuildNodeManifest
	BuildTable
	calcExpTables
	calcPnetLLike
	defaultAlphas
	flog.try
	GEMfit
	is.legal.name
	isPnodeContinuous
	maxAllTableParams
	NodeGadget
	Omega2Pnet
	Pnet
	Pnet-class
	Pnet2Omega
	Pnet2Qmat
	PnetAdjoin
	PnetCompile
	PnetFindNode
	PnetHub
	PnetMakeStubNodes
	PnetName
	PnetPathname
	PnetPnodes
	PnetPriorWeight
	PnetSerialize
	PnetTitle
	PnetWarehouse-class
	Pnode
	Pnode-class
	PnodeBetas
	PnodeEvidence
	PnodeLabels
	PnodeLink
	PnodeLinkScale
	PnodeLnAlphas
	PnodeName
	PnodeParents
	PnodeParentTvals
	PnodePostWeight
	PnodeProbs
	PnodeQ
	PnodeRules
	PnodeStates
	PnodeStateTitles
	PnodeStateValues
	PnodeStats
	PnodeTitle
	PnodeWarehouse-class
	Qmat2Pnet
	Statistic
	Statistic-class
	topsort
	Warehouse
	WarehouseCopy
	WarehouseManifest
	Index

