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CPTtools-package Tools for creating conditional probability tables

Description

Provides support for parameterized tables for Bayesian networks .

Details

The DESCRIPTION file: This package was not yet installed at build time.

CPTtools is a collection of various bits of R code useful for processing Bayes net output. Some
were designed to work with ETS’s proprietary StatShop code, and some with RNetica. The code
collected in this package is all free from explicit dependencies on the specific Bayes net package
and will hopefully be useful with other systems as well.

The majority of the code are related to building conditional probability tables (CPTs) for Bayesian
networks. The package has two output representations for a CPT. The first is a data.frame object
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where the first several columns are factor variables corresponding the the parent variables, and the
remaining columns are numeric variables corresponding to the state of the child variables. The rows
represent possible configurations of the parent variables. An example is shown below.

S1 S2 Full Partial None
1 High High 0.81940043 0.15821522 0.02238436
2 Medium High 0.46696668 0.46696668 0.06606664
3 Low High 0.14468106 0.74930671 0.10601223
4 High Medium 0.76603829 0.14791170 0.08605000
5 Medium Medium 0.38733177 0.38733177 0.22533647
6 Low Medium 0.10879020 0.56342707 0.32778273
7 High Low 0.65574465 0.12661548 0.21763987
8 Medium Low 0.26889642 0.26889642 0.46220715
9 Low Low 0.06630741 0.34340770 0.59028489
10 High LowerYet 0.39095414 0.07548799 0.53355787
11 Medium LowerYet 0.11027649 0.11027649 0.77944702
12 Low LowerYet 0.02337270 0.12104775 0.85557955

The second representation is a table (matrix) with just the numeric part. Two approaches to build-
ing these tables from parameters are described below. The more flexible discrete partial credit
model is used for the basis of the parameterized networks in the Peanut package.

In addition to the code for building partial credit networks, this package contains some code for
building Bayesian network structures from (inverse) correlation matrixes, and graphical displays
for Bayes net output. The latter includes some diagnostic plots and additional diagnostic tests.

Discrete Partial Credit Framework

The original parameterization for creating conditional probability tables based on Almond et al
(2001) proved to be insufficiently flexible. Almond (2015) describes a newer parameterization
based on three steps:

1. Translate the parent variables onto a numeric effective theta scale (effectiveThetas).

2. Combine the parent effective thetas into a single effective theta using a combination rule
(Compensatory, OffsetConjunctive).

3. Convert the effective theta for each row of the table into conditional probabilities using a link
function (gradedResponse, partialCredit, normalLink).

The partialCredit link function is particularly flexible as it allows different parameterizations and
different combination rules for each state of the child variable. This functionality is best captured
by the two high level functions:

calcDPCTable Creates the probability table for the discrete partial credit model given the parame-
ters.

mapDPC Finds an MAP estimate for the parameters given an observed table of counts.

This parameterization serves as basis for the model used in the Peanut package.
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Other parametric CPT models

The first two steps of the discrete partial credit framework outlined above are due to a suggestion
by Lou DiBello (Almond et al, 2001). This lead to an older framework, in which the link function
was hard coded into the conditional probability table formation. The models were called DiBello-
XX, where XX is the name of the link function. Almond et al. (2015) describes several additional
examples.

calcDDTable Calculates DiBello-Dirichlet model probability and parameter tables.

calcDNTable Creates the probability table for DiBello-Normal distribution. This is equivalent to
using the normalLink in the DPC framework. This also uses a link scale parameter.

calcDSTable Creates the probability table for DiBello-Samejima distribution. This is equivalent
to using the gradedResponse in the DPC framework.

calcDSllike Calculates the log-likelihood for data from a DiBello-Samejima (Normal) distribu-
tion.

Diez (1993) and Srinivas (1993) describe an older parametric framework for Bayes nets based on
the noisy-or or noisy-max function. These are also available.

calcNoisyAndTable Calculate the conditional probability table for a Noisy-And or Noisy-Min
distribution.

calcNoisyOrTable Calculate the conditional probability table for a Noisy-Or distribution.

Building Bayes nets from (inverse) correlation matrixes

Almond (2010) noted that in many cases the best information about the relationship among variables
came from a procedure that produces a correlation matrix (e.g., a factor analysis). Applying a trick
from Whittaker (1990), connecting pairs of nodes corresponding to nonzero entries in an inverse
correlation matrix produces an undirected graphical model. Ordering in the nodes in a perfect
ordering allows the undirected model to be converted into a directed model (Bayesian network).
The conditional probability tables can then be created through a series of regressions.

The following functions implement this protocol:

structMatrix Finds graphical structure from a covariance matrix.

mcSearch Orders variables using Maximum Cardinality search.

buildParentList Builds a list of parents of nodes in a graph.

buildRegressions Creates a series of regressions from a covariance matrix.

buildRegressionTables Builds conditional probability tables from regressions.

Other model construction tools

These functions are a grab bag of lower level utilities useful for building CPTs:

areaProbs Translates between normal and categorical probabilities.

numericPart Splits a mixed data frame into a numeric matrix and a factor part..

dataTable Constructs a table of counts from a setof discrete observations..

eThetaFrame Constructs a data frame showing the effective thetas for each parent combination..
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effectiveThetas Assigns effective theta levels for categorical variable.

getTableStates Gets meta data about a conditional probability table..

rescaleTable Rescales the numeric part of the table.

scaleMatrix Scales a matrix to have a unit diagonal.

scaleTable Scales a table according to the Sum and Scale column.

Bayes net output displays and tests

Almond et al. (2009) suggested using hanging barplots for displaying Bayes net output and gives
several examples. The function stackedBars produces the simple version of this plot and the func-
tion compareBars compares two distributions (e.g., prior and posterior). The function buildFactorTab
is useful for building the data and the function colorspread is useful for building color gradients.

Madigan, Mosurski and Almond (1997) describe a graphical weight of evidence balance sheet (see
also Almond et al, 2015, Chapter 7; Almond et al, 2013). The function woeHist calculates the
weights of evidence for a series of observations and the function woeBal produces a graphical
display.

Sinharay and Almond (2006) propose a graphical fit test for conditional probability tables (see also,
Almond et al, 2015, Chapter 10). The function OCP implements this test, and the function betaci
creates the beta credibility intervals around which the function is built.

The key to Bayesian network models are the assumptions of conditional independence which under-
lie the model. The function localDepTest tests these assumptions based on observed (or imputed)
data tables.

The function mutualInformation calculates the mutual information of a two-way table, a measure
of the strength of association. This is similar to the measure used in many Bayes net packages (e.g.,
MutualInfo).

Data sets

Two data sets are provided with this package:

ACED Data from ACED field trial (Shute, Hansen, and Almond, 2008). This example is based on
a field trial of a Bayesian network based Assessment for Learning system, and contains both
item-level response and high-level network summaries. A complete description of the Bayes
net can be found at http://ecd.ralmond.net/ecdwiki/ACED/ACED.

MathGrades Grades on 5 mathematics tests from Mardia, Kent and Bibby (from Whittaker, 1990).

Index

Complete index of all functions.

Index: This package was not yet installed at build time.

Author(s)

Russell Almond

Maintainer: Russell Almond <ralmond@fsu.edu>

http://ecd.ralmond.net/ecdwiki/ACED/ACED
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## Set up variables
skill1l <- c("High","Medium","Low")

http://ceur-ws.org/Vol-1024/paper-01.pdf
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skill2l <- c("High","Medium","Low","LowerYet")
correctL <- c("Correct","Incorrect")
pcreditL <- c("Full","Partial","None")
gradeL <- c("A","B","C","D","E")

## New Discrete Partial Credit framework:

## Complex model, different rules for different levels
cptPC2 <- calcDPCFrame(list(S1=skill1l,S2=skill2l),pcreditL,

list(full=log(1),partial=log(c(S1=1,S2=.75))),
betas=list(full=c(0,999),partial=1.0),
rule=list("OffsetDisjunctive","Compensatory"))

## Graded Response using the older DiBello-Samejima framework.
cptGraded <- calcDSTable(list(S1=skill1l),gradeL, 0.0, 0.0, dinc=c(.3,.4,.3))

## Building a Bayes net from a correlation matrix.
data(MathGrades)
pl <- buildParentList(structMatrix(MathGrades$var),"Algebra")
rt <- buildRegressions(MathGrades$var,MathGrades$means,pl)
tabs <- buildRegressionTables(rt, MathGrades$pvecs, MathGrades$means,

sqrt(diag(MathGrades$var)))

## Stacked Barplots:
margins.prior <- data.frame (
Trouble=c(Novice=.19,Semester1=.24,Semester2=.28,Semseter3=.20,Semester4=.09),
NDK=c(Novice=.01,Semester1=.09,Semester2=.35,Semseter3=.41,Semester4=.14),
Model=c(Novice=.19,Semester1=.28,Semester2=.31,Semseter3=.18,Semester4=.04)

)

margins.post <- data.frame(
Trouble=c(Novice=.03,Semester1=.15,Semester2=.39,Semseter3=.32,Semester4=.11),
NDK=c(Novice=.00,Semester1=.03,Semester2=.28,Semseter3=.52,Semester4=.17),
Model=c(Novice=.10,Semester1=.25,Semester2=.37,Semseter3=.23,Semester4=.05))

stackedBars(margins.post,3,
main="Marginal Distributions for NetPASS skills",
sub="Baseline at 3rd Semester level.",
cex.names=.75, col=hsv(223/360,.2,0.10*(5:1)+.5))

compareBars(margins.prior,margins.post,3,c("Prior","Post"),
main="Margins before/after Medium Trouble Shooting Task",
sub="Observables: cfgCor=Medium, logCor=High, logEff=Medium",
legend.loc = "topright",
cex.names=.75, col1=hsv(h=.1,s=.2*1:5-.1,alpha=1),
col2=hsv(h=.6,s=.2*1:5-.1,alpha=1))

## Weight of evidence balance sheets
sampleSequence <- read.csv(paste(library(help="CPTtools")$path,

"testFiles","SampleStudent.csv",
sep=.Platform$file.sep),

header=TRUE,row.names=1)
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woeBal(sampleSequence[,c("H","M","L")],c("H"),c("M","L"),lcex=1.25)

### Observable Characteristic Plot
pi <- c("+"=.15,"-"=.85)
nnn <- c("(0,0,0)"=20,"(0,0,1)"=10,

"(0,1,0)"=10,"(0,1,0)"=5,
"(1,0,0)"=10,"(1,0,1)"=10,
"(1,1,1)"=10,"(1,1,1)"=25)

xx1 <- c("(0,0,0)"=2,"(0,0,1)"=5,
"(0,1,0)"=1,"(0,1,1)"=3,
"(1,0,0)"=0,"(1,0,1)"=2,
"(1,1,0)"=5,"(1,1,1)"=24)

grouplabs <- c(rep("-",3),"+")
grouplabs1 <- rep(grouplabs,each=2)
OCP2 (xx1,nnn,grouplabs1,pi,c("-","+"),ylim=c(0,1), reflty=c(2,4),

setlabs=c("Low Skill3","High Skill3"),setat=-.8,
main="Data for which Skill 3 is relevant")

ACED.scores Data from ACED field trial

Description

ACED (Adaptive Content with Evidence-Based Diagnosis; Shute, Hansen and Almond, 2008) is a
Bayes net based assessment system which featured: (a) adaptive item selection and (b) extended
feedback for incorrect items. This data contains both item level and pretest/posttest data from a
field trial of the ACED system.

Usage

data("ACED")

Format

ACED contains 3 data.frame objects and one explanatory variable.

ACED.scores is data frame with 230 observations on 74 variables. These are mostly high-level
scores from the Bayesian network.

Cond_code a numeric vector giving the experimental condition for this student, see also Cond

Seq a factor describing whether the sequence of items was Linear or Adaptive

FB a factor describing whether the feedback for incorrect items was Extended or AccuracyOnly

All_Items a numeric vector giving the number of items in ACED

Correct a numeric vector giving the number of items the student got correct

Incorr a numeric vector giving the number of items the student got incorrect
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Remain a numeric vector giving the number of items not reached or skipped

ElapTime a numeric vector giving the total time spent on ACED The next group of columns
give “scores” for each of the nodes in the Bayesian network. Each node has four scores,
and the columns are names pnodeScoreType where node is replaced by one of the codes in
ACED.allSkills.

pnodeH a numeric vector giving the probability node is in the high state

pnodeM a numeric vector giving the probability node is in the medium state

pnodeL a numeric vector giving the probability node is in the low state

EAPnode the expected a posteriori value of node assuming an equal interval scale, where L=1, M=2
and H=3

MAPnode a factor vector giving maximum a posteriori value of node, i.e., which.max(pnodeH, pnodeM, pnodeL).
After a number of columns with this pattern, the last column is:

Cond a factor describing the experimental condition with levels Adaptive/Accuracy, Adaptive/Extended
and Linear/Extended

ACED.skillNames is a character vector giving the abbreviations used for the node names. Here are
the interpretations:

sgp Solve Geometric Problems. This is the highest level variable for the field trial data.

arg Algebraic Rule Geometric

cr Find Common Ratio

dt Distinguish Types of series

exa Examples (Geometric)

exp Explicit Rule (Geometric)

ext Extend Series (Geometric)

ind Induce Rules (Geometric)

mod Model (Geometric)

rec Recursive Rules (Geometric)

tab Tabular Representations (Geometric)

ver Verbal Rules (Geometric)

pic Pictorial Representations (Geometric)

ACED.items is data frame with 230 observations on 73 variables. These are mostly item-level scores
from the field trial.

Cond_code a numeric vector giving the experimental condition for this student, see also Cond

Seq a factor describing whether the sequence of items was Linear or Adaptive

FB a factor describing whether the feedback for incorrect items was Extended or AccuracyOnly

All_Items a numeric vector giving the number of items in ACED

Correct a numeric vector giving the number of items the student got correct

Incorr a numeric vector giving the number of items the student got incorrect

Remain a numeric vector giving the number of items not reached or skipped
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ElapTime a numeric vector giving the total time spent on ACED The next 63 columns represent the
items from the ACED assessment. All are factor variables, with possible valued Incorrect
and Correct. The variables are named all named t (for task) followed by the name of one or
more variables tapped by the task (if there is more than one, then the first one is “primary”.)
This is followed by a numeric code, 1, 2 or 3, giving the difficulty (easy, medium or hard)
and a letter (a, b or c) used to indicate alternate tasks following the same task model. Finally,
following a period, there is a version number (all of the tasks are version 1).
After the variables, the last column is:

Cond a factor describing the experimental condition with levels Adaptive/Accuracy, Adaptive/Extended
and Linear/Extended

ACED.prePost is data frame with 290 observations on 32 variables giving the results of the pretest
and posttest.

Cond_code a numeric vector giving the experimental condition for this student, see also Cond

Seq a factor describing whether the sequence of items was Linear or Adaptive

FB a factor describing whether the feedback for incorrect items was Extended or AccuracyOnly

All_Items a numeric vector giving the number of items in ACED

Form_Order a factor variables describing whether (AB) Form A was the pretest and Form B was
the posttest or (BA) vise versa.

Level_Code a factor variable describing the academic track of the student with levels Honors,
Academic, Regular, Part 1, Part 2 and ELL. The codes Part 1 and Part 2 refer to special
education students in Part 1 (mainstream classroom) or Part 2 (sequestered).

PreACorr corrected score on Form A for students who took Form A as a pretest

PostBCorr corrected score on Form B for students who took Form B as a posttest

PreBCorr corrected score on Form B for students who took Form B as a pretest

PostACorr corrected score on Form A for students who took Form A as a posttest

PreScore a numeric vector with either the non-missing value from PreACorr and PreBCorr

PostScore a numeric vector with either the non-missing value from PostACorr and PostBCorr

Gender a factor variable giving the (self-reported) gender of the student (codebook is lost)

Race a factor variable giving the (self-reported) race of the student (codebook is lost)

Gain PostScore - PreScore

preacorr_adj PreACorr adjusted to put forms A and B on the same scale

postbcorr_adj PostBCorr adjusted to put forms A and B on the same scale

prebcorr_adj PreBCorr adjusted to put forms A and B on the same scale

postacorr_adj PostACorr adjusted to put forms A and B on the same scale

Zpreacorr_adj standardized version of preacorr_adj

Zpostbcorr_adj standardized version of postbcorr_adj

Zprebcorr_adj standardized version of prebcorr_adj

Zpostacorr_adj standardized version of postacorr_adj

scale_prea score on Form A for students who took Form A as a pretest scaled to range 0-100
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scale_preb score on Form B for students who took Form B as a pretest scaled to range 0-100

pre_scaled scale score on pretest (whichever form)

scale_posta score on Form A for students who took Form A as a posttest scaled to range 0-100

scale_postb score on Form B for students who took Form B as a posttest scaled to range 0-100

post_scaled scale score on pretest (whichever form)

gain_scaled post_scaled - pre_scaled

Flagged a logical variable (codebook lost)

Cond a factor describing the experimental condition with levels Adaptive/Accuracy, Adaptive/Extended,
Linear/Extended and Control

Details

ACED is a Bayesian network based Assessment for Learning learning system, thus it served as both
a assessment and a tutoring system. It had two novel features which could be turned on and off,
elaborated feedback (turned off, it provided accuracy only feedback) and adaptive sequencing of
items (turned off, it scheduled items in a fixed linear sequence).

It was originally built to cover all algebraic sequences (arithmetic, geometric and other recursive),
but only the branch of the system using geometric sequences was tested. Shute, Hansen and Almond
(2008) describe the field trial. Students from a local middle school (who studied arithmetic, but not
geometric sequences as part of their algebra curriculum) were recruited for the study. The students
were randomized into one of four groups:

Adaptive/Accuracy Adaptive sequencing was used, but students only received correct/incorrect
feedback.

Adaptive/Extended Adaptive sequencing was used, but students received extended feedback for
incorrect items.

Linear/Extended The fixed linear sequencing was used, but students received extended feedback
for incorrect items.

Control The students did independent study and did not use ACED.

Because students in the control group were not exposed to the ACED task, neither the Bayes net
level scores nor the item level scores are available for those groups, and those students are excluded
from ACED.scores and ACED.items. The students are in the same order in all of the data sets, with
the 60 control students tacked onto the end of the ACED.prePost data set.

All of the students (including the control students) were given a 25-item pretest and a 25-item
posttest with items similar to the ones used in ACED. The design was counterbalanced, with half of
the students receiving Form A as the pretest and Form B as the posttest and the other half the other
way around, to allow the two forms to be equated using the pretest data. The details are buried in
ACED.prePost.

Note that some irregularities were observed with the English Language Learner (ACED.prePost$Level_code=="ELL")
students. Their teachers were allowed to translated words for the students, but in many cases actu-
ally wound up giving instruction as part of the translation.
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Source

Shute, V. J., Hansen, E. G., & Almond, R. G. (2008). You can’t fatten a hog by weighing it—Or can
you? Evaluating an assessment for learning system called ACED. International Journal of Artificial
Intelligence and Education, 18(4), 289-316.

Thanks to Val Shute for permission to use the data.

ACED development and data collection was sponsored by National Science Foundation Grant No.
0313202.

References

A more detailed description, including a Q-matrix can be found at the ECD Wiki: http://ecd.
ralmond.net/ecdwiki/ACED/ACED.

Examples

data(ACED)

areaProbs Translates between normal and categorical probabilities

Description

Maps between a continuous (normal) variable and a discrete variable by establishing a set of bins
to maintain a particular probability vector. The pvecToCutpoints function returns the cut points
separating the bins, the pvecToMidpoints returns a central point from each bin, and the areaProbs
calculates the fraction of a normal curve falling into a particular bin.

Usage

pvecToCutpoints(pvec, mean = 0, std = 1)
pvecToMidpoints(pvec, mean = 0, std = 1)
areaProbs(pvec, condmean, condstd, mean = 0, std = 1)

Arguments

pvec A vector of marginal probabilities for the categories of the discrete variable.
Elements should be ordered from smallest to largest.

mean The mean of the continuous variable.

std The standard deviation of the continuous variable.

condmean The conditional mean of the continuous variable.

condstd The conditional standard deviation of the continuous variable.

http://ecd.ralmond.net/ecdwiki/ACED/ACED
http://ecd.ralmond.net/ecdwiki/ACED/ACED
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Details

Let S be a discrete variable whose states sk are given by names(pvec)[k] and for which the
marginal probability Pr(S = sk) = pk is given by pvec[k]. Let Y be a continuous normal
variable with mean mean and standard deviation std. These function map between S and Y .

The function pvecToCutpoints produces a series of cutpoints, ck, such that setting sk to S when
ck ≤ Y ≤ ck+1 produces the marginal probability specified by pvec. Note that c1 is always -Inf
and cK+1 is always Inf (where K is length(pvec)).

The function pvecToMidpoints produces the midpoints (with respect to the normal density) of the
intervals defined by pvecToCutpoints. In particular, if Pr(S ≥ sk) = Pk, then the values returned
are qnorm(Pk + pk/2).

The function areaProbs inverts these calculations. If condmean isE[Y |x] and condstd is
√
var(Y |x),

then this function calculates Pr(S|x) by calculating the area under the normal curve.

Value

For pvecToCutpoints, a vector of length one greater than pvec giving the endpoints of the bins.
Note that the first and last values are always infinite.

For pvecToCutpoints, a vector of length the same length as pvec giving the midpoint of the bins.

For areaProbs a vector of probabilities of the same length as pvec.

Warning

Variables are given from lowest to highest state, for example ‘Low’, ‘Medium’, ‘High’. StatShop
expects variables in the opposite order.

Note

The function effectiveThetas does something similar, but assumes all probability values are
equally weighted.

Author(s)

Russell Almond

References

Almond, R.G., Mislevy, R.J., Steinberg, L.S., Yan, D. and Williamson, D.M. (2015) Bayesian
Networks in Educational Assessment. Springer. Chapter 8.

Almond, R.G. ‘I Can Name that Bayesian Network in Two Matrixes.’ International Journal of
Approximate Reasoning, 51, 167–178.

See Also

effectiveThetas
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Examples

probs <- c(Low=.05,Med=.9,High=.05)
cuts <- pvecToCutpoints(probs)
mids <- pvecToMidpoints(probs)

areaProbs(probs,1,.5)

barchart.CPF This function produces a plot of a conditional probability frame.

Description

This is an extension of barchart.array for displaying conditional probability tables. In particular,
it will display the output of calcDPCFrame.

Usage

## S3 method for class 'CPF'
barchart(x, data = NULL, ..., baseCol = "firebrick",

auto.key=TRUE, par.settings)

Arguments

x A conditional probaiblity frame (see as.CPF.

data Ignore this value, used for compatability with barchart.

... Other arguments passed on to barchart, in particular, other lattice graphics
arguments.

baseCol This should be a specification of a color. The color is designed as a gradient
starting at the base color and getting progressively lighter. If its value is NULL,
the colors are left at the default (pastel palette) and the value of par.settings is
passed through unchanged.

auto.key This is the auto.key parameter from barchart, it is overridden to have a default
of true.

par.settings This is the par.settings parameter from barchart. If baseCol is not null,
then a value for superpose.polygon is added to set the bar colors.

Details

The function barchart.array and the function as.CPA to convert the conditional probability frame
to an array do 90 percent of the work.

A few minor touches:

• The function takes special care of one row [un]conditional probability frames.
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• The function overrides the default colors using colorspread to produce varying intensities of
the same color.

• The function adds the dimension names, so that the labels indicate which variables they belong
to.

• The function sets the default value of auto.key to TRUE so that a legend for the colors is pro-
duced.

Note that the color change is brought about internally by modifying par.settings. To suppress
this behavior, set baseCol to null, and the user value for par.settings will be passed through
unchanged.

Value

An object of class lattice that when printed will produce the graph.

Author(s)

Russell Almond

See Also

as.CPA, colorspread, barchart.array, calcDPCFrame

Examples

## Set up variables
skill1l <- c("High","Medium","Low")
skill2l <- c("High","Medium","Low","LowerYet")
correctL <- c("Correct","Incorrect")
pcreditL <- c("Full","Partial","None")
gradeL <- c("A","B","C","D","E")

cpfTheta <- calcDPCFrame(list(),skill1l,numeric(),0,rule="Compensatory",
link="normalLink",linkScale=.5)

barchart.CPF(cpfTheta)

cptPC1 <- calcDPCFrame(list(S1=skill1l,S2=skill2l),pcreditL,
lnAlphas=log(1),
betas=list(full=c(S1=0,S2=999),partial=c(S2=999,S2=0)),
rule="OffsetDisjunctive")

barchart.CPF(cptPC1,baseCol="slateblue")
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betaci Credibility intervals for a proportion based on beta distribution

Description

This generates upper and lower bounds for a highest posterior density credibility interval for a beta
distribution by looking at appropriate quantiles of the beta distribution. This is designed to work
with sums of classification probabilities.

Usage

betaci(sumData, totals = NULL, limits = c(lower = 0.025, upper = 0.975),
a = 0.5, b = 0.5)

Arguments

sumData Counts or averages of proportions. Note these do not need to be integers, sums
of classification probabilities work here.

totals Total number of individuals as reference for sumData. If missing or NULL then
the value use is colSums(data).

limits The upper and lower credibility limits.

a Value for the shape1 parameter of the beta prior.

b Value for the shape2 parameter of the beta prior.

Details

This function computes the upper and lower bounds of a credibility interval for a beta distribution
based on sumData successes out of totals trials. Note that as a beta distribution is used for the
basic calculations, neither sumData nor totals need be integers.

To avoid problems with zero cells (or cells with values equal to totals), a small prior is added to
the beta calculations. By default a Jeffrey’s prior (.5, .5) is added to the data. Thus the final returned
value is:

qbeta(prob, sumData+ a, totals− sumData+ b)

where prob varies over the values in limits. Note that a and b can be scalars or an array con-
formable with totals.

Value

A list of the same length as limits with the same names. Each component is a quantile of the
posterior distribution which has the same shape as sumData.

Note that limits is not limited to length 2, although this is the most obvious application.

Author(s)

Russell Almond
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See Also

See OCP for an application.

Examples

x <- matrix(c(7,4,2,31),2,2)
## Use column sums as totals
betaci(x)

## fixed totals
nn <- matrix(c(30,15,20,35),2,2)
betaci(x,nn)

## Prior varies according to cell.
pi0 <- c(.2,.2,.2,.8)
betaci(x,nn,a=pi0,b=1-pi0)

buildFactorTab Builds probability tables from Scored Bayes net output.

Description

Looks for margin statistics in scored Bayes net output, and puts them into tables with rows repre-
senting variables and columns representing variable states.

The marginTab function does this for a single individual. The buildMarginTab uses the grand
mean across all individuals and the buildFactorTab breaks down groups according to a factor
variable. The function build2FactorTab builds a three-way table.

Usage

buildFactorTab(data, fact, stateNames, skillNames, reverse = TRUE,
stem="margin", sep=".")

build2FactorTab(data, fact1, fact2, stateNames, skillNames,
reverse = TRUE, stem="margin",sep=".")

buildMarginTab(data, stateNames, skillNames, reverse = TRUE,
stem="margin",sep=".")

marginTab(datarow, stateNames, skillNames, reverse = TRUE,
stem="margin",sep=".")

Arguments

data A data sets of StatShop statistics for many individuals.

datarow One row of such a data set.

fact A factor variable according to which to split the data. Length should be the same
as the length of data.
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fact1 A factor variable according to which to split the data.

fact2 A factor variable according to which to split the data.

stateNames Names of the variable states.

skillNames Names of the proficiency variable(s) to be used.

reverse Reverse the order of the states for display (i.e., convert from StatShop order of
highest first to more natural order of lowest first.

stem A character string giving a prefix used to indicate variable names.

sep A character string giving a separator used to separate prefix from variable names.

Details

This looks for columns marked “<stem><sep><skillName>” in the data frame, and builds them into
a matrix. It is assumed that all variables have the same number of states and that they are in the
same order, and the order is the same as given in stateNames.

The functions buildFactorTab and build2FactorTab really expect their skillNames argument
to be a single variable name. However, they should work with multiple variables if suitable values
are chosen for the state names.

Value

For marginTab a matrix with columns corresponding to skillNames and rows corresponding to
stateNames giving the probabilities for a single individual.

For buildMarginTab a matrix with columns corresponding to skillNames and rows corresponding
to stateNames giving the average probabilities for the entire data set.

For buildFactorTab a matrix with columns corresponding to the unique values of fact and rows
corresponding to stateNames entries give the average probabilities across the groups.

For build2FactorTab a 3 dimensional array with the first dimension corresponding to the unique
values of fact1, the second dimension corresponding to the unique values of fact2 and the last
dimension corresponding to stateNames entries give the average probabilities across the groups.

Author(s)

Russell Almond

See Also

stackedBars,compareBars

Examples

data(ACED)

marginTab(ACED.scores[1,], c("H","M","L"), ACED.skillNames, reverse = TRUE,
stem="p",sep="")

buildMarginTab(ACED.scores, c("H","M","L"), ACED.skillNames[1:4],
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reverse = TRUE,
stem="p",sep="")

buildFactorTab(ACED.scores, ACED.scores$Cond, c("H","M","L"), "sgp",
reverse = TRUE,
stem="p", sep="")

build2FactorTab(ACED.scores, ACED.scores$Seq, ACED.scores$FB,
c("H","M","L"), "sgp",
reverse = TRUE, stem="p",sep="")

buildParentList Builds a list of parents of nodes in a graph

Description

Takes an incidence matrix describing a graph, and an order of the nodes, and builds a list of parents
for each node. If the ord argument is not supplied, the ordering is constructed through maximum
cardinality search (see mcSearch).

Usage

buildParentList(sm, start = colnames(sm)[1], ord = mcSearch(sm, start))

Arguments

sm A logical matrix whose rows and columns correspond to nodes (variables) and
a true value indicates an edge between the variables.

start The name of the first element.

ord A vector of size equal to the number of columns of sm giving the ordering of
nodes.

Details

The sm argument should be an incidence matrix for a graph, with row and column names set to the
names of the nodes/variables.

A node i is a parent of node j if

• aThey are neighbors, that is sm[i,j] == TRUE.

• bThe node i appears before node j in ord, that is ord[i] < ord[j].

The argument start is used only if ord is not supplied, in which case it is passed to mcSearch.

Value

A list with as many elements as there are columns in sm, and whose elements appear in the order
specified by ord. Each element of that list is a character vector giving the names of the parents.
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Author(s)

Russell Almond

References

Almond, R. G. (2010). ‘I can name that Bayesian network in two matrixes.’ International Journal
of Approximate Reasoning. 51, 167-178.

See Also

mcSearch, structMatrix

Examples

data(MathGrades)
MG.struct <- structMatrix(MathGrades$var)

parents <- buildParentList(MG.struct) # Arbitrary start
parentsa <- buildParentList(MG.struct, "Algebra") # Put algebra first.

buildRegressions Creates a series of regressions from a covariance matrix

Description

This function takes a covariance matrix and list of variables and their parents and returns a collec-
tion of regression model parameters for each variable regressed on its parents. This is a compact
representation of a normal graphical model.

Usage

buildRegressions(Sigma, means = 0,
parents = buildParentList(structMatrix(Sigma)))

Arguments

Sigma A covariance matrix among a collection of continuous variables.

means The means of those variables

parents A named list of length equal to ncol(Sigma) whose elements should correspond
to the rows/columns of Sigma. Each element should be a character vector giving
the names of the parents of the given node.
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Details

This function performs one regression for each element of the parents list. The name of the
dependent variable for each regression is given by names(parents) and the independent variables
is given by the values of parents. (The function buildParentList() builds a suitable list of
elements.)

If means is not supplied, then the variables are assumed to be centered, otherwise the given vector
is used as the means.

Value

A list of length equal to parents whose elements are also a list having the following structure

b A vector of slopes for the regression with names equal to the names of the parent
variables. Note that if there are no parents, this will be numeric(0).

a The intercept from the regression.

std The residual standard deviation from the regression.

Author(s)

Russell Almond

References

Almond, R. G. (2010). ‘I can name that Bayesian network in two matrixes.’ International Journal
of Approximate Reasoning. 51, 167-178.

See Also

buildParentList, buildRegressionTables

Examples

data(MathGrades)
pl <- buildParentList(structMatrix(MathGrades$var),"Algebra")
rt <- buildRegressions(MathGrades$var,MathGrades$mean,pl)

buildRegressionTables Builds conditional probability tables from regressions

Description

Takes a description of a normal graphical model as a series of regressions and a description of
the corresponding discrete variables and builds a series of conditional probability tables for the
corresponding Bayesian network.
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Usage

buildRegressionTables(regs, pvecs, mean = 0, std = 1)

Arguments

regs A list with names corresponding to the variables in the model giving a series of
regression coefficients (see Details).

pvecs A list with names corresponding to the variables in the model giving a series of
probability vectors in order from highest state to lowest state (see Details).

mean A vector of means for the continuous variables.

std A vector of standard deviations for the continuous variables.

Details

The regs argument should be a list whose names are the names of the variables. Each element
should have the following fields:

b A vector of slopes for the regression with names equal to the names of the parent variables. Note
that if there are no parents, this should be numeric(0).

a The intercept from the regression.

std The residual standard deviation from the regression.

The function buildRegressions() creates an appropriate list.

The pvecs should be a list whose names are the names of the variables. Each element should be a
named vector of probabilities in order from the Highest to the Lowest state, e.g. c(High=.2,Med=.5,Low=.3).

The values mean and std should either be scalars or vectors of the same length as the number of
elements in regs and pvecs. If vectors, they should have names corresponding to the variable
names. Note that the order of the elements does not need to be the same in all four arguments, but
that the names of all four arguments need to be identical (unless mean or std are given as scalars,
in which case they will be appropriately replicated.)

Value

A list of conditional probability tables whose names correspond to regs. Each conditional prob-
ability table is expressed as a data frame whose columns correspond to either parent variables or
states of the child variable and whose rows correspond to configurations of the parent variable.

Warning

Variables are given from highest to lowest state, for example ‘High’, ‘Medium’, ‘Low’. This is
the order expected by StatShop. Note that pvecToCutpoints expects probability vectors in the
opposite order.

Author(s)

Russell Almond
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References

Almond, R. G. (2010). ‘I can name that Bayesian network in two matrixes.’ International Journal
of Approximate Reasoning. 51, 167-178.

Whittaker, J. (1990). Graphical Models in Applied Multivariate Statistics. Wiley.

See Also

buildRegressions

Examples

data(MathGrades)
pl <- buildParentList(structMatrix(MathGrades$var),"Algebra")
rt <- buildRegressions(MathGrades$var,MathGrades$means,pl)
tabs <- buildRegressionTables(rt, MathGrades$pvecs, MathGrades$means,

sqrt(diag(MathGrades$var)))

calcDDTable Calculates DiBello–Dirichlet model probability and parameter tables

Description

The DiBello–Dirichlet model creates a hyper-Dirichlet prior distribution by interpolating between
an masterProfile and a noviceProfile. This function builds the hyper-Dirichlet parameter table,
or with normalization, the conditional probability table for this distribution type.

Usage

calcDDTable(skillLevels, obsLevels, skillWeights, masterProfile,
noviceProfile = 0.5, rule = "Compensatory")

calcDDFrame(skillLevels, obsLevels, skillWeights, masterProfile,
noviceProfile = 0.5, rule = "Compensatory")

Arguments

skillLevels A list of character vectors giving names of levels for each of the condition vari-
ables.

obsLevels A character vector giving names of levels for the output variables from highest
to lowest. As a special case, can also be a vector of integers.

skillWeights A numeric vector of the same length as skillLevels giving the weight to be
applied to each skill.

masterProfile The Dirichlet prior for “experts” (see Details). Its length should match obsLevels.
noviceProfile The Dirichlet prior for “novices” (see Details). Its length should match obsLevels

or as a special case a scalar quantity gives a uniform prior. Default is uniform
prior with weight 1/2.

rule Function for computing effective theta (see Details).
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Details

Assume for the moment that there are two possible skill profiles: “expert” and “novice”. This
model presumes a conditional probability table for the outcome given skill profile with two rows
each of which is an independent categorical distribution. The natural conjugate prior is an inde-
pendent Dirichlet distribution for each row. The parameters for this distribution are given in the
masterProfile and noviceProfile arguments.

If there is more than one parent variable or if the parent variable has more than one state, the
situation becomes muddier. The “expert” state is obviously the one with all the variables at the
highest levels and the “novice” is the one with all variables at the lowest levels. If we can assign an
integer between 0 and 1 to each of the intermediate states, then we can interpolate between them to
produce Dirichlet priors for each row.

This distribution type uses the DiBello effective theta technique to come up with the interpolation.
Each parent variable state is assigned a ‘theta’ value using the effectiveThetas function to assign
a numeric value to each one. These are then combined using the function rule in the rule argument.
The resulting theta values are then scaled to a range of 0–1. The prior for that row is a weighted
combination of the masterProfile and noviceProfile.

The combination of the individual effective theta values into a joint value for effective theta is done
by the function reference by rule. This should be a function of three arguments: theta — the
vector of effective theta values for each parent, alphas — the vector of discrimination parameters,
and beta — a scalar value giving the difficulty. The initial distribution supplies three functions
appropriate for use with calcDSTable: Compensatory, Conjunctive, and Disjunctive. Note
that the beta argument is effectively ignored because of the later scaling of the output.

Normally obslevel should be a character vector giving state names. However, in the special case
of state names which are integer values, R will “helpfully” convert these to legal variable names
by prepending a letter. This causes other functions which rely on the names() of the result being
the state names to break. As a special case, if the value of obsLevel is of type numeric, then
calcDSFrame() will make sure that the correct values are preserved.

Value

For calcDDTable, a matrix whose rows correspond configurations of the parent variable states
(skillLevels) and whose columns correspond to obsLevels. Each row of the table is the pa-
rameters of a Dirichlet distribution, so the whole matrix is the parameters for a hyper-Dirichlet
distribution. The order of the parent rows is the same as is produced by applying expand.grid to
skillLevels.

For calcDDFrame a data frame with additional columns corresponding to the entries in skillLevels
giving the parent value for each row.

Note

Unlike calcDSTable, there is not a corresponding DiBello-Dirichlet distribution support in Stat-
Shop. This function is used to model the parameters of an unconstrained hyper-Dirichlet distribu-
tion.

This was originally designed for use in Situational Judgment Tests where experts might not agree
on the “key”.

Note: Zeros in the masterProfile indicate responses that a master would never make. They will
result in zero probability of mastery for any response which yields that outcome.
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References

Almond, R.G. and Roberts, R. (Draft) Bayesian Scoring for Situational Judgment Tests. Unpub-
lished white paper.

Almond, R.G., Mislevy, R.J., Steinberg, L.S., Yan, D. and Williamson, D.M. (2015) Bayesian
Networks in Educational Assessment. Springer. Chapter 8.

Almond, R.G., DiBello, L., Jenkins, F., Mislevy, R.J., Senturk, D., Steinberg, L.S. and Yan, D.
(2001) Models for Conditional Probability Tables in Educational Assessment. Artificial Intelligence
and Statistics 2001 Jaakkola and Richardson (eds)., Morgan Kaufmann, 137–143.

See Also

effectiveThetas,Compensatory, calcDNTable, calcDSTable, expand.grid

Examples

skill1l <- c("High","Medium","Low")
skill2l <- c("High","Low")
option5L <- c("A","B","C","D","E")

## Expert responses
eProfile <- c(A=7,B=15,C=3,D=0,E=0)

paramT <- calcDDTable(list(S1=skill1l,S2=skill2l), option5L,
c(S1=2,S2=1), masterProfile=eProfile+0.5)

paramF <- calcDDFrame(list(S1=skill1l,S2=skill2l), option5L,
c(S1=2,S2=1), masterProfile=5*eProfile+0.5,
noviceProfile=2)

calcDNTable Creates the probability table for DiBello–Normal distribution

Description

The calcDNTable function takes a description of input and output variables for a Bayesian network
distribution and a collection of IRT-like parameter (discrimination, difficulty) and calculates a con-
ditional probability table using the DiBello–Normal distribution (see Details). The calcDNFrame
function returns the value as a data frame with labels for the parent states.

Usage

calcDNTable(skillLevels, obsLevels, lnAlphas, beta, std, rule = "Compensatory")
calcDNFrame(skillLevels, obsLevels, lnAlphas, beta, std, rule = "Compensatory")
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Arguments

skillLevels A list of character vectors giving names of levels for each of the condition vari-
ables.

obsLevels A character vector giving names of levels for the output variables from highest
to lowest. Can also be a vector of integers (see Details).

lnAlphas A vector of log slope parameters. Its length should be either 1 or the length of
skillLevels, depending on the choice of rule.

beta A vector of difficulty (-intercept) parameters. Its length should be either 1 or the
length of skillLevels, depending on the choice of rule.

std The log of the residual standard deviation (see Details).

rule Function for computing effective theta (see Details).

Details

The DiBello–Normal distribution (Almond et al, 2015) is a variant of the DiBello–Samejima distri-
bution (Almond et al, 2001) for creating conditional probability tables for Bayesian networks which
uses a regression-like (probit) link function in place of Samejima’s graded response link function.
The basic procedure unfolds in three steps.

1. Each level of each input variable is assigned an “effective theta” value — a normal value to be
used in calculations.

2. For each possible skill profile (combination of states of the parent variables) the effective
thetas are combined using a combination function. This produces an “effective theta” for that
skill profile.

3. Taking the effective theta value as the mean, the probability that the examinee will fall into
each category.

The parent (conditioning) variables are described by the skillLevels argument which should pro-
vide for each parent variable in order the names of the states ranked from highest to lowest value.
These are calculated through the function effectiveThetas which gives equally spaced points on
the probability curve. Note that for the DiBello-Normal distribution, Step 1 and Step 3 are inverses
of each other (except for rounding error).

The combination of the individual effective theta values into a joint value for effective theta is
done by the function reference by rule. This should be a function of three arguments: theta
— the vector of effective theta values for each parent, alphas — the vector of discrimination
parameters, and beta — a scalar value giving the difficulty. The initial distribution supplies five
functions appropriate for use with calcDSTable: Compensatory, Conjunctive, and Disjunctive,
OffsetConjunctive, and OffsetDisjunctive. The last two have a slightly different parameter-
ization: alpha is assumed to be a scalar and betas parameter is vector valued. Note that the dis-
crimination and difficulty parameters are built into the structure function and not the probit curve.

The effective theta values are converted to probabilities by assuming that the categories for the
consequence variable (obsLevels) are generated by taking equal probability divisions of a standard
normal random variable. However, a person with a given pattern of condition variables is drawn
from a population with mean at effective theta and standard deviation of exp(std). The returned
numbers are the probabilities of being in each category.
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Normally obslevel should be a character vector giving state names. However, in the special case
of state names which are integer values, R will “helpfully” convert these to legal variable names
by prepending a letter. This causes other functions which rely on the names() of the result being
the state names to break. As a special case, if the value of obsLevel is of type numeric, then
calcDNFrame() will make sure that the correct values are preserved.

Value

For calcDNTable, a matrix whose rows correspond configurations of the parent variable states
(skillLevels) and whose columns correspond to obsLevels. Each row of the table is a probability
distribution, so the whole matrix is a conditional probability table. The order of the parent rows is
the same as is produced by applying expand.grid to skillLevels.

For calcDNFrame a data frame with additional columns corresponding to the entries in skillLevels
giving the parent value for each row.

Note

This distribution class was developed primarily for modeling relationships among proficiency vari-
ables. For models for observables, see calcDSTable.

Author(s)

Russell Almond

References

Almond, R.G., Mislevy, R.J., Steinberg, L.S., Yan, D. and Williamson, D.M. (2015) Bayesian
Networks in Educational Assessment. Springer. Chapter 8.

Almond, R.G., DiBello, L., Jenkins, F., Mislevy, R.J., Senturk, D., Steinberg, L.S. and Yan, D.
(2001) Models for Conditional Probability Tables in Educational Assessment. Artificial Intelligence
and Statistics 2001 Jaakkola and Richardson (eds)., Morgan Kaufmann, 137–143.

See Also

effectiveThetas,Compensatory, OffsetConjunctive,eThetaFrame, calcDSTable, calcDNllike,
calcDPCTable, expand.grid

Examples

## Set up variables
skill1l <- c("High","Medium","Low")
skill2l <- c("High","Medium","Low","LowerYet")
skill3l <- c("Advanced","Proficient","Basic","Developing")

cptSkill3 <- calcDNTable(list(S1=skill1l,S2=skill2l),skill3l,
log(c(S1=1,S2=.75)),1.0,log(0.5),
rule="Compensatory")

cpfSkill3 <- calcDNFrame(list(S1=skill1l,S2=skill2l),skill3l,
log(c(S1=1,S2=.75)),1.0,log(0.5),
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rule="Compensatory")

calcDPCTable Creates the probability table for the discrete partial credit model

Description

The calcDPCTable function takes a description of input and output variables for a Bayesian net-
work distribution and a collection of IRT-like parameter (discrimination, difficulty) and calcu-
lates a conditional probability table using the discrete partial credit distribution (see Details). The
calcDPCFrame function returns the value as a data frame with labels for the parent states.

Usage

calcDPCTable(skillLevels, obsLevels, lnAlphas, betas,
rules = "Compensatory", link="partialCredit",
linkScale=NULL, Q=TRUE,
tvals=lapply(skillLevels,
function (sl) effectiveThetas(length(sl))))

calcDPCFrame(skillLevels, obsLevels, lnAlphas, betas,
rules = "Compensatory", link="partialCredit",
linkScale=NULL, Q=TRUE,
tvals=lapply(skillLevels,
function (sl) effectiveThetas(length(sl))))

Arguments

skillLevels A list of character vectors giving names of levels for each of the condition vari-
ables.

obsLevels A character vector giving names of levels for the output variables from highest
to lowest. As a special case, can also be a vector of integers.

lnAlphas A list of vectors of log slope parameters. Its length should be 1 or length(obsLevels)-1.
The required length of the individual component vectors depends on the choice
of rule (and is usually either 1 or the length of skillLevels).

betas A list of vectors of difficulty (-intercept) parameters. Its length should be 1
or length(obsLevels)-1. The required length of the individual component
vectors depends on the choice of rule (and is usually either 1 or the length of
skillLevels).

rules A list of functions for computing effective theta (see Details). Its length should
be length(obsLevels)-1 or 1 (implying that the same rule is applied for every
gap.)

link The function that converts a table of effective thetas to probabilities

linkScale An optional scale parameter for the link function. This is only used with certain
choices of link function.
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Q This should be a Q matrix indicating which parent variables are relevant for
which state transitions. It should be a number of states minus one by number of
parents logical matrix. As a special case, if all variable are used for all levels,
then it can be a scalar value.

tvals A list of the same length as skillLevels. Each element should be a numeric
vector values on the theta (logistic) scale corresponding to the levels for that
parent variable. The default spaces them equally according to the normal distri-
bution (see effectiveThetas).

Details

The discrete graded response model is a generalization of the DiBello–Samejima mechanism for
creating conditional probability tables for Bayesian network models using IRT-like parameters
(calcDSTable). The basic procedure unfolds in three steps.

1. Each level of each input variable is assigned an “effective theta” value — a normal value to be
used in calculations.

2. For each possible skill profile (combination of states of the parent variables) the effective
thetas are combined using a one of the rule functions. This produces an “effective theta” for
that skill profile.

3. The effective theta table is input into the link function to produce a probability distribution
over the states of the outcome variables.

The parent (conditioning) variables are described by the skillLevels argument which should pro-
vide for each parent variable in order the names of the states ranked from highest to lowest value.
The default implementation uses the function effectiveThetas to calculate equally spaced points
on the normal curve. This can be overridden by supplying a tvals argument. This should be a list
of the same length as skillLevels with each element having the same length as the corresponding
element of skillLevels.

The tvals (either default or user supplied) are used to create a table of rows with values θ1, . . . , θK ,
corresponding to all possible combinations of the parent variables (using expand.grid).

Let X be the child variable of the distribution, and assume that it can take on M possible states
labeled x1 through xM in increasing order. (Note: that calcDPCTable assumes variable states are
ordered the other direction: from highest to lowest.) For each state but the lowest state (the last
one in the input order) defines a combination rule Zm(θ1, . . . , θK ; alphas, betas). Applying these
functions to the rows of the table produces a table of effective thetas for each configuration of the
parent variables and each child state except for the lowest. (The metaphor is this theta represents
the “ability level” required to reach that output state.)

Note that the Zm(·)s do not need to have the same parameters or even the same functional form.
The argument rules should contain a list of the names of the combination functions, the first one
corresponding to ZM (·), and so forth in descending order. As a special case, if rules has only one
element, than it is used for all of the transitions. Similarly, the lnAlphas and betas should also
be lists of the parameters of the combination functions corresponding to the transitions between the
levels. The betas[[m]] represent difficulties (negative intercepts) and the exp(lnAlphas[[m]])
represent slopes for the transition to level m (following the highest to lowest order). Again if these
lists have length one, the same value is used for all transitions.

The length of the elements of lnAlphas and betas is determined by the specific choice of combina-
tion function. The functions Compensatory, Conjunctive, and Disjunctive all assume that there
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will be one lnAlpha for each parent variable, but a single beta. The functions OffsetConjunctive,
and OffsetDisjunctive both assume that there will be one beta for each parent variable, but a
single lnAlpha.

The code link function is then applied to the table of effective theta values to produce a conditional
probability distribution. Two link functions are currently supported: partialCredit is based on
the generalized partial credit model (Muraki, 1992), gradedResponse is a modified version of the
graded response model (Samejima, 1969). (The modification corrects for problems when the curves
cross.) A third planned link function is based on a normal error model, this will require the extra
linkScale parameter.

The Q matrix is used in situations where some of the parent variables are not relevant for one or more
parent transitions. If parent k is relevant for the transition between state m+1 and m (remember that
states are coded from highest to lowest) then Q[m,k] should be TRUE. In particular, eTheta[,Q[m,]]
is passed to the combination rule, not all of theta. If there are false entries in Q the corresponding
sets of alphas and betas need to have the correct length. Generally speaking, Q matrixes with FALSE
entries are not appropriate with the gradedResponse link. As a special case if Q=TRUE, then all
parent variables are used for all state transitions.

Normally obslevel should be a character vector giving state names. However, in the special case
of state names which are integer values, R will “helpfully” convert these to legal variable names
by prepending a letter. This causes other functions which rely on the names() of the result being
the state names to break. As a special case, if the value of obsLevel is of type numeric, then
calcDSFrame() will make sure that the correct values are preserved.

Value

For calcDPCTable, a matrix whose rows correspond configurations of the parent variable states
(skillLevels) and whose columns correspond to obsLevels. Each row of the table is a probability
distribution, so the whole matrix is a conditional probability table. The order of the parent rows is
the same as is produced by applying expand.grid to skillLevels.

For calcDPCFrame a data frame with additional columns corresponding to the entries in skillLevels
giving the parent value for each row.

Note

The framework set up by this function is completely expandable. The link and the elements of
rules can be any value that is suitable for the first argument of do.call.

Elements of rules are called with the expression do.call(rules[[kk]],list(thetas,exp(lnAlphas[[kk]]),betas[[kk]]))
where thetas is the matrix of effective theta values produced in the first step of the algorithm, and
the return function should be a vector of effective thetas, one for each row of thetas.

The link function is called with the expression do.call(link,list(et,linkScale,obsLevels))
where et is the matrix of effective thetas produced in the second step. It should return a conditional
probability table with the same number of rows and one more column than et. All of the rows
should sum to 1.0.

Author(s)

Russell Almond
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See Also

effectiveThetas,Compensatory, OffsetConjunctive,eThetaFrame, calcDNTable, calcDSTable,
expand.grid, gradedResponse, partialCredit

Examples

## Set up variables
skill1l <- c("High","Medium","Low")
skill2l <- c("High","Medium","Low","LowerYet")
correctL <- c("Correct","Incorrect")
pcreditL <- c("Full","Partial","None")
gradeL <- c("A","B","C","D","E")

## Simple binary model, these three should be the same.
cptCorrect <- calcDPCTable(list(S1=skill1l,S2=skill2l),correctL,

log(c(S1=1,S2=.75)),1.0,rule="Compensatory",
link="partialCredit")

cptCorrect2 <- calcDPCTable(list(S1=skill1l,S2=skill2l),correctL,
log(c(S1=1,S2=.75)),1.0,rule="Compensatory",
link="gradedResponse")

cptCorrect1 <- calcDSTable(list(S1=skill1l,S2=skill2l),correctL,
log(c(S1=1,S2=.75)),1.0,rule="Compensatory")

stopifnot (all (abs(cptCorrect2-cptCorrect1) <.001))
stopifnot (all (abs(cptCorrect-cptCorrect1) <.001))

## Conjunctive uses multiple betas, not multiple alphas.
cptConj <- calcDPCTable(list(S1=skill1l,S2=skill2l),correctL,

log(1),c(S1=0.5,S2=.7),rule="OffsetConjunctive")

## Test for no parent case
cptTheta <- calcDPCTable(list(),skill1l,numeric(),0,rule="Compensatory",

link="normalLink",linkScale=.5)
cpfTheta <- calcDPCFrame(list(),skill1l,numeric(),0,rule="Compensatory",

link="normalLink",linkScale=.5)

## Simple model, Skill 1 needed for step 1, Skill 2 for Step 2.
cptPC1 <- calcDPCFrame(list(S1=skill1l,S2=skill2l),pcreditL,
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lnAlphas=log(1),
betas=list(full=c(S1=0,S2=999),partial=c(S2=999,S2=0)),
rule="OffsetDisjunctive")

##Variant using Q-matrix
cptPC1a <- calcDPCTable(list(S1=skill1l,S2=skill2l),pcreditL,

lnAlphas=log(1),
betas=list(full=c(S1=0),partial=c(S2=0)),
Q=matrix(c(TRUE,FALSE,FALSE,TRUE),2,2),
rule="OffsetDisjunctive")

stopifnot(all(abs(as.vector(numericPart(cptPC1))-as.vector(cptPC1a))<.0001))

## Complex model, different rules for different levels
cptPC2 <- calcDPCTable(list(S1=skill1l,S2=skill2l),pcreditL,

list(full=log(1),partial=log(c(S1=1,S2=.75))),
betas=list(full=c(0,999),partial=1.0),
rule=list("OffsetDisjunctive","Compensatory"))

## Graded Response Model, typically uses different difficulties
cptGraded <- calcDPCTable(list(S1=skill1l),gradeL,

log(1),betas=list(A=2,B=1,C=0,D=-1),
rule="Compensatory",link="gradedResponse")

## Partial credit link is somewhat different
cptPC5 <- calcDPCTable(list(S1=skill1l),gradeL,

log(1),betas=list(A=2,B=1,C=0,D=-1),
rule="Compensatory",link="partialCredit")

cptPC5a <- calcDPCTable(list(S1=skill1l),gradeL,
log(1),betas=1,
rule="Compensatory",link="partialCredit")

## Need to be careful when using different slopes (or non-increasing
## difficulties) with graded response link as curves may cross.

cptCross <- calcDPCTable(list(S1=skill1l),pcreditL,
log(1),betas=list(full=-1,partial=1),
rule="Compensatory",link="gradedResponse")

stopifnot (all(abs(cptCross[,"Partial"])<.001))

calcDSllike Calculates the log-likelihood for data from a DiBello–Samejima (Nor-
mal) distribution

Description

These functions take data which represent draws from a categorical data with the given DiBello–
Samejima distribution and returns the log-likelihood of the given data.
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Usage

calcDSllike(data, parents, skillLevels, child, obsLevels,
lnAlphas, beta, dinc = 0, rule = "Compensatory")

calcDNllike(data, parents, skillLevels, child, obsLevels,
lnAlphas, beta, std, rule = "Compensatory")

Arguments

data A data frame whose columns contain variables corresponding to parent and
child.

parents A vector of names for the columns in data corresponding to the parent variables.

child The name of the child variable, should refer to a column in data.

skillLevels A list of character vectors giving names of levels for each of the condition vari-
ables.

obsLevels A character vector giving names of levels for the output variables from highest
to lowest.

lnAlphas A vector of log slope parameters. Its length should be either 1 or the length of
skillLevels, depending on the choice of rule.

beta A vector of difficulty (-intercept) parameters. Its length should be either 1 or the
length of skillLevels, depending on the choice of rule.

dinc Vector of difficulty increment parameters (see calcDSTable).

rule Function for computing effective theta (see calcDSTable).

std The log of the residual standard deviation (see Details).

Details

This function assumes that the observed data are independent draws from a Bayesian network.
This function calculates the log-likelihood of a single conditional probability table. First, it cal-
culates a table of counts corresponding states of the parent and child variables using the func-
tion dataTable. Next it calculates the conditional probability for each cell using the function
calcDSTable or calcDNTable.

It then calculates the log-likelihood as the sum of count(cell) ∗ log(Pr(cell)) where this value is
set to zero if count(cell) is zero (this allows cells with zero probability as long as the count is also
zero).

Value

A real giving the log-likelihood of the observed data.

Note

This function is primarily about testing the log likelihood calculations used internally in StatShop.

Author(s)

Russell Almond
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References

http://comet.research.ets.org/~ralmond/StatShop

See Also

dataTable, calcDSTable, Compensatory,OffsetConjunctive, eThetaFrame, calcDNTable

Examples

skill1l <- c("High","Medium","Low")
skill3l <- c("High","Better","Medium","Worse","Low")
correctL <- c("Correct","Incorrect")

x <- read.csv(paste(library(help="CPTtools")$path,"testFiles",
"randomPinned100.csv", sep=.Platform$file.sep),

header=FALSE, as.is=TRUE,
col.names = c("Skill1", "Skill2", "Skill3",

"Comp.Correct", "Comp.Grade",
"Conj.Correct", "Conj.Grade",
"Cor.Correct", "Cor.Grade",
"Dis.Correct", "Dis.Grade",
"Inhib.Correct", "Inhib.Grade"
))

x[,"Skill1"] <- ordered(x[,"Skill1"],skill1l)
x[,"Skill3"] <- ordered(x[,"Skill3"],skill3l)
x[,"Comp.Correct"] <- ordered(x[,"Comp.Correct"],correctL)

like <- calcDSllike(x,c("Skill1","Skill3"),
list(Skill1=skill1l, Skill3=skill3l),
"Comp.Correct", correctL,
log(c(0.45,-0.4)),-1.9,rule="Compensatory")

calcDSTable Creates the probability table for DiBello–Samejima distribution

Description

The calcDSTable function takes a description of input and output variables for a Bayesian network
distribution and a collection of IRT-like parameter (discrimination, difficulty) and calculates a con-
ditional probability table using the DiBello-Samejima distribution (see Details). The calcDSFrame
function returns the value as a data frame with labels for the parent states.

http://comet.research.ets.org/~ralmond/StatShop
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Usage

calcDSTable(skillLevels, obsLevels, lnAlphas, beta, dinc = 0,
rule = "Compensatory")

calcDSFrame(skillLevels, obsLevels, lnAlphas, beta, dinc = 0,
rule = "Compensatory")

Arguments

skillLevels A list of character vectors giving names of levels for each of the condition vari-
ables.

obsLevels A character vector giving names of levels for the output variables from highest
to lowest. As a special case, can also be a vector of integers.

lnAlphas A vector of log slope parameters. Its length should be either 1 or the length of
skillLevels, depending on the choice of rule.

beta A vector of difficulty (-intercept) parameters. Its length should be either 1 or the
length of skillLevels, depending on the choice of rule.

dinc Vector of difficulty increment parameters (see Details).

rule Function for computing effective theta (see Details).

Details

The DiBello–Samejima model is a mechanism for creating conditional probability tables for Bayesian
network models using IRT-like parameters. The basic procedure unfolds in three steps.

1. Each level of each input variable is assigned an “effective theta” value — a normal value to be
used in calculations.

2. For each possible skill profile (combination of states of the parent variables) the effective
thetas are combined using a combination function. This produces an “effective theta” for that
skill profile.

3. The effective theta is input into Samejima’s graded-response model to produce a probability
distribution over the states of the outcome variables.

The parent (conditioning) variables are described by the skillLevels argument which should
provide for each parent variable in order the names of the states ranked from highest to low-
est value. The original method (Almond et al., 2001) used equally spaced points on the interval
[−1, 1] for the effective thetas of the parent variables. The current implementation uses the function
effectiveThetas to calculate equally spaced points on the normal curve.

The combination of the individual effective theta values into a joint value for effective theta is
done by the function reference by rule. This should be a function of three arguments: theta
— the vector of effective theta values for each parent, alphas — the vector of discrimination
parameters, and beta — a scalar value giving the difficulty. The initial distribution supplies five
functions appropriate for use with calcDSTable: Compensatory, Conjunctive, and Disjunctive,
OffsetConjunctive, and OffsetDisjunctive. The last two have a slightly different parameter-
ization: alpha is assumed to be a scalar and betas parameter is vector valued. Note that the
discrimination and difficulty parameters are built into the structure function and not the IRT curve.
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The Samejima graded response link function describes a series of curves:

Pm(θ) = Pr(X >= x−m|θ) = logit−1(θ − dm)

for m > 1, where D = 1.7 (a scale factor to make the logistic curve match more closely with the
probit curve). The probability for any given category is then the difference between two adjacent
logistic curves. Note that because a difficulty parameter was included in the structure function, we
have the further constraint that

∑
dm = 0.

To remove the parameter restriction we work with the difference between the parameters: dm −
dm−1. The value of d2 is set at -sum(dinc)/2 to center the d values. Thus the dinc parameter
(which is required only if length(obsLevels)>2) should be of length length(obsLevels)-2.
The first value is the difference between the d values for the two highest states, and so forth.

Normally obslevel should be a character vector giving state names. However, in the special case
of state names which are integer values, R will “helpfully” convert these to legal variable names
by prepending a letter. This causes other functions which rely on the names() of the result being
the state names to break. As a special case, if the value of obsLevel is of type numeric, then
calcDSFrame() will make sure that the correct values are preserved.

Value

For calcDSTable, a matrix whose rows correspond configurations of the parent variable states
(skillLevels) and whose columns correspond to obsLevels. Each row of the table is a probability
distribution, so the whole matrix is a conditional probability table. The order of the parent rows is
the same as is produced by applying expand.grid to skillLevels.

For calcDSFrame a data frame with additional columns corresponding to the entries in skillLevels
giving the parent value for each row.

Note

This distribution class is not suitable for modeling relationship among proficiency variable, primar-
ily because the normal mapping used in the effective theta calculation and the Samejima graded
response models are not inverses. For those model, the function calcDNTable, which uses a probit
link function, is recommended instead.

Author(s)

Russell Almond

References

Almond, R.G., Mislevy, R.J., Steinberg, L.S., Williamson, D.M. and Yan, D. (2015) Bayesian
Networks in Educational Assessment. Springer. Chapter 8.

Almond, R.G., DiBello, L., Jenkins, F., Mislevy, R.J., Senturk, D., Steinberg, L.S. and Yan, D.
(2001) Models for Conditional Probability Tables in Educational Assessment. Artificial Intelligence
and Statistics 2001 Jaakkola and Richardson (eds)., Morgan Kaufmann, 137–143.

Samejima, F. (1969) Estimation of latent ability using a response pattern of graded scores. Psy-
chometrika Monograph No. 17, 34, (No. 4, Part 2).
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See Also

effectiveThetas,Compensatory, OffsetConjunctive,eThetaFrame, calcDNTable, calcDSllike,
calcDPCTable, expand.grid

Examples

## Set up variables
skill1l <- c("High","Medium","Low")
skill2l <- c("High","Medium","Low","LowerYet")
correctL <- c("Correct","Incorrect")
gradeL <- c("A","B","C","D","E")

cptCorrect <- calcDSTable(list(S1=skill1l,S2=skill2l),correctL,
log(c(S1=1,S2=.75)),1.0,rule="Conjunctive")

cpfCorrect <- calcDSFrame(list(S1=skill1l,S2=skill2l),correctL,
log(c(S1=1,S2=.75)),1.0,rule="Conjunctive")

cptGraded <- calcDSTable(list(S1=skill1l),gradeL, 0.0, 0.0, dinc=c(.3,.4,.3))

calcNoisyAndTable Calculate the conditional probability table for a Noisy-And or Noisy-
Min distribution

Description

Calculates the conditional probability table for a noisy-and distribution. This follows a logical
model where all inputs must be true for the output to be true; however, some "noise" is allowed that
produces random deviations from the pure logic. The noisy-min is a generalization in which all
variables are ordered, and the weakest of the parent variables drives the conditional probabilities of
the child variable.

Usage

calcNoisyAndTable(skillLevels, obsLevels = c("True", "False"),
bypass = rep(0, length(skillLevels)), noSlip=1,
thresholds = sapply(skillLevels, function(states) states[1]))

calcNoisyAndFrame(skillLevels, obsLevels = c("True", "False"),
bypass = rep(0, length(skillLevels)), noSlip=1,
thresholds = sapply(skillLevels, function(states) states[1]))
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Arguments

skillLevels A list of character vectors giving names of levels for each of the condition vari-
ables.

obsLevels A character vector giving names of levels for the output variables from highest
to lowest. As a special case, can also be a vector of integers. Its length should
be 2, and the first value is considered to be logically equivalent to "true".

noSlip A scalar value between 0 and 1. This represents the probability that the output
will be true when all of the inputs are true (e.g., 1 - the probability that an
examinee will make a careless error).

bypass A vector of the same length as skillLevels. For each parent variable, this
represents the probability that the process will act as if that input condition is
met, even if it is not met.

thresholds If the input variables have more than two states, values that are equal to or higher
than this threshold are considered true. It is assumed that the states of the vari-
ables are ordered from highest to lowest.

Details

The noisy-and distribution assumes that both the input and output variables are binary. Basically,
the output should be true if all of the inputs are true. Let Sk = 1 if the kth input is true, and let rk
be the bypass parameter corresponding to the kth input variable. (If the Sk’s represent a skill, then
rk represents the probability that an examinee who lacks that skill will bypass the need for that skill
in solving the problem.) Then the probability of the true state for the output variable will be:

Pr(X = True|S) = r0
∏
k

r1−Sk

k ,

where r0 (the noSlip parameter) is the probability that the output will be true even when all of the
inputs are true.

It is assumed that all variables are ordered from highest to lowest state, so that the first state cor-
responds to "true" the others to false. If the input variable has more than two states, then it can
be reduced to a binary variable by using the threshold argument. Any values which are equal to
or higher than the threshold for that variable are assumed to be true. (In this case, higher means
closer to the the beginning of the list of possible values.)

The noisy-min is a generalization

Value

For calcNoisyAndTable, a matrix whose rows correspond configurations of the parent variable
states (skillLevels) and whose columns correspond to obsLevels. Each row of the table is a
probability distribution, so the whole matrix is a conditional probability table. The order of the
parent rows is the same as is produced by applying expand.grid to skillLevels.

For calcNoisyAndFrame a data frame with additional columns corresponding to the entries in
skillLevels giving the parent value for each row.
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Note

This is related to the DINA and NIDA models, but uses a slightly different parameterization. In
particular, if the noSlip parameter is omitted, it is a noisy input deterministic and-gate (NIDA), and
if the bypass parameters are omitted, it is similar to a deterministic input noisy and-gate (DINA),
except is lacks a guessing parameter.

Author(s)

Russell Almond
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Diez, F. J. (1993) Parameter adjustment in Bayes networks. The generalized noisy OR-gate. In
Heckerman and Mamdani (eds) Uncertainty in Artificial Intelligence 93. Morgan Kaufmann. 99–
105.

Srinivas, S. (1993) A generalization of the Noisy-Or model, the generalized noisy OR-gate. In
Heckerman and Mamdani (eds) Uncertainty in Artificial Intelligence 93. Morgan Kaufmann. 208–
215.

See Also

calcDSTable, calcDNTable, calcDPCTable, expand.grid, calcNoisyOrTable

Examples

## Logical and table
and <- calcNoisyAndFrame(list(c("True","False"),c("True","False")),

c("Right","Wrong"))
stopifnot (all(and$Right==c(1,0,0,0)))

## DINA, logical-and except that is allows for a small chance of slipping.
dina <- calcNoisyAndFrame(list(c("True","False"),c("True","False")),

noSlip=.9)
stopifnot (all(abs(dina$Right-c(.9,0,0,0))<.0001))

##NIDA, logical-and except that inputs can randomly be bypassed
nida <- calcNoisyAndFrame(list(c("True","False"),c("True","False")),

bypass=c(.3,.4))
stopifnot (all(abs(nida$Right-c(1,.3,.4,.12))<.0001))

##Full Noisy And distribution
noisyAnd <- calcNoisyAndFrame(list(c("True","False"),c("True","False")),

noSlip=.9,bypass=c(.3,.4))
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stopifnot (all(abs(noisyAnd$Right-c(1,.3,.4,.12)*.9)<.0001))

thresh <- calcNoisyAndFrame(list(c("H","M","L"),c("H","M","L")),
c("Right","Wrong"),
threshold=c("M","H"))

stopifnot (all(thresh$Right==c(1,1,0, 0,0,0, 0,0,0)))

calcNoisyOrTable Calculate the conditional probability table for a Noisy-Or distribution

Description

Calculates the conditional probability table for a noisy-and distribution. This follows a logical
model where at least one inputs must be true for the output to be true; however, some "noise" is
allowed that produces random deviations from the pure logic.

Usage

calcNoisyOrTable(skillLevels, obsLevels = c("True", "False"),
suppression = rep(0, length(skillLevels)), noGuess = 1,
thresholds = sapply(skillLevels, function(states) states[1]))

calcNoisyOrFrame(skillLevels, obsLevels = c("True", "False"),
suppression = rep(0, length(skillLevels)), noGuess = 1,
thresholds = sapply(skillLevels, function(states) states[1]))

Arguments

skillLevels A list of character vectors giving names of levels for each of the condition vari-
ables.

obsLevels A character vector giving names of levels for the output variables from highest
to lowest. As a special case, can also be a vector of integers. Its length should
be 2, and the first value is considered to be logically equivalent to "true".

suppression A vector of the same length as skillLevels. For each parent variable, this
represents the probability that the process will act as if that input condition is
not met, even if it is met.

noGuess A scalar value between 0 and 1. This represents the probability that the the
output will be false even when all of the inputs are false (e.g., 1-guessing prob-
ability).

thresholds If the input variables have more than two states, values that are equal to or higher
than this threshold are considered true. It is assumed that the states of the vari-
ables are ordered from highest to lowest.
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Details

The noisy-or distribution assumes that both the input and output variables are binary. Basically, the
output should be true if any of the inputs are true. Let Sk = 1 if the kth input is true, and let qk be
the suppression parameter corresponding to the kth input variable. (If the Sk’s represent a skill,
then qk represents the probability that an examinee who has that skill will fail to correctly apply it.)
Then the probability of the true state for the output variable will be:

Pr(X = True|S) = 1− q0
∏
k

q1−Sk

k ,

where q0 (the noGuess parameter) is the probability that the output will be false even when all of
the inputs are false.

It is assumed that all variables are ordered from highest to lowest state, so that the first state cor-
responds to "true" the others to false. If the input variable has more than two states, then it can
be reduced to a binary variable by using the threshold argument. Any values which are equal to
or higher than the threshold for that variable are assumed to be true. (In this case, higher means
closer to the the beginning of the list of possible values.)

Value

For calcNoisyOrTable, a matrix whose rows correspond configurations of the parent variable
states (skillLevels) and whose columns correspond to obsLevels. Each row of the table is a
probability distribution, so the whole matrix is a conditional probability table. The order of the
parent rows is the same as is produced by applying expand.grid to skillLevels.

For calcNoisyOrFrame a data frame with additional columns corresponding to the entries in skillLevels
giving the parent value for each row.

Note

This is related to the DINO and NIDO models, but uses a slightly different parameterization. In
particular, if the noSlip parameter is omitted, it is a noisy input deterministic and-gate (NIDO), and
if the bypass parameters are omitted, it is similar to a deterministic input noisy and-gate (DINO),
except is lacks a slip parameter.

Author(s)

Russell Almond

References

Almond, R.G., Mislevy, R.J., Steinberg, L.S., Yan, D. and Williamson, D.M. (2015) Bayesian
Networks in Educational Assessment. Springer. Chapter 8.

Pearl, J. (1988) Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann.

Diez, F. J. (1993) Parameter adjustment in Bayes networks. The generalized noisy OR-gate. In
Heckerman and Mamdani (eds) Uncertainty in Artificial Intelligence 93. Morgan Kaufmann. 99–
105.
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Srinivas, S. (1993) A generalization of the Noisy-Or model, the generalized noisy OR-gate. In
Heckerman and Mamdani (eds) Uncertainty in Artificial Intelligence 93. Morgan Kaufmann. 208–
215.

See Also

calcDSTable, calcDNTable, calcDPCTable, expand.grid, calcNoisyOrTable

Examples

## Logical or table
or <- calcNoisyOrFrame(list(c("True","False"),c("True","False")),

c("Right","Wrong"))
stopifnot (all(or$Right==c(1,1,1,0)))

## DINO, logical-or except that is allows for a small chance of slipping.
dino <- calcNoisyOrFrame(list(c("True","False"),c("True","False")),

noGuess=.9)
stopifnot (all(abs(dino$True-c(1.0,1.0,1.0,.1))<.0001))

##NIDO, logical-or except that inputs can randomly be bypassed
nido <- calcNoisyOrFrame(list(c("True","False"),c("True","False")),

suppression=c(.3,.4))
stopifnot (all(abs(nido$True-c(.88,.6,.7,0))<.0001))

##Full Noisy Or distribution
noisyOr <- calcNoisyOrFrame(list(c("True","False"),c("True","False")),

noGuess=.9,suppression=c(.3,.4))

stopifnot (all(abs(noisyOr$False-c(.12,.4,.3,1)*.9)<.0001))

thresh <- calcNoisyOrFrame(list(c("H","M","L"),c("H","M","L")),
c("Right","Wrong"),
threshold=c("M","H"))

stopifnot (all(thresh$Right==c(1,1,1, 1,1,0, 1,1,0)))

colorspread Produces an ordered palate of colours with the same hue.

Description

This takes a colour specification, and produces an ordered series of colours by manipulating the
saturate (and possibly value) of the color, leaving the hue constant. This produces a colour palate
suitable for plotting ordered factors, which looks good on a colour display, but also reproduces well
on a grayscale printer (or for persons with limited colour perception).
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Usage

colorspread(col, steps, maxsat = FALSE, rampval = FALSE)

Arguments

col A color in any format suitable as input to col2rgb.

steps A integer describing the number of colors to create.

maxsat A logical value. If true, the final color in the series will have saturation 1, instead
of whatever is appropriate for the input.

rampval A logical value. If true, the value as well as the saturation of the color is ramped.

Details

The colour is converted to a RGB value using col2rgb and then to an HSV value using rgb2hsv.
The saturation is then scaled into steps equal intervals. If requested, the value is scaled as well.

Value

A character vectors of length steps giving the colour palate from lowest to highest intensity. This
is suitable to passing to the col argument of most graphics functions.

Note

Many of the built-in colours come with 4 intensity variants are meant to work well together. In some
cases an expression like paste("firebrick",1:4,sep="") may work better than colorspread. To
see the built-in colours, use the colors function.

Author(s)

Russell Almond

See Also

compareBars, link{stackedBars}

Examples

barplot(rep(1,4),col=colorspread("slategray",4))
barplot(rep(1,4),col=colorspread("slategray",4,maxsat=TRUE))
barplot(rep(1,4),col=colorspread("violetred",4))
barplot(rep(1,4),col=colorspread("violetred",4,rampval=TRUE))
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compareBars Produces comparison stacked bar charts for two sets of groups

Description

This produces set of stacked bar charts grouped for comparison between two groups. For example,
if suppose that there is a set of probabilities over a collection of proficiency variables measures both
before and after obtaining a certain piece of evidence. The compareBars function would produce
stacked bar charts which compare the prior and posterior probabilities for each variable.

Usage

compareBars(data1, data2, profindex,
groupNames = c(deparse(data1), deparse(data2)), ...,
ylim = c(min(offsets) - 0.25, max(1 + offsets)),
cex.names = par("cex.axis"), digits = 2, legend.loc = c(0,1),
legend.cex = par("cex"), col = par("col"), col1 = NULL,
col2 = NULL, main = NULL, sub = NULL, xlab = NULL,
ylab = NULL, rotlab = FALSE)

compareBars2(data1, data2, profindex,
groupNames=c("Prior","Post"), error.bars=2, scale=100,
err.col="gray20", ..., ylim = NULL)

Arguments

data1 Data set with first (prior) values

data2 Data set with second (posterior) values

profindex Index of one of the proficiency levels which will be used as the baseline for the
stacked bar charts.

groupNames Names of the groups represented by data1 and data2 respectively.

... Other arguments to barplot.

ylim Default limits for Y axis.

cex.names Character magnification for names.

digits Number of digits for overlaid numeric variables.

legend.loc Location for legend, see legend.

legend.cex Character magnification for legend.

col The normal graphics col parameter (see par, passed through to other graphics
operators using .... Is also the default for col1 and col2 if those values are not
supplied.

col1 Color scale for the first data set. This should be a vector of colors equal to the
number of groups.
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col2 Color scale for the second data set. This should be a vector of colors equal to
the number of groups.

main Character scalar giving main title (see title).

sub Character scalar giving sub title (see title).

xlab Character scalar giving x-axis label (see title).

ylab Character scalar giving x-axis label (see title).

rotlab If TRUE labels are rotated 90 degrees.

error.bars The number of standard errors for error bars.

err.col The color for error bars.

scale Scales data as probabilities (scale=1) or percentages (scale=100).

Note

The function compareBars2 is a somewhat experimental extension to compareBars which adds
error bars to the posterior. The result is not entirely satisfactory, and this function may change with
future releases.

Author(s)

Russell Almond

References

Almond, R. G., Shute, V. J., Underwood, J. S., and Zapata-Rivera, J.-D (2009). Bayesian Networks:
A Teacher’s View. International Journal of Approximate Reasoning. 50, 450-460.

See Also

stackedBars, colorspread, buildFactorTab, barplot

Examples

margins.prior <- data.frame (
Trouble=c(Novice=.19,Semester1=.24,Semester2=.28,Semseter3=.20,Semester4=.09),
NDK=c(Novice=.01,Semester1=.09,Semester2=.35,Semseter3=.41,Semester4=.14),
Model=c(Novice=.19,Semester1=.28,Semester2=.31,Semseter3=.18,Semester4=.04)

)

margins.post <- data.frame(
Trouble=c(Novice=.03,Semester1=.15,Semester2=.39,Semseter3=.32,Semester4=.11),
NDK=c(Novice=.00,Semester1=.03,Semester2=.28,Semseter3=.52,Semester4=.17),
Model=c(Novice=.10,Semester1=.25,Semester2=.37,Semseter3=.23,Semester4=.05))

foo <-
compareBars(margins.prior,margins.post,3,c("Prior","Post"),

main="Margins before/after Medium Trouble Shooting Task",
sub="Observables: cfgCor=Medium, logCor=High, logEff=Medium",
legend.loc = "topright",
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cex.names=.75, col1=hsv(h=.1,s=.2*1:5-.1,alpha=1),
col2=hsv(h=.6,s=.2*1:5-.1,alpha=1))

compareBars2(margins.prior,25*margins.post,3,c("Prior","Post"),
main="Margins before/after Medium Trouble Shooting Task",
sub="Observables: cfgCor=Medium, logCor=High, logEff=Medium",
legend.loc = "topright",
cex.names=.75, col1=hsv(h=.1,s=.2*1:5-.1,alpha=1),
col2=hsv(h=.6,s=.2*1:5-.1,alpha=1))

Compensatory DiBello–Samejima combination function

Description

These functions take a vector of “effective theta” values for a collection of parent variables and
calculates the effective theta value for the child variable according to the named rule. Used in
calculating DiBello–Samejima and DiBello–Normal probability tables. These all have one slope
parameter (alpha) per parent variable.

Usage

Compensatory(theta, alphas, beta)
Conjunctive(theta, alphas, beta)
Disjunctive(theta, alphas, beta)

Arguments

theta A matrix of effective theta values whose columns correspond to parent variables
and whose rows correspond to possible skill profiles.

alphas A vector of discrimination parameters in the same order as the columns of
theta. (Note these function expect discrimination parameters and not log dis-
crimination parameters as used in calcDSTable.)

beta A difficulty (-intercept) parameter.

Details

For Compensatory, the combination function for each row is:

(alphas[1] ∗ theta[1] + ...+ alphas[K] ∗ theta[K])/sqrt(K)− beta

where K is the number of parents. (The
√
K is a variance stabilization parameter.)

For Conjunctive, the combination function for each row is:

min(alphas[1] ∗ theta[1], ..., alphas[K] ∗ theta[K])− beta
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For Disjunctive, the combination function for each row is:

max(alphas[1] ∗ theta[1], ..., alphas[K] ∗ theta[K])− beta

Value

A vector of normal deviates corresponding to the effective theta value. Length is the number of
rows of thetas.

Note

These functions expect the unlogged discrimination parameters, while calcDSTable expect the log
of the discrimination parameters. The rationale is that log discrimination is bound away from zero,
and hence a more natural space for MCMC algorithms. However, it is poor programming design,
as it is liable to catch the unwary.

These functions are meant to be used as structure functions in the DiBello–Samejima and DiBello–
Normal models. Other structure functions are possible and can be excepted by those functions as
long as they have the same signature as these functions.

Author(s)

Russell Almond

References

Almond, R.G., Mislevy, R.J., Steinberg, L.S., Yan, D. and Williamson, D.M. (2015) Bayesian
Networks in Educational Assessment. Springer. Chapter 8.

Almond, R.G., DiBello, L., Jenkins, F., Mislevy, R.J., Senturk, D., Steinberg, L.S. and Yan, D.
(2001) Models for Conditional Probability Tables in Educational Assessment. Artificial Intelligence
and Statistics 2001 Jaakkola and Richardson (eds)., Morgan Kaufmann, 137–143.

See Also

effectiveThetas,calcDSTable, calcDNTable, calcDPCTable, OffsetConjunctive, eThetaFrame

Examples

thetas <- expand.grid(list(S1=(3:1 -2), S2 = (3:1 -2)))
Compensatory(thetas, c(S1=1.25,S2=.75), 0.33)
Conjunctive(thetas, c(S1=1.25,S2=.75), 0.33)
Disjunctive(thetas, c(S1=1.25,S2=.75), 0.33)

skill <- c("High","Medium","Low")
eThetaFrame(list(S1=skill,S2=skill), c(S1=1.25,S2=.75), 0.33, "Compensatory")
eThetaFrame(list(S1=skill,S2=skill), c(S1=1.25,S2=.75), 0.33, "Conjunctive")
eThetaFrame(list(S1=skill,S2=skill), c(S1=1.25,S2=.75), 0.33, "Disjunctive")
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CPA Representation of a conditional probability table as an array.

Description

A conditional probability table for a node can be represented as a array with the first p dimensions
representing the parent variables and the last dimension representing the states of the node. Given a
set of values for the parent variables, the values in the last dimension contain the conditional prob-
abilities corresponding conditional probabilities. A CPA is a special array object which represents
a conditional probability table.

Usage

is.CPA(x)
as.CPA(x)

Arguments

x Object to be tested or coerced into a CPA.

Details

One way to store a conditional probability table is as an array in which the first p dimensions
represent the parent variables, and the p + 1 dimension represents the child variable. Here is an
example with two parents variables, A and B, and a single child variable, C:

, , C=c1

b1 b2 b3
a1 0.07 0.23 0.30
a2 0.12 0.25 0.31
a3 0.17 0.27 0.32
a4 0.20 0.29 0.33

, , C=c2

b1 b2 b3
a1 0.93 0.77 0.70
a2 0.88 0.75 0.69
a3 0.83 0.73 0.68
a4 0.80 0.71 0.67

[Because R stores (and prints) arrays in column-major order, the last value (in this case tables) is
the one that sums to 1.]

The CPA class is a subclass of the array class (formally, it is class c("CPA","array")). The CPA



CPA 49

class interprets the dimnames of the array in terms of the conditional probability table. The first p
values of names(dimnames(x)) are the input names of the edges (see NodeInputNames() or the
variable names (or the parent variable, see NodeParents(), if the input names were not specified),
and the last value is the name of the child variable. Each of the elements of dimnames(x) should
give the state names (see NodeStates()) for the respective value. In particular, the conversion
function as.CPF() relies on the existence of this meta-data, and as.CPA() will raise a warning if
an array without the appropriate dimnames is supplied.

Although the intended interpretation is that of a conditional probability table, the normalization
constraint is not enforced. Thus a CPA object could be used to store likelihoods, probability poten-
tials, contingency table counts, or other similarly shaped objects. The function normalize scales
the values of a CPA so that the normalization constraint is enforced.

The function as.CPA() is designed to convert between CPFs (that is, conditional probability tables
stored as data frames) and CPAs. It assumes that the factors variables in the data frame represent
the parent variables, and the numeric values represent the states of the child variable. It also as-
sumes that the names of the numeric columns are of the form varname.state , and attempts to derive
variable and state names from that.

If the argument to as.CPA(x) is an array, then it assumes that the dimnames(x) and names(dimnames(x))
are set to the states of the variables and the names of the variables respectively. A warning is issued
if the names are missing.

Value

The function is.CPA() returns a logical value indicating whether or not the is(x,"CPA") is true.

The function as.CPA returns an object of class c("CPA","array"), which is essentially an array
with the dimnames set to reflect the variable names and states.

Note

The obvious way to print a CPA would be to always show the child variable as the rows in the
individual tables, with the parents corresponding to rows and tables. R, however, internally stores
arrays in column-major order, and hence the rows in the printed tables always correspond to the
second dimension. A new print method for CPA would be nice.

This is an S3 object, as it just an array with a special interpretation.

Author(s)

Russell Almond

See Also

NodeProbs(), Extract.NeticaNode, CPF, normalize()

Examples

arf <- data.frame(A=rep(c("a1","a2"),each=3),
B=rep(c("b1","b2","b3"),2),
C.c1=1:6, C.c2=7:12, C.c3=13:18, C.c4=19:24)

arfa <- as.CPA(arf)



50 CPF

stopifnot(
is.CPA(arfa),
all(dim(arfa)==c(2,3,4))

)

arr1 <- array(1:24,c(4,3,2),
dimnames=list(A=c("a1","a2","a3","a4"),B=c("b1","b2","b3"),

C=c("c1","c2")))
arr1a <- as.CPF(arr1)
stopifnot(

is.CPA(as.CPA(arr1a))
)

## Not run:
as.CPF(node[])

## End(Not run)

CPF Representation of a conditional probability table as a data frame.

Description

A conditional probability table for a node can be represented as a data frame with a number of
factor variables representing the parent variables and the remaining numeric values representing
the conditional probabilities of the states of the nodes given the parent configuration. Each row
represents one configuration and the corresponding conditional probabilities. A CPF is a special
data.frame object which represents a conditional probability table.

Usage

is.CPF(x)
as.CPF(x)

Arguments

x Object to be tested or coerced into a CPF.

Details

One way to store a conditional probability table is a table in which the first several columns indicate
the states of the parent variables, and the last several columns indicate probabilities for several child
variables. Consider the following example:

A B C.c1 C.c2 C.c3 C.c4
[1,] a1 b1 0.03 0.17 0.33 0.47
[2,] a2 b1 0.05 0.18 0.32 0.45
[3,] a1 b2 0.06 0.19 0.31 0.44
[4,] a2 b2 0.08 0.19 0.31 0.42
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[5,] a1 b3 0.09 0.20 0.30 0.41
[6,] a2 b3 0.10 0.20 0.30 0.40

In this case the first two columns correspond to parent variables A and B. The variable A has two
possible states and the variable B has three. The child variable is C and it has for possible states.
The numbers in each row give the conditional probabilities for those states give the state of the child
variables.

The class CPF is a subclass of data.frame (formally, it is class c("CPF","data.frame")). Al-
though the intended interpretation is that of a conditional probability table, the normalization con-
straint is not enforced. Thus a CPF object could be used to store likelihoods, probability potentials,
contingency table counts, or other similarly shaped objects. The function normalize scales the
numeric values of CPF so that each row is normalized.

The [ method for a NeticaNode returns a CPF (if the node is not deterministic).

The function as.CPF() is designed to convert between CPAs (that is, conditional probability ta-
bles stored as arrays) and CPFs. In particular, as.CPF is designed to work with the output of
NodeProbs() or a similarly formatted array. It assumes that names(dimnames(x)) are the names
of the variables, and dimnames(x) is a list of character vectors giving the names of the states of the
variables. (See CPA for details.) This general method should work with any numeric array for which
both dimnames(x) and names(dimnames(x)) are specified.

The argument x of as.CPF() could also be a data frame, in which case it is permuted so that the
factor variable are first and the class tag "CDF" is added to its class.

Value

The function is.CPF() returns a logical value indicating whether or not the is(x,"CDF") is true.

The function as.CPF returns an object of class c("CPF","data.frame"), which is essentially a
data frame with the first couple of columns representing the parent variables, and the remaining
columns representing the states of the child variable.

Note

The parent variable list is created with a call expand.grid(dimnames(x)[1:(p-1)]). This pro-
duces conditional probability tables where the first parent variable varies fastest. The Netica GUI
displays tables in which the last parent variable varies fastest.

Note, this is an S3 class, as it is basically a data.frame with special structure.

Author(s)

Russell Almond

See Also

NodeProbs(), Extract.NeticaNode, CPA, normalize()
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Examples

arf <- data.frame(A=rep(c("a1","a2"),each=3),
B=rep(c("b1","b2","b3"),2),
C.c1=1:6, C.c2=7:12, C.c3=13:18, C.c4=19:24)

arf <- as.CPF(arf)
stopifnot(is.CPF(arf))

arr <- array(1:24,c(2,3,4),
dimnames=list(A=c("a1","a2"),B=c("b1","b2","b3"),

C=c("c1","c2","c3","c4")))
arrf <- as.CPF(arr)
stopifnot(

is.CPF(arrf),
all(levels(arrf$A)==c("a1","a2")),
all(levels(arrf$B)==c("b1","b2","b3")),
nrow(arrf)==6, ncol(arrf)==6

)

##Warning, this is not the same as arf, rows are permuted.
as.CPF(as.CPA(arf))

## Not run:
as.CPF(NodeProbs(node))

## End(Not run)

dataTable Constructs a table of counts from a set of discrete observations.

Description

This constructs a table of counts in a special format useful for conditional probability tables. The
rows correspond to configurations of the parent variables and the columns correspond to possible
states of the child variables.

Usage

dataTable(data, parents, child, childStates)

Arguments

data A data frame whose columns contain variables corresponding to parent and
child.

parents A vector of names for the columns in data corresponding to the parent variables.

child The name of the child variable, should refer to a column in data.

childStates A character vector giving names of levels for the output variables from highest
to lowest.
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Details

Apply the function table to generate a table of counts for the indicated variables (subsetting the ta-
ble if necessary). Then reformats this into a matrix whose columns correspond to the child variable.

Value

A matrix whose columns correspond to childStates and whose rows correspond to the possible
combinations of parents.

Author(s)

Russell Almond

See Also

table, calcDSllike

Examples

skill1l <- c("High","Medium","Low")
skill3l <- c("High","Better","Medium","Worse","Low")
correctL <- c("Correct","Incorrect")

x <- read.csv(paste(library(help="CPTtools")$path,
"testFiles", "randomPinned100.csv",
sep=.Platform$file.sep),

header=FALSE, as.is=TRUE,
col.names = c("Skill1", "Skill2", "Skill3",

"Comp.Correct", "Comp.Grade",
"Conj.Correct", "Conj.Grade",
"Cor.Correct", "Cor.Grade",
"Dis.Correct", "Dis.Grade",
"Inhib.Correct", "Inhib.Grade"
))

x[,"Skill1"] <- ordered(x[,"Skill1"],skill1l)
x[,"Skill3"] <- ordered(x[,"Skill3"],skill3l)
x[,"Comp.Correct"] <- ordered(x[,"Comp.Correct"],correctL)

tab <- dataTable(x, c("Skill1","Skill3"),"Comp.Correct",correctL)
data.frame(expand.grid(list(Skill1=skill1l,Skill3=skill3l)),tab)
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effectiveThetas Assigns effective theta levels for categorical variable

Description

Calculates a vector of normal quantiles corresponding to effective theta levels for a categorical
variable for use in a DiBello-Samejima distribution.

Usage

effectiveThetas(nlevels)

Arguments

nlevels Integer giving the number of levels of the categorical variable.

Details

The DiBello–Samejima models map levels of categorical values into effective “theta” values, or
corresponding continuous values. These can then be input into IRT equations to calculate cell
probabilities.

The default algorithm works by assuming that the categories are created by cutting the normal
distribution into equal probability intervals. The value returned for each interval is the midpoint
(wrt the normal measure) of that interval.

Value

A vector of normal quantiles of length nlevels.

Author(s)

Russell Almond

References

Almond, R.G., Mislevy, R.J., Steinberg, L.S., Yan, D. and Williamson, D.M. (2015). Bayesian
Networks in Educational Assessment. Springer. Chapter 8.

Examples

effectiveThetas(5)
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eThetaFrame Constructs a data frame showing the effective thetas for each parent
combination.

Description

This evaluates the combination function but not the link function of of an effective theta distribution.
It produces a table of effective thetas one for each configuration of the parent values according to
the combination function given in the model argument.

Usage

eThetaFrame(skillLevels, lnAlphas, beta, rule = "Compensatory")

Arguments

skillLevels A list of character vectors giving names of levels for each of the condition vari-
ables.

lnAlphas A vector of log slope parameters. Its length should be either 1 or the length of
skillLevels, depending on the choice of rule.

beta A vector of difficulty (-intercept) parameters. Its length should be either 1 or the
length of skillLevels, depending on the choice of rule.

rule Function for computing effective theta (see Details).

Details

The DiBello framework for creating for creating conditional probability tables for Bayesian network
models using IRT-like parameters unfolds in three steps.

1. Each level of each input variable is assigned an “effective theta” value — a normal value to be
used in calculations.

2. For each possible skill profile (combination of states of the parent variables) the effective
thetas are combined using a combination function. This produces an “effective theta” for that
skill profile. The function rule determines the rule for combination.

3. The effective theta is input into a link function (e.g., Samejima’s graded-response function) to
produce a probability distribution over the states of the outcome variables.

This function applies the first two of those steps and returns a data frame with the original skill
levels and the effective thetas.

The parent (conditioning) variables are described by the skillLevels argument which should
provide for each parent variable in order the names of the states ranked from highest to low-
est value. The original method (Almond et al., 2001) used equally spaced points on the interval
[−1, 1] for the effective thetas of the parent variables. The current implementation uses the function
effectiveThetas to calculate equally spaced points on the normal curve.

The combination of the individual effective theta values into a joint value for effective theta is
done by the function reference by rule. This should be a function of three arguments: theta
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— the vector of effective theta values for each parent, alphas — the vector of discrimination
parameters, and beta — a scalar value giving the difficulty. The initial distribution supplies five
functions appropriate for use with calcDSTable: Compensatory, Conjunctive, and Disjunctive,
OffsetConjunctive, and OffsetDisjunctive. The last two have a slightly different parameter-
ization: alpha is assumed to be a scalar and betas parameter is vector valued. Note that the
discrimination and difficulty parameters are built into the structure function and not the IRT curve.

Value

For a data frame with one column for each parent variable and an additional column for the effective
theta values. The number of rows is the product of the number of states in each of the components
of the skillLevels argument.

Author(s)

Russell Almond

References

Almond, R.G., Mislevy, R.J., Steinberg, L.S., Yan, D. and Williamson, D.M. (2015). Bayesian
Networks in Educational Assessment. Springer. Chapter 8.

Almond, R.G., DiBello, L., Jenkins, F., Mislevy, R.J., Senturk, D., Steinberg, L.S. and Yan, D.
(2001) Models for Conditional Probability Tables in Educational Assessment. Artificial Intelligence
and Statistics 2001 Jaakkola and Richardson (eds)., Morgan Kaufmann, 137–143.

See Also

effectiveThetas,Compensatory, OffsetConjunctive,calcDNTable, calcDSTable, calcDPCTable,
expand.grid

Examples

skill <- c("High","Medium","Low")
eThetaFrame(list(S1=skill,S2=skill), log(c(S1=1.25,S2=.75)), 0.33,

"Compensatory")
eThetaFrame(list(S1=skill,S2=skill), log(c(S1=1.25,S2=.75)), 0.33,

"Conjunctive")
eThetaFrame(list(S1=skill,S2=skill), log(c(S1=1.25,S2=.75)), 0.33,

"Disjunctive")
eThetaFrame(list(S1=skill,S2=skill), log(1.0), c(S1=0.25,S2=-0.25),

"OffsetConjunctive")
eThetaFrame(list(S1=skill,S2=skill), log(1.0), c(S1=0.25,S2=-0.25),

"OffsetDisjunctive")
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getTableStates Gets meta data about a conditional probability table.

Description

Fetches the names of the parent variables, or the names of the states of the child variable from a
conditional probability table.

Usage

getTableStates(table)

Arguments

table A conditional probability table expressed as a data frame.

Details

These functions assume that table is a conditional probability table (or a set of hyper-Dirichlet
parameters) which is shaped like a data frame. Columns in the data frame which are factors are
assumed to hold values for the parent (conditioning) variables. Columns in the data frame which
are numeric are assumed to correspond to possible states of the child (dependent) variable.

Value

For getTableParents(), a character vector giving the names of the parent variables (factor columns).

For getTableStates(), a character vector giving the names of the child states (numeric columns).

Note

StatShop usually assumes that the states are ordered from the highest to the lowest possible values,
for example ‘High’, ‘Med’, ‘Low’.

Author(s)

Russell Almond

See Also

rescaleTable
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Examples

#conditional table
X2.ptf <- data.frame(Theta=c("Expert","Novice"),

correct=c(4,2),
incorrect=c(2,4))

#Unconditional table
Theta.ptf <- data.frame(Expert=3,Novice=3)

stopifnot(
identical(getTableStates(X2.ptf), c("correct","incorrect")),
identical(getTableStates(Theta.ptf), c("Expert","Novice")),
identical(getTableParents(X2.ptf), "Theta"),
identical(getTableParents(Theta.ptf), character(0))
)

gradedResponse A link function based on Samejima’s graded response

Description

This function converts a matrix of effective theta values into a conditional probability table by
applying Samejima’s graded response model to each row of the table.

Usage

gradedResponse(et, linkScale = NULL, obsLevels = NULL)

Arguments

et A matrix of effective theta values. There should be one row in this table for each
configuration of the parent variables of the conditional probability table and one
column for each state of the child variables except for the last.

linkScale Unused. For compatibility with other link functions.

obsLevels A character vector giving the names of the child variable states. If supplied, it
should have length ncol(et)+1.

Details

This function takes care of the third step in the algorithm of calcDPCTable. Its input is a matrix of
effective theta values (comparable to the last column of the output of eThetaFrame), one column
for each of the child variable states (obsLevels) except for the last one. Each row represents a
different configuration of the parent variables. The output is the conditional probability table.

Let X be the child variable of the distribution, and assume that it can take on M possible states
labeled x1 through xM in increasing order. The graded response model defines a set of functions
Zm(θk) for m = 2, . . . ,M , where

Pr(X >= xm|θk) = logit−1 −D ∗ Zm(θk)
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The conditional probabilities for each child state given the effective thetas for the parent variables
is then given by

Pr(X == xm|θk)
∑m

r=1 Zr(θk)∑M
r=1 Zr(θk)

The K ×M − 1 matrix et is the values of Zm(θk). This function then performs the rest of the
generalized partial credit model. This is a generalization of Muraki (1992), because the functions
Zm(·) are not restricted to be the same functional form for all m.

If supplied obsLevels is used for the column names.

Value

A matrix with one more column than et giving the conditional probabilities for each configuration
of the parent variables (which correspond to the rows).

Note

The linkScale parameter is unused. It is for compatibility with other link function choices.

Author(s)

Russell Almond

References

Almond, R.G., Mislevy, R.J., Steinberg, L.S., Yan, D. and Williamson, D.M. (2015). Bayesian
Networks in Educational Assessment. Springer. Chapter 8.

Muraki, E. (1992). A Generalized Partial Credit Model: Application of an EM Algorithm. Applied
Psychological Measurement, 16, 159-176. DOI: 10.1177/014662169201600206

Samejima, F. (1969) Estimation of latent ability using a response pattern of graded scores. Psy-
chometrika Monograph No. 17, 34, (No. 4, Part 2).

I also have planned a manuscript that describes these functions in more detail.

See Also

Other Link functions: gradedResponse,normalLink

Functions which directly use the link function: eThetaFrame, calcDPCTable, mapDPC

Earlier version of the graded response link: calcDSTable

Examples

## Set up variables
skill1l <- c("High","Medium","Low")
correctL <- c("Correct","Incorrect")
pcreditL <- c("Full","Partial","None")
gradeL <- c("A","B","C","D","E")

## Get some effective theta values.
et <- effectiveThetas(3)
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gradedResponse(matrix(et,ncol=1),NULL,correctL)

gradedResponse(outer(et,c(Full=1,Partial=-1)),NULL,pcreditL)

gradedResponse(outer(et,c(A=2,B=1,C=0,D=-1)),NULL,gradeL)

isOffsetRule Distinguishes Offset from ordinary rules.

Description

An offset rule is one where there is one intercept (beta) parameter for each parent and there is
a single slope parameters. As opposed to a regression-style rule where there is a different slope
(alpha) for each parent and single intercept. This function distinguishes between the twho types of
rules.

Usage

isOffsetRule(rl)
getOffsetRules()
setOffsetRules(newval)

Arguments

rl A character vector of rule names to test to see if these are offset rules.

newval A character vector of rule names to be considered as offset rules.

Details

The Compensatory rule acts more or less like a regression, with a slope (or discrimination) param-
eter for each parent variable, and a single intercept or difficulty parameter. The Conjunctive and
Disjunctive follow the same pattern. In contrast the OffsetConjunctive rule, has a different
intercept for each parent and a single slope parameter. The OffsetDisjunctive rule follows the
same pattern.

The isOffsetRule() is true if the argument references a function which follows the offset param-
eterization and false if it follow the regression parameterization. Currently it returns true only for
“OffsetConjunctive”, and “OffsetDisjunctive”, but using this test should continue to work if the
number of rules in CPTtools expands.

The expression getOffsetRules() returns the list of currently known offset-style rules. The func-
tion setOffsetRules() allows this list to be manipulated to add a new rule to the list of offset-style
rules.
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Value

The expression isOffsetRule(rl) returns a logical vector of the same length as rl, with each
element TRUE or FALSE depending on whether or the corresponding element of rl is the name of an
offset rule. If rl is not a character vector, then the function returns FALSE.

The expression getOffsetRule() returns the names of the current offset rules.

Note

It makes sense in certain situation to use anonymous function objects as rules, however, it is impos-
sible to test whether or not a function is in the offset rule list. Therefore, it is recommended that
only rule names be used with this function.

One consequence of this rule is that when given a function argument, isOffsetRule returns FALSE.

Author(s)

Russell G. Almond

See Also

Compensatory, OffsetConjunctive,

Examples

stopifnot(
all(isOffsetRule(c("OffsetConjunctive","Conjunctive"))==c(TRUE,FALSE)),
isOffsetRule(OffsetDisjunctive)==TRUE,
all(getOffsetRules() == c("OffsetConjunctive","OffsetDisjunctive"))
)

setOffsetRules(c(getOffsetRules(),"myOffsetRule"))
stopifnot (isOffsetRule("myOffsetRule"))

localDepTest Tests for conditional independence between two variables given a
third

Description

The function ciTest takes a 3-way contingency table and tests for the conditional independence of
the first two variables given the third. The function localDepTest is a wrapper which builds the
table from factor variables. In psychometrics, when the third variable represents a latent proficiency
and the first two item responses, this is sometimes called local independence.
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Usage

localDepTest(obs1, obs2, prof)
ciTest(tab)

Arguments

obs1 A factor variable representing the first observable outcome.

obs2 A factor variable representing the second observable outcome.

prof A factor variable representing the proficiency level, or any variable that is thought
to render obs1 and obs2 independent.

tab A three-way table (see table) where the first two dimensions represent the ob-
servable variables and the third the proficiency variable.

Details

Let 1 and 2 represent obs1 and obs2 respectively and let 3 represent prof. In the case of ciTest,
1, 2 and 3 represent the first second and 3rd dimensions of tab. These function then compare the
undirected model [13][23] (1 and 2 are conditionally independent given 3) to the unrestricted model
[123]. The result is a chi-square statistic comparing the two models, high values of the chi-square
statistic indicate a better fit of the unrestricted model compared to the conditional independence
model.

Note that the Cochran-Mantel-Haenszel statistic (see mantelhaen.test) is similar, but it assumes
that there is no three-way interaction, so it essentially tests [13][23] versus [12][13][23].

Value

A list with three elements:

G2 The chi-square comparison between the two models.

df The degrees of freedom for the test.

p The percentage point for G2 in a central chi-square distribution with df degrees
of freedom, i.e., the p-value.

Author(s)

Russell Almond

References

Bishop, Feinberg and Holland (1975). Discrete Multivariate Analysis: Theory and Practice. MIT
Press.

See Also

buildFactorTab, mantelhaen.test, UCBAdmissions
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Examples

data(UCBAdmissions)
ciTest(UCBAdmissions)

data(ACED)
table(ACED.items$tCommonRatio1a.1,ACED.items$tCommonRatio2a.1,

cut(ACED.items$Correct,3))
localDepTest(ACED.items$tCommonRatio1a.1,ACED.items$tCommonRatio2a.1,

cut(ACED.items$Correct,3))

mapDPC Finds an MAP estimate for a discrete partial credit CPT

Description

This finds a set of parameters for a given discrete partial credit model which produces the best fit
to the first argument. It is assumed that the first argument is a table produced by adding observed
counts to a prior conditional probability table. Thus the result is a maximum a posterior (MAP) es-
timate of the CPT. The parametric structure of the table is given by the rules and link parameters.

Usage

mapDPC(postTable, skillLevels, obsLevels, lnAlphas, betas,
rules = "Compensatory", link = "partialCredit",
linkScale=NULL, Q=TRUE, tvals=lapply(skillLevels,

function (sl) effectiveThetas(length(sl))),
...)

Arguments

postTable A table of cell counts which should have the same structure as the output of
calcDPCTable(skillLevels, obsLevels, lnAlphas, betas, rules, link,
linkScale). As zero counts would cause problems, the prior conditional prob-
ability table is normally added to the counts to make the argument a posterior
counts.

skillLevels A list of character vectors giving names of levels for each of the condition vari-
ables.

obsLevels A character vector giving names of levels for the output variables from highest
to lowest. As a special case, can also be a vector of integers.

lnAlphas A list of vectors of initial values for the log slope parameters. Its length should
be 1 or length(obsLevels)-1. The required length of the individual compo-
nent vectors depends on the choice of rule (and is usually either 1 or the length
of skillLevels).
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betas A list of vectors of initial values for the difficulty (-intercept) parameters. Its
length should be 1 or length(obsLevels)-1. The required length of the indi-
vidual component vectors depends on the choice of rule (and is usually either
1 or the length of skillLevels).

rules A list of functions for computing effective theta (see Details). Its length should
be length(obsLevels)-1 or 1 (implying that the same rule is applied for every
gap.)

link The function that converts a table of effective thetas to probabilities
linkScale Initial values for the optional scale parameter for the link function. This is only

used with certain choices of link function.
Q This should be a Q matrix indicating which parent variables are relevant for

which state transitions. It should be a number of states minus one by number of
parents logical matrix. As a special case, if all variable are used for all levels,
then it can be a scalar value.

tvals A list of the same length as skillLevels. Each element should be a numeric
vector values on the theta (logistic) scale corresponding to the levels for that
parent variable. The default spaces them equally according to the normal distri-
bution (see effectiveThetas).

... Additional arguments passed to the optim function.

Details

The purpose of this function is to try to estimate the values of a discrete partial credit model. The
structure of the model is given by the rules and link arguments: the form of the table produces is
like the output of calcDPCTable(skillLevels, obsLevels, lnAlphas, betas, rules, link, linkScale).
It tries to find the values of lnAlphas and betas (and if used linkScale) parameters which are most
likely to have generated the data in the postTable argument. The lnAlphas, betas and linkScale
arguments provide the initial values for those parameters.
Let pi,j be the value in the ith row and the jth column of the conditional probability table output
from calcDPCTable(skillLevels, obsLevels, lnAlphas, betas, rules, link, linkScale),
and let xi,j be the corresponding elements of postTable. The mapDPC function uses optim to find
the value of the parameters that minimizes the deviance,

−2 ∗
∑
i

∑
j

xi,j log(pi,j).

Value

A list with components:

lnAlphas A vector of the same structure as lnAlphas containing the estimated values.
betas A veto of the same structure as betas containing the estimated values.
linkScale If the linkScale was supplied, the estimated value.
convergence An integer code. 0 indicates successful completion, positive values are various error

codes (see optim).
value The deviance of the fit DPC model.

The list is the output of the optim) function, which has other components in the output. See the
documentation of that function for details.
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Author(s)

Russell Almond

References

Almond, R.G., Mislevy, R.J., Steinberg, L.S., Yan, D. and Williamson, D.M. (2015). Bayesian
Networks in Educational Assessment. Springer. Chapter 8.

Muraki, E. (1992). A Generalized Partial Credit Model: Application of an EM Algorithm. Applied
Psychological Measurement, 16, 159-176. DOI: 10.1177/014662169201600206

Samejima, F. (1969) Estimation of latent ability using a response pattern of graded scores. Psy-
chometrika Monograph No. 17, 34, (No. 4, Part 2).

I also have planned a manuscript that describes these functions in more detail.

See Also

optim, calcDPCTable, Compensatory, OffsetConjunctive, gradedResponse, partialCredit

Examples

pLevels <- list(Skill1=c("High","Med","Low"))
obsLevels <- c("Full","Partial","None")

trueLnAlphas <- list(log(1),log(.25))
trueBetas <- list(2, -.5)

priorLnAlphas <- list(log(.5),log(.5))
priorBetas <- list(1, -1)

truedist <- calcDPCTable(pLevels,obsLevels,trueLnAlphas,trueBetas,
rules="Compensatory",link="partialCredit")

prior <- calcDPCTable(pLevels,obsLevels,priorLnAlphas,priorBetas,
rules="Compensatory",link="partialCredit")

post1 <- prior + round(truedist*1000)

map1 <- mapDPC(post1,pLevels,obsLevels,priorLnAlphas,priorBetas,
rules="Compensatory",link="partialCredit")

if (map1$convergence != 0) {
warning("Optimization did not converge:", map1$message)

}

postLnAlphas <- map1$lnAlphas
postBetas <- map1$betas
fitdist <- calcDPCTable(pLevels,obsLevels,map1$lnAlphas,map1$betas,

rules="Compensatory",link="partialCredit")
## Tolerance for recovery test.
tol <- .01
maxdistdif <- max(abs(fitdist-truedist))
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if (maxdistdif > tol) {
stop("Posterior and True CPT differ, maximum difference ",maxdistdif)

}
if (any(abs(unlist(postLnAlphas)-unlist(trueLnAlphas))>tol)) {

stop("Log(alphas) differ by more than tolerance")
}
if (any(abs(unlist(postBetas)-unlist(trueBetas))>tol)) {
stop("Betas differ by more than tolerance")
}

MathGrades Grades on 5 mathematics tests from Mardia, Kent and Bibby

Description

Summary statistics for a data set consisting of marks on five mathematics exams originally presented
in Mardia, Kent and Bibby (1979). The raw data are not given, but rather the summary statistics
reported in Whittaker (1990) are provided.

Usage

data(MathGrades)

Format

A list consisting of the following components:

varnames Names of the five tests.

means Average score on each test.

var Covariance matrix.

cor Correlation matrix.

icdiag Diagonal of the inverse covariance matrix.

pcor Partial correlation (scaled inverse correlation) matrix.

pvecs A set of marginal distributions for discrete variables corresponding to the five assessments.

Source

Summary statistics reported here are taken from Whittaker (1990).

Original data on 88 students is reported in Mardia, Kent and Bibby (1979).

References

Mardia, K.V. and Kent, J.T. and Bibby, J.M. (1979) Multivariate Analysis. Academic Press.

Whittaker, J. (1990). Graphical Models in Applied Multivariate Statistics. Wiley.
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Examples

data(MathGrades)

##Note: Some of these tests may return false due to machine precision
##issues.
round(scaleMatrix(MathGrades$var),2) == MathGrades$cor
round(diag(solve(MathGrades$cor)),2) == MathGrades$icdiag
round(scaleMatrix(solve(MathGrades$cor)),2) == MathGrades$pcor

mcSearch Orders variables using Maximum Cardinality search

Description

Takes a graph described by an incidence matrix, and creates an ordering of the nodes using maxi-
mum cardinality search (Tarjan and Yannakakis, 1984). A primary application of this method is to
chose an ordering of nodes in an undirected graph to make a corresponding directed graph.

Usage

mcSearch(sm, start = colnames(sm)[1])

Arguments

sm A logical matrix whose rows and columns correspond to nodes (variables) and
a true value indicates an edge between the variables.

start The name of the first element.

Details

The sm argument should be an incidence matrix for a graph, with row and column names set to the
names of the nodes/variables.

The function returns an ordering of the nodes where each node is chosen so that it has a maximum
number of neighbors among those nodes higher in the order.

Ties are broken by chosing the first node in the graph (using the order of the columns) matching the
criteria. One special case is the first node which is always an arbitrary choice. The start argument
can be used to force a particular selection.

Value

A vector of lenght equal to the number of rows whose values correspond to the order of the variable
in the final order.
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Note

If the graph is triangulated, then the ordering produced by mcSearch should be perfect — for each
node in the order, the set of neighbors of that node which preceed it in the ordering is completely
connected. Perfect node orderings are useful in going from undirected to directed graphical rep-
resentations. If we take an undirected graph and a perfect ordering, a define as the parents of an
node all of its neighbors which are previous in the order and define as its children all of the nodes
which are later in the order, then when converting the graph back to the undirected form no addi-
tional “moralization” edges will be required. Thus, this function can be used to generate orders for
buildParentList.

Graphical models generally exist only over triangulated graphs. Therefore, and incidence matrix
which has been produced through the use of the structMatrix function should alway work. Tar-
jan and Yannakakis (1984) prove that the maximum cardinality search always produces a perfect
ordering when the graph is triangulated.

When the graph is not triangulated, the maximum cardinality search algorithm can be used to gen-
erate “fill-ins” to triangulate the graph. Lauritzen and Spiegelhalter (1988) note this use. While
maximum cardinality search will produce an ordering quickly, the ordering itself has now particular
optimality properties as far as the triangulated graph which it creates (Almond, 1995).

Author(s)

Russell Almond

References

Almond, R.G. (1995). Graphical Belief Modeling. Chapman and Hall.

Lauritzen, S.L. and D.J. Spiegelhalter (1988). Local Computation with Probabilities on Graphical
Structures and their Application to Expert Systems (with discussion). Journal of the Royal Statisti-
cal Society,Series B, 50, 205-247.

Tarjan, R.E. and M. Yannakakis (1984). Simple Linear-Time Algorithms to test Chordality of
Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs. Siam J.
Comput. 13, 566-579.

See Also

structMatrix, buildParentList

Examples

data(MathGrades)
MG.struct <- structMatrix(MathGrades$var)

ord <- mcSearch(MG.struct) # Arbitrary start
orda <- mcSearch(MG.struct, "Algebra") # Put algebra first.

names(sort(orda)) # names of the variables in the chosen order.

# Sort rows and columns of structure matrix by MC order
MG.struct[order(orda), order(orda)]
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mutualInformation Calculates Mutual Information for a two-way table.

Description

Calculates the mutual information for a two-way table of observed counts or a joint probability
distribution. The mutual information is a measure of association between two random variables.

Usage

mutualInformation(table)

Arguments

table A two way table or probability distribution. Possibly the output of the table
command.

Details

This is basically the Kullback-Leibler distance between the joint probability distribution and the
probability distribution created by assuming the marginal distributions are independent. This is
given in the following formula:

I[X;Y ] =
∑
x

∑
yPr(X = x, Y = y) log

Pr(X = x, Y = y)

Pr(X = x) Pr(Y = y)

Author(s)

Russell Almond

References

http://planetmath.org/encyclopedia/MutualInformation.html

Shannon (1948) “A Mathematical Theory of Communication.”

See Also

table

Examples

## UCBAdmissions is a three way table, so we need to
## make it a two way table.
mutualInformation(apply(UCBAdmissions,c(1,2),sum))
apply(UCBAdmissions,3,mutualInformation)
apply(UCBAdmissions,2,mutualInformation)
apply(UCBAdmissions,1,mutualInformation)
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normalLink Link function using a normal regression.

Description

This link function assumes that the effective theta for this distribution defines the mean of a normal
distribution in a generalized regression model. The link scale parameter describes the residual
variance.

Usage

normalLink(et, linkScale = NULL, obsLevels = NULL)

Arguments

et A matrix of effective theta values. There should be one row in this table for each
configuration of the parent variables of the conditional probability table and one
column for each state of the child variables except for the last.

linkScale The residual standard deviation parameter. This value must be supplied and
should be a positive number; the default value of NULL generates an error.

obsLevels An optional character vector giving the names of the child variable states. If
supplied, it should have length ncol(et)+1.

Details

This function takes care of the third step in the algorithm of calcDPCTable. Its input is a matrix of
effective theta values (comparable to the last column of the output of eThetaFrame), one column
for each of the child variable states (obsLevels) except for the last one. Each row represents a
different configuration of the parent variables. The output is the conditional probability table. The
use of this function makes calcDPCTable behave like calcDNTable.

The idea behind this link function was first proposed in Almond (2010), and it is more completely
described in Almond et al. (2015). The motivation comes from assuming that the child variable
is created by taking cuts on an underlying continuous variable. The marginal distribution of this
variable is a standard normal. The conditional distribution is like a regression prediction with the
effective theta from the parent variables (the et argument) as the expected value and the linkScale
parameter as the residual standard deviation.

The calculation works as follows: First cut points are set related to the categories of the child vari-
able. Let m be the number of categories (this should be one more than the number of columns of et)
and the length of obsLevels if that is supplied). Then the cut points are set at cuts <- qnorm(((m - 1):1)/m).

Then for each row of the conditional probability table i, the probability of being in state k is calcu-
lated by pnorm(cuts[k]-et[i, 1])/linkScale) - pnorm(cuts[k-1]-et[i, 1])/linkScale)
with the pnorm expression set to 0 or 1 at the endpoints. Note that only the first column of et is
used in the calculation.
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Value

A matrix with one more column than et giving the conditional probabilities for each configuration
of the parent variables (which correspond to the rows).

Note

The motivation for the normal link function originally came from the observation of odd behavior
when variables given a DiBello-Samejima distribution (that is, using the gradedResponse link
function) were used as parent variables for other variables with a DiBello-Samejima distribution.

One potential reason for the odd behavior was that the graded response link function was not an
inverse of the procedure used to assign the effectiveThetas to the parent variables. Thus, using a
probit link function (normalLink) was thought to be better for parent variables than using a logistic
link function (gradedResponse), at the same time the convention of assigning parent values based
on quantiles of the normal distribution started. This made the normalLink and effectiveThetas
approximate inverses (information is still lost through discritization). Note that in the current imple-
mentation the scale factor of 1.7 has been added to both the partialCredit and gradedResponse
functions to make the logistic function closer to the normal distribution and a better inverse for the
effective theta procedure.

Author(s)

Russell Almond

References

Almond, R. G. (2010). ‘I can name that Bayesian network in two matrixes.’ International Journal
of Approximate Reasoning. 51, 167-178.

Almond, R.G., Mislevy, R.J., Steinberg, L.S., Yan, D. and Williamson, D.M. (2015) Bayesian
Networks in Educational Assessment. Springer. Chapter 8.

See Also

Other link functions: partialCredit, gradedResponse.

Functions which directly use the link function: eThetaFrame, calcDPCTable, mapDPC

Earlier version of the graded response link: calcDNTable

Examples

skill1l <- c("High","Medium","Low")
correctL <- c("Correct","Incorrect")
pcreditL <- c("Full","Partial","None")
gradeL <- c("A","B","C","D","E")

## Get some effective theta values.
et <- effectiveThetas(3)

normalLink(matrix(et,ncol=1),.5,correctL)
normalLink(matrix(et,ncol=1),.3,correctL)
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normalLink(matrix(et,nrow=3,ncol=2),.5,pcreditL)
normalLink(matrix(et,nrow=3,ncol=2),.8,pcreditL)

normalLink(matrix(et,nrow=3,ncol=4),.5,gradeL)
normalLink(matrix(et,nrow=3,ncol=4),.25,gradeL)

numericPart Splits a mixed data frame into a numeric matrix and a factor part.

Description

The function numericPart() converts a data.frame to a matrix, by dropping columns which
contain non-numeric data. The function factorPart grabs the state information by selecting only
columns which are factors.

Usage

numericPart(table)

Arguments

table A data.frame object.

Details

The primary purpose is to split a conditional probability distribution in data frame format (with a
set of factor rows identifying the states of the parent variables) to a table of just the numbers, and a
data frame of just the factors so that they can be tackled separately.

Value

A matrix containing just the numeric columns of the data frame.

Author(s)

Russell Almond

See Also

data.frame, matrix, data.matrix

Examples

name <-c("Shahrazad", "Marguerite")
height <- c(34, 36)
weight <- c(28, 26)
twins <- data.frame(name=I(name),height=height, weight=weight)
numericPart(twins)
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OCP Observable Characteristic Plot

Description

The observable characteristic plot is an analogue of the item characteristic curve for latent class
models. Estimates of the class success probability for each latent is plotted. Reference lines are
added for various groups which are expected to have roughly the same probability of success.

Usage

OCP(x, n, lclabs, pi, pilab = names(pi), lcnames = names(x),
a = 0.5, b = 0.5, reflty = 1, ..., newplot = TRUE,
main = NULL, sub = NULL, xlab = "Latent Classes", ylab = "Probability",
cex = par("cex"), xlim = NULL, ylim = NULL, cex.axis = par("cex.axis"))

OCP2(x, n, lclabs, pi, pilab = names(pi), lcnames = names(x),
set1 = seq(1, length(x)-1, 2), setlabs = c("Set1", "Set2"),
setat = -1, a = 0.5, b = 0.5, reflty = 1, ..., newplot = TRUE,
main = NULL, sub = NULL, xlab = "Latent Classes", ylab = "Probability",
cex = par("cex"), xlim = NULL, ylim = NULL, cex.axis = par("cex.axis"))

Arguments

x Vector of success counts for each latent class.

n Vector of of the same size as x of latent class sizes.

lclabs Character vector of plotting symbols for each latent class

pi Vector of probability estimates for various levels.

pilab Character vector of names for each level.

lcnames Character vector of names for each latent class for axis.

set1 For OCP2, a vector of indexes of the elements of x that form the first set.

setlabs Character vectors of set labels for OCP2.

setat Numeric scalar giving the x-coordinate for set labels.

a The first parameter for beta pseudo-prior, passed to betaci. This should either
be a scalar or the same length as x.

b The second parameter for beta pseudo-prior, passed to betaci. This should
either be a scalar or the same length as n.

reflty Provides the line type (see par(lty)) for reference lines. Should be scalar or
same length as pi.

... Additional graphics parameters passed to plot.window and title.

newplot Logical. If true, a new plotting window is created. Otherwise, information is
added to existing plotting window.

main Character scalar giving main title (see title).
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sub Character scalar giving sub title (see title).

xlab Character scalar giving x-axis label (see title).

ylab Character scalar giving x-axis label (see title).

cex Scalar giving character expansion for plotting symbols (see par(cex)).

xlim Plotting limits for x-axis (see plot.window).

ylim Plotting limits for y-axis (see plot.window).

cex.axis Scalar giving character expansion for latent class names (axis tick labels; cex
values passed to par(axis)).

Details

Most cognitively diagnostic models for assessments assume that students with different patterns of
skills will have different patterns of success and failures. The goal of this plot type is to empirically
check to see if the various groups conform to their expected probability.

The assumption is that the population is divided into a number of latent classes (or groups of
latent classes) and that the class label for each member of the class is known. The latent classes
are partitioned into levels, where each level is assumed to have roughly the same proportion of
success. (This is often c("-","+") for negative and positive skill patterns, but there could be
multiple levels.)

The key idea of the observable characteristic plot is to compare a credibility interval for the success
probability in each latent class, to the modelled success probability given by its level. A beta
credibility interval is computed for each latent class using betaci(x,n,a,b), with the expected
value set at (x + a)/(n + a + b). The plotting symbols given in lclabs are plotted at the mean
(usually, these correspond to the latent class is in), with vertical error bars determined by betaci.
Horizontal reference lines are added at the values given by pi. The idea is that if the error bars cross
the reference line for the appropriate level, then the latent class fits the model, if not it does not.

The variant OCP2 is the same except that the latent classes are further partitioned into two sets, and
the labels for the latent classes for different sets are plotted on different lines. This is particularly
useful for testing whether attributes which are not thought to be relevant to a given problem are
actually irrelevant.

Value

The output of betaci is returned invisibly.

Author(s)

Russell Almond

References

Almond, R.G., Mislevy, R.J., Steinberg, L.S., Williamson, D.M. and Yan, D. (2015) Bayesian
Networks in Educational Assessment. Springer. Chapter 10.

Sinharay, S. and Almond, R.G. (2006). Assessing Fit of Cognitively Diagnostic Models: A case
study. Educational and Psychological Measurement. 67(2), 239–257.
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Sinharay, S., Almond, R. G. and Yan, D. (2004). Assessing fit of models with discrete proficiency
variables in educational assessment. ETS Research Report. http://www.ets.org/research/
researcher/RR-04-07.html

See Also

betaci

Examples

nn <- c(30,15,20,35)
pi <- c("+"=.15,"-"=.85)
grouplabs <- c(rep("-",3),"+")
x <- c("(0,0)"=7,"(0,1)"=4,"(1,0)"=2,"(1,1)"=31)
OCP (x,nn,grouplabs,pi,c("-","+"),ylim=c(0,1), reflty=c(2,4),

main="Data that fit the model")

x1 <- c("(0,0)"=7,"(0,1)"=4,"(1,0)"=11,"(1,1)"=31)
OCP (x1,nn,grouplabs,pi,c("-","+"),ylim=c(0,1), reflty=c(2,4),

main="Data that don't fit the model")

nnn <- c("(0,0,0)"=20,"(0,0,1)"=10,
"(0,1,0)"=10,"(0,1,0)"=5,
"(1,0,0)"=10,"(1,0,1)"=10,
"(1,1,1)"=10,"(1,1,1)"=25)

xx <- c("(0,0,0)"=5,"(0,0,1)"=2,
"(0,1,0)"=2,"(0,1,1)"=2,
"(1,0,0)"=2,"(1,0,1)"=0,
"(1,1,0)"=9,"(1,1,1)"=21)

grouplabs1 <- rep(grouplabs,each=2)

OCP2 (xx,nnn,grouplabs1,pi,c("-","+"),ylim=c(0,1), reflty=c(2,4),
setlabs=c("Low Skill3","High Skill3"),setat=-.8,
main="Data for which Skill 3 is irrelevant")

xx1 <- c("(0,0,0)"=2,"(0,0,1)"=5,
"(0,1,0)"=1,"(0,1,1)"=3,
"(1,0,0)"=0,"(1,0,1)"=2,
"(1,1,0)"=5,"(1,1,1)"=24)

OCP2 (xx1,nnn,grouplabs1,pi,c("-","+"),ylim=c(0,1), reflty=c(2,4),
setlabs=c("Low Skill3","High Skill3"),setat=-.8,
main="Data for which Skill 3 is relevant")

OffsetConjunctive Conjunctive combination function with one difficulty per parent.

http://www.ets.org/research/researcher/RR-04-07.html
http://www.ets.org/research/researcher/RR-04-07.html
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Description

These functions take a vector of “effective theta” values for a collection of parent variables and
calculates the effective theta value for the child variable according to the named rule. Used in cal-
culating DiBello–Samejima and DiBello–Normal probability tables. These versions have a single
slope parameter (alpha) and one difficulty parameter per parent variable.

Usage

OffsetConjunctive(theta, alpha, betas)
OffsetDisjunctive(theta, alpha, betas)

Arguments

theta A matrix of effective theta values whose columns correspond to parent variables
and whose rows correspond to possible skill profiles.

alpha A single common discrimination parameter. (Note these function expect dis-
crimination parameters and not log discrimination parameters as used in calcDSTable.)

betas A vector of difficulty (-intercept) parameters. Its length should be the same as
the number of columns in theta.

Details

For OffsetConjunctive, the combination function for each row is:

alpha ∗min(theta[1]− betas[1], ..., theta[K]− beta[K])

For OffsetDisjunctive, the combination function for each row is:

alpha ∗max(theta[1]− betas[1], ..., theta[K]− beta[K])

Value

A vector of normal deviates corresponding to the effective theta value. Length is the number of
rows of thetas.

Note

These functions expect the unlogged discrimination parameters, while calcDSTable expect the log
of the discrimination parameters. The rationale is that log discrimination is bound away from zero,
and hence a more natural space for MCMC algorithms. However, it is poor programming design,
as it is liable to catch the unwary.

These functions are meant to be used as structure functions in the DiBello–Samejima and DiBello–
Normal models. Other structure functions are possible and can be excepted by those functions as
long as they have the same signature as these functions.

Note that the offset conjunctive and disjunctive model don’t really make much sense in the no parent
case. Use Compensatory instead.
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Author(s)

Russell Almond

References

Almond, R.G., Mislevy, R.J., Steinberg, L.S., Yan, D. and Williamson, D.M. (2015). Bayesian
Networks in Educational Assessment. Springer. Chapter 8.

Almond, R.G., DiBello, L., Jenkins, F., Mislevy, R.J., Senturk, D., Steinberg, L.S. and Yan, D.
(2001) Models for Conditional Probability Tables in Educational Assessment. Artificial Intelligence
and Statistics 2001 Jaakkola and Richardson (eds)., Morgan Kaufmann, 137–143.

See Also

effectiveThetas,calcDSTable, calcDNTable,calcDPCTable, Compensatory, eThetaFrame

Examples

skill <- c("High","Medium","Low")
thetas <- expand.grid(list(S1=(3:1 -2), S2 = (3:1 -2)))
OffsetDisjunctive(thetas, 1.0, c(S1=0.25,S2=-0.25))
OffsetConjunctive(thetas, 1.0, c(S1=0.25,S2=-0.25))
eThetaFrame(list(S1=skill,S2=skill), 1.0, c(S1=0.25,S2=-0.25),

"OffsetConjunctive")
eThetaFrame(list(S1=skill,S2=skill), 1.0, c(S1=0.25,S2=-0.25),

"OffsetDisjunctive")

parseProbVec Parses Probability Vector Strings

Description

This takes a bunch of strings of the form "[High:.3,Med:.5,Low:.2]" and parses it into a vector
c(High=.3,Med=.5,Low=.2).

Usage

parseProbVec(pVec)
parseProbVecRow(splitrow)

Arguments

pVec A string of the form "[High:.3,Med:.5,Low:.2]"

splitrow A collection of strings "High:.3", "Med:.5", "Low:.2".
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Details

StatShop outputs marginal distributions in the format [state0:val0,state1:val1,...]. This func-
tion takes a vector of strings containing probability vectors and parses them, returning a matrix of
the values, with column names given by the names of the states.

The function parseProbVecRow() is an internal function which parses a single row (after it has
been split on the commas).

Value

A matrix containing the values. The rows correspond to the elements of pVec. The columns corre-
spond to the state names.

Author(s)

Russell Almond

References

http://research.ets.org/~ralmond/StatShop/dataFormats.html

See Also

readHistory

Examples

parseProbVec(c(Good = "[High:.8,Med:.15,Low:.05]",
Bad = "[High:.15,Med:.35,Low:.5]",
Ugly = "[High:.01,Med:.09,Low:.9]"))

partialCredit A link function based on the generalized partial credit model

Description

This function converts a matrix of effective theta values into a conditional probability table by
applying the generalized partial credit model to each row of the table.

Usage

partialCredit(et, linkScale = NULL, obsLevels = NULL)

http://research.ets.org/~ralmond/StatShop/dataFormats.html
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Arguments

et A matrix of effective theta values. There should be one row in this table for each
configuration of the parent variables of the conditional probability table and one
column for each state of the child variables except for the last.

linkScale Unused. For compatibility with other link functions.

obsLevels An optional character vector giving the names of the child variable states. If
supplied, it should have length ncol(et)+1.

Details

This function takes care of the third step in the algorithm of calcDPCTable. Its input is a matrix of
effective theta values (comparable to the last column of the output of eThetaFrame), one column
for each of the child variable states (obsLevels) except for the last one. Each row represents a
different configuration of the parent variables. The output is the conditional probability table.

Let X be the child variable of the distribution, and assume that it can take on M possible states
labeled x1 through xM in increasing order. The generalized partial credit model defines a set of
functions Zm(θk) for m = 2, . . . ,M , where

Pr(X >= xm|X >= xm−1, θk) = logit−1 −D ∗ Zm(θk)

The conditional probabilities for each child state is calculated by taking the differences between the
curves.

The K ×M − 1 matrix et is the values of Zm(θk). This function then performs the rest of the
generalized partial credit model. The original Samejima (1969) development assumed that all of the
functions Zm(·) had the same linear form a(θk − bm), with the bm strictly increasing (note that in
CPTtools, the states are ordered from highest to lowest, so that they should be strictly decreasing).
This meant that the curves would never cross. The general notation of calcDPCTable does not
ensure the curves do not cross, which could result in negative probabilities. This function handles
this case by forcing negative probabilities to zero (and adjusting the probabilities for the other state
to be properly normalized).

If supplied obsLevels is used for the column names.

Value

A matrix with one more column than et giving the conditional probabilities for each configuration
of the parent variables (which correspond to the rows).

Note

The development here follows Muraki (1992) rather than Samejima (1969).

The linkScale parameter is unused. It is for compatibility with other link function choices.

Author(s)

Russell Almond
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References

Almond, R.G., Mislevy, R.J., Steinberg, L.S., Yan, D. and Williamson, D.M. (2015). Bayesian
Networks in Educational Assessment. Springer. Chapter 8.

Muraki, E. (1992). A Generalized Partial Credit Model: Application of an EM Algorithm. Applied
Psychological Measurement, 16, 159-176. DOI: 10.1177/014662169201600206

I also have planned a manuscript that describes these functions in more detail.

See Also

Other Link functions: gradedResponse,normalLink

Functions which directly use the link function: eThetaFrame, calcDPCTable, mapDPC

Examples

## Set up variables
skill1l <- c("High","Medium","Low")
correctL <- c("Correct","Incorrect")
pcreditL <- c("Full","Partial","None")
gradeL <- c("A","B","C","D","E")

## Get some effective theta values.
et <- effectiveThetas(3)

partialCredit(matrix(et,ncol=1),NULL,correctL)

partialCredit(outer(et,c(Full=1,Partial=-1)),NULL,pcreditL)

partialCredit(outer(et,c(A=2,B=1,C=0,D=-1)),NULL,gradeL)

proflevelci Produce cumulative sum credibility intervals

Description

Produces credibility intervals for hanging barplots. Assumes that each column represents a sum of
proportions and produces corresponding intervals for the cumulative sums. Values hanging below
and above the reference line are treated separately, and returned values below the reference are
negative.

Usage

proflevelci(data, profindex, limits=list(lower=.025,upper=.975),a=.5, b=.5)



proflevelci 81

Arguments

data A matrix of data values where each column refers to a bar in barplot. The values
should be scaled so that the column sum is the number of individuals in that
group.

profindex The level in the chart which corresponds to the reference (proficiency) line. This
should be a positive integer less than nrow(data).

limits The upper and lower credibility limits.

a Value for the shape1 parameter of the beta prior.

b Value for the shape2 parameter of the beta prior.

Details

For a stacked bar plot, the natural comparisons involve not category probabilities but the sum of the
category probabilities up through the current bar. For hanging bar plots, this should go in both direc-
tions. So for example, if the categories are “Below Basic”, “Basic”, “Proficient”, and “Advanced”,
and the zero line is to be put between “Basic” and “Proficient”, then we need credibility intervals
for Pr(“Basic” or “Below Basic”), Pr(“Basic”), Pr(“Proficient”), Pr(“Proficient” or “Advanced”).

The proflevelci function splits the states up into those above the line and below the line us-
ing profindex. It then generates credibility intervals using betaci for the cumulative sums in
each group. The primary purpose is to create confidence intervals for stacked bar charts (see
compareBars2).

Value

A list of data sets of the same length as the limits argument. Each data set has the same shape as
the data argument and represents a quantile of the data associated with the value in limits. With the
default limits of lower and upper, the result is a list of two elements

lower Gives the lower bounds of the confidence interval.

upper Gives the upper bounds of the confidence interval.

Author(s)

Russell Almond

See Also

betaci, compareBars2

Examples

margins <- data.frame (
Trouble=c(Novice=19,Semester1=24,Semester2=28,Semseter3=20,Semester4=9),
NDK=c(Novice=1,Semester1=9,Semester2=35,Semseter3=41,Semester4=14),
Model=c(Novice=19,Semester1=28,Semester2=31,Semseter3=18,Semester4=4)

)
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proflevelci(margins,3,limits=c(lower=.025,upper=.975))

readHistory Reads a file of histories of marginal distributions.

Description

In running a typical Bayes net engine, as each piece of evidence comes in, updated marginal dis-
tributions for several variables are output. This function reads a such a log, expressed as a comma
separated value file, and creates a data structure suitable for doing weight of evidence analyses.

Usage

readHistory(csvfile)

Arguments

csvfile A name of a CSV file containing StatShop marginal distributions, one per row.
Expects a column named "Item" from which the names are taken and "Result"
which contains the values.

Details

This works with an excerpted log from a StatShop/ACED interaction. In this case the Item column
should contain the name of the item presented at this iteration, possibly with an .xml suffix. The Re-
sults column should contain a probability vector of the form: [High:0.527,Medium:0.447,Low:0.025].
This function parses the CSV file and creates a matrix with rows corresponding to the rows in the
CSV file and values from the probability vectors.

Value

A matrix whose column names are taken from the probability vectors and row names are taken from
the Item field with the .xml suffix removed.

Author(s)

Russell Almond

References

http://research.ets.org/~ralmond/StatShop/dataFormats.html

See Also

parseProbVec, woeHist

http://research.ets.org/~ralmond/StatShop/dataFormats.html
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Examples

## Not run:
allcorrect <- parseProbVec("CorrectSequence.csv")

## End(Not run)

rescaleTable Rescales the numeric part of the table

Description

Takes a table representing a conditional probability distribution or a set of hyper-Dirichlet param-
eters and rescales the numeric part of the table. The function rescaleTable() scales the table by
scaleFactor, the function normalizeTable() scales the function by the sum of the rows, making
the result a conditional probability table.

Usage

rescaleTable(table, scaleFactor)
normalizeTable(table)

Arguments

table A data frame describing a conditional probability table. Assumes that the condi-
tions are expressed as factor variables, and all numeric columns represent states
of the child variable.

scaleFactor A scalar or vector of length equal to the number of rows of table.

Details

For rescaleTable(), every numeric column of table is multiplied by scaleFactor. This can be
used to create a set of hyper-Dirichlet parameters by multiplying a conditional probability table by
the effective sample size.

For normalizeTable(), the scaleFactor is set to be 1/rowSums(table) (excluding the factor
variables) so that the resulting table is a proper conditional probability table.

Value

A data frame of the same shape as table with the numeric entries suitably scaled.

Note

The function scaleTable does a similar rescaling, only it works with a separate ‘Sum’ and ‘Scale’
columns in the table.

Author(s)

Russell Almond
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See Also

getTableStates, scaleTable

Examples

#conditional table
X2.ptf <- data.frame(Theta=c("Expert","Novice"),

correct=c(4,2),
incorrect=c(2,4))

X2.t99 <- rescaleTable(X2.ptf,99/6) #Reweight to effective samples size of 99
X2.t31 <- rescaleTable(X2.ptf,c(3,1)) #Weight expert prior 3 times more than

#novice prior.
X2.dtf <- normalizeTable(X2.ptf)

#Unconditional table
Theta.ptf <- data.frame(Expert=3,Novice=3)
Theta.t100 <- rescaleTable(Theta.ptf,100/6) #Reweight to effective

#sample size of 100
Theta.dtf <- normalizeTable(Theta.ptf)

scaleMatrix Scales a matrix to have a unit diagonal

Description

Creates a correlation matrix from a covariance matrix by scaling rows and columns to have a unit di-
agonal. Also can be used to create a partial correlation matrix from an inverse covariance/correlation
matrix.

Usage

scaleMatrix(X)

Arguments

X A square, positive definite matrix (covariance matrix).

Details

Divides rows and columns by square root of the diagonal elements.

Value

A matrix of the same size and shape as the original with a unit diagonal.
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Author(s)

Russell Almond

Examples

data(MathGrades)

## Create a correlation matrix from a covariance matrix.
round(scaleMatrix(MathGrades$var),2) == MathGrades$cor

## Create a partial correlation matrix from a correlation matrix
round(scaleMatrix(solve(MathGrades$cor)),2) == MathGrades$pcor
##Note: Some of these tests may return false due to machine precision
##issues.

scaleTable Scales a table according to the Sum and Scale column.

Description

Takes a matrix or vector with a Sum and Scale column and rescales it by multiplying each remaining
element by the value of Scale/Sum for that row.

If the last two rows are not named Sum and Scale then it simply returns its argument.

Usage

scaleTable(table)

Arguments

table A matrix or vector in which the last two columns are named "Scale" and "Sum".

Details

The parameters of a Dirichlet distribution can be stored in two ways, one is to have each cell in the
table represent a pseudo count. The other was is to have each row represent a probability vector and
use an additional pseudo sample size (the Scale column). If the probability vector is reported in a
some other metric (say as a percentage or as a fraction of some smaller sample) the the Sum column
is used to store the row sum.

Value

Rescaled table with Sum and Scale columns removed. This makes some attempt to preserve the
type of the table argument as a matrix, row vector or numeric object.
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Note

Used by the function compareDS to compare tables which may be in different formats.

Author(s)

Russell Almond

References

http://research.ets.org/~ralmond/StatShop/dataFormats.html

Examples

c1 <- matrix(c(70,20,10,10,20,70),nrow=2,byrow=TRUE,
dimnames=list(NULL,c("H","M","L")))

s1 <- matrix(c(7,2,1,10,100,1,2,7,10,100),nrow=2,byrow=TRUE,
dimnames=list(NULL,c("H","M","L","Sum","Scale")))

## 1 row matrixes need special handling (c1[1,] is a vector not a matrix)
c1r1 <- matrix(c1[1,],nrow=1,dimnames=list(NULL,c("H","M","L")))
s1r1 <- matrix(s1[1,],nrow=1,dimnames=list(NULL,c("H","M","L","Sum","Scale")))

stopifnot(
identical(c1,scaleTable(s1)),
identical(c1[1,],scaleTable(s1[1,])),
identical(c1r1,scaleTable(s1r1))

)

# This should have no effect when run on matrixes without the Sum and
# Scale column.
stopifnot(

identical(c1,scaleTable(c1)),
identical(c1[1,],scaleTable(c1[1,])),
identical(c1r1,scaleTable(c1r1))

)

stackedBarplot Produces a hanging barplot

Description

This produces a series of stacked bar plots staggered so that the baseline corresponds to a particular
state level. This is primarily designed for producing plots of probability vectors coming out of
Bayes net scoring.

http://research.ets.org/~ralmond/StatShop/dataFormats.html
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Usage

stackedBarplot(height, width = 1, space = 0.2, offset = 0, names.arg = NULL,
legend.text = NULL, horiz = FALSE, density = NULL,
angle = 45, col = NULL, border = par("fg"),
main = NULL, sub = NULL, xlab = NULL, ylab = NULL,
xlim = NULL, ylim = NULL, xpd = TRUE, axis = TRUE,
axisnames = TRUE, cex.axis = par("cex.axis"),
cex.names = par("cex.axis"), newplot = TRUE,
axis.lty = 0, ...)

Arguments

height A matrix giving the heights of the bars. The columns represent bars, and the
rows represent groups within each bar.

width A numeric vector of length equal to the number of columns in height giving
the width of the bars. If value is shorter than number of columns in height it is
recycled to produce the correct length.

space A numeric vector of length equal to the number of columns in height giving the
space between the bars. If value is shorter than number of columns in height it
is recycled to produce the correct length.

offset A numeric vector of length equal to the number of columns in height giving
distance by which the bars should be offset from the zero line on the axis. Setting
this to a non-zero value produces a hanging barplot.

names.arg If not missing, used as axis labels (see axis).

legend.text If node null, a legend is generated (see legend).

horiz A logical value. If true, stacked bars are printed horizontally instead of verti-
cally.

density Density of shading lines (see rect). This should be a scalar or a vector of length
equal to the number of rows of height.

angle Angle of shading lines (see rect). This should be a scalar or a vector of length
equal to the number of rows of height.

col Color used for each bar. This should be a scalar or a vector of length equal to
the number of rows of height. If not supplied a grayscale gradient is built.

border Color for the rectangle borders (see rect). This should be a scalar or a vector
of length equal to the number of rows of height.

main Main title for plot (see title).

sub Subtitle for plot (see title).

xlab X-axis label for plot (see title).

ylab Y-axis label for plot (see title).

xlim Limits in user co-ordinates for the x-axis. Should be a vector of length 2.

ylim Limits in user co-ordinates for the y-axis. Should be a vector of length 2.

xpd A logical value controlling clipping. (see par).

axis A logical value. If true, a numeric scale is printed on the appropriate axis.
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axisnames A logical value. If true, column names are printed on the appropriate axis.

cex.axis Character size used for the numeric axis labels (see axis).

cex.names Character size used for the text (column names) axis labels (see axis).

newplot A logical value. If true a new graphics region is created. If false, the plot is
placed on top of the existing graphics region.

axis.lty A value passed as the lty argument to axis when plotting the text (column
name) axis.

... Other graphics parameters passed to rect, axis and title.

Details

This is a more detailed version of the stackedBars graph which allows finer control. It is used
mainly by compareBars.

There are some differences from stackedBars. First, height can be any value, not just a vector
of probability. Second, offset is given as a numeric value in the units of height, rather than as
an index into the array of heights. Most of the rest of the arguments merely expose the graphical
arguments to the user.

Value

The midpoints of the bars are returned invisibly.

Author(s)

Russell Almond

See Also

compareBars, colorspread, buildMarginTab, marginTab, barplot,stackedBars

Examples

margins <- data.frame (
Trouble=c(Novice=.19,Semester1=.24,Semester2=.28,Semseter3=.20,Semester4=.09),
NDK=c(Novice=.01,Semester1=.09,Semester2=.35,Semseter3=.41,Semester4=.14),
Model=c(Novice=.19,Semester1=.28,Semester2=.31,Semseter3=.18,Semester4=.04)

)
margins <- as.matrix(margins)
baseline <- apply(margins[1:2,],2,sum)

stackedBarplot(margins,offset=-baseline,
main="Marginal Distributions for NetPASS skills",
sub="Baseline at 2nd Semester level.",
col=hsv(223/360,.2,0.10*(5:1)+.5))
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stackedBars Produces a stacked, staggered barplot

Description

This produces a series of stacked bar plots staggered so that the baseline corresponds to a particular
state level. This is primarily designed for producing plots of probability vectors coming out of
Bayes net scoring.

Usage

stackedBars(data, profindex, ...,
ylim = c(min(offsets) - 0.25, max(1 + offsets)),
cex.names = par("cex.axis"), percent=TRUE,
digits = 2*(1-percent), labrot=FALSE)

Arguments

data A data.frame where each column is a probability vector.

profindex The index of the proficiency which should be used as a baseline.

... Graphical arguments passed to barplot.

ylim Default limits for Y axis.

cex.names Magnification for names.

percent Logical value. If true data values are treated as percentages instead of probabil-
ities.

digits Number of digits for overlaid numeric variables.

labrot If true, labels are rotated 90 degrees.

Details

This plot type assumes that each column in its first argument is a probability vector. It then produces
a stacked bar for each column. The baseline of the bar is offset by the probability for being in the
category marked by profindex or below.

The probability values are overlaid on the bars.

Author(s)

Russell Almond

References

This plot type was initially developed in Jody Underwood’s Evolve project.

Almond, R. G., Shute, V. J., Underwood, J. S., and Zapata-Rivera, J.-D (2009). Bayesian Networks:
A Teacher’s View. International Journal of Approximate Reasoning. 50, 450-460.
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See Also

compareBars, colorspread, buildMarginTab, marginTab, barplot,stackedBarplot

Examples

margins <- data.frame (
Trouble=c(Novice=.19,Semester1=.24,Semester2=.28,Semseter3=.20,Semester4=.09),
NDK=c(Novice=.01,Semester1=.09,Semester2=.35,Semseter3=.41,Semester4=.14),
Model=c(Novice=.19,Semester1=.28,Semester2=.31,Semseter3=.18,Semester4=.04)

)

stackedBars(margins,3,
main="Marginal Distributions for NetPASS skills",
sub="Baseline at 3rd Semester level.",
cex.names=.75, col=hsv(223/360,.2,0.10*(5:1)+.5))

stackedBars(margins,3,
main="Marginal Distributions for NetPASS skills",
sub="Baseline at 3rd Semester level.",
percent=FALSE,digits=2,
cex.names=.75, col=hsv(223/360,.2,0.10*(5:1)+.5))

structMatrix Finds graphical structure from a covariance matrix

Description

This function finds an undirected graphical representation of a multivariate normal distribution with
the given covariance matrix, by associating edges with non-zero entries. Graphical structure is given
as an adjacency matrix.

Usage

structMatrix(X, threshold = 0.1)

Arguments

X A variance matrix.
threshold A numeric value giving the threshold for a value to be considered “non-zero”.

Details

For a multivariate normal model, zero entries in the inverse covariance matrix correspond to condi-
tional independence statements true in the multivariate normal distribution (Whitaker, 1990; Demp-
ster, 1972). Thus, every non-zero entry in the inverse correlation matrix corresponds to an edge in
an undirected graphical model for the structure.

The threshold parameter is used to determine how close to zero a value must be to be considered
zero. This allows for both estimation error and numerical precision when inverting the covariance
matrix.
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Value

An adjacency matrix of the same size and shape as X. In this matrix result[i,j] is TRUE if and
only if Node i and Node j are neighbors in the graph.

Note

Models of this kind are known as “Covariance Selection Models” and were first studied by Dempster
(1972).

Author(s)

Russell Almond

References

Dempster, A.P. (1972) Covariance Selection. Biometrics, 28, 157–175.

Whittaker, J. (1990). Graphical Models in Applied Multivariate Statistics. Wiley.

See Also

scaleMatrix, mcSearch, buildParentList

Examples

data(MathGrades)

MG.struct <- structMatrix(MathGrades$var)

woeBal Weight of Evidence Balance Sheet

Description

Creates a weight of evidence balance sheet from a history of marginal distributions.

Usage

woeBal(hist, pos, neg, obs=NULL, title = "Evidence Balance Sheet",
col = rev(colorspread("slategray",ncol(hist),maxsat=TRUE)),
posCol="cyan", negCol="red", stripCol=c("white","lightgray"),
lcex = 0.65)
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Arguments

hist A matrix whose rows represent time points (after tests) and columns represent
probabilities.

pos Names or numbers of states which should be regarded as “positive”

neg Names or numbers of states which should be regarded as “negative”

obs An optional character vector of the same length as the number of rows of hist
giving the value observed at each step

title Title for plot

col A list of color values for probability bars.

posCol The color to be used for bars showing positive weights of evidence.

negCol The color to be used for bars showing negative weights of evidence.

stripCol The colors to be used for the time step labels. Setting this to a vector of two
colors creates alternate color stripes. Set this to "white" to disable that effect.

lcex Character expansion size for labels.

Details

This constructs a weight of evidence balance sheet (Madigan, Mosurski, and Almond, 1997) show-
ing the changes to the probability distribution and weight of evidence for each change in the proba-
bility. The probabilities are given in the hist argument in which each row should be a probability
distribution for the target variable. The labels for the plot are taken from the row labels of the hist
argument.

Madigan, Mosurski and Almond (1997) note that the definition of weight of evidence is somewhat
problematic if the hypothesis variable is not binary. In that case, they recommend partitioning the
states into a positive and negative set. The pos and neg are meant to describe that partition. They
can be any expression suitable for selecting columns from the hist matrix. This function calls
woeHist() to calculate weights of evidence.

The row names of hist are printed left-justified in the leftmost column. If observed values (obs)
are supplied, they are printed right justified in the same column.

Value

The midpoints of the bars (see barplot) are returned invisibly.

Side Effects

Starts a new plotting page and creates three side-by-side plots, one for the labels, one for the prob-
ability bars and one for the weight of evidence bars.

Author(s)

Russell Almond
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References

Good, I. (1971) The probabilistic explication of information, evidence, surprise, causality, explana-
tion and utility. In Proceedings of a Symposium on the Foundations of Statistical Inference. Holt,
Rinehart and Winston, 108-141.

Madigan, D., Mosurski, K. and Almond, R. (1997) Graphical explanation in belief networks. Jour-
nal of Computational Graphics and Statistics, 6, 160-181.

Almond, R. G., Kim, Y. J., Shute, V. J. and Ventura, M. (2013). Debugging the Evidence Chain. In
Almond, R. G. and Mengshoel, O. (Eds.) Proceedings of the 2013 UAI Application Workshops: Big
Data meet Complex Models and Models for Spatial, Temporal and Network Data (UAI2013AW),
1-10. http://ceur-ws.org/Vol-1024/paper-01.pdf

Almond, R.G., Mislevy, R.J., Steinberg, L.S., Williamson, D.M. and Yan, D. (2015) Bayesian
Networks in Educational Assessment. Springer. Chapter 7.

See Also

readHistory, woeHist, barplot, Colors

Examples

sampleSequence <- read.csv(paste(library(help="CPTtools")$path,
"testFiles","SampleStudent.csv",
sep=.Platform$file.sep),

header=TRUE,row.names=1)

woeBal(sampleSequence[,c("H","M","L")],c("H"),c("M","L"),lcex=1.25)
woeBal(sampleSequence[,c("H","M","L")],c("H"),c("M","L"),

obs=sampleSequence[,"Acc"],lcex=1.25)

woeHist Creates weights of evidence from a history matrix.

Description

Takes a matrix providing the probability distribution for the target variable at several time points
and returns a weight of evidence for all time points except the first.

Usage

woeHist(hist, pos, neg)

http://ceur-ws.org/Vol-1024/paper-01.pdf
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Arguments

hist A matrix whose rows represent time points (after tests) and columns represent
probabilities.

pos Names or numbers of states which should be regarded as “positive”

neg Names or numbers of states which should be regarded as “negative”

Details

Good (1971) defines the Weight Of Evidence (WOE) as:

100 log1 0
Pr(E|H)

Pr(E|H)
= 100

[
log1 0

Pr(H|E)

Pr(H|E)
− log1 0

Pr(H)

Pr(H)

]
Where H is used to indicate the negation of the hypothesis. Good recommends taking the log
base 10 and multiplying by 100, and calls the resulting units centibans. The second definition of
weight of evidence as a difference in log odd leads naturally to the idea of an incremental weight of
evidence for each new observation.

Following Madigan, Mosurski and Almond (1997), all that is needed to calculate the WOE is the
marginal distribution for the hypothesis variable at each time point. They also note that the definition
is somewhat problematic if the hypothesis variable is not binary. In that case, they recommend
partitioning the states into a positive and negative set. The pos and neg are meant to describe that
partition. They can be any expression suitable for selecting columns from the hist matrix.

Value

A vector of weights of evidence of length one less than the number of rows of hist (i.e., the result
of applying diff() to the vector of log odds.)

Author(s)

Russell Almond

References

Good, I. (1971) The probabilistic explication of information, evidence, surprise, causality, explana-
tion and utility. In Proceedings of a Symposium on the Foundations of Statistical Inference. Holt,
Rinehart and Winston, 108-141.

Madigan, D., Mosurski, K. and Almond, R. (1997) Graphical explanation in belief networks. Jour-
nal of Computational Graphics and Statistics, 6, 160-181.

See Also

readHistory, woeBal, diff
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Examples

## Not run:
allcorrect <- parseProbVec("CorrectSequence.csv")
woeHist(allcorrect,c("High"),c("Medium","Low"))
woeHist(allcorrect,1:2,3)

## End(Not run)
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