\name{NodeProbs} \alias{NodeProbs} \alias{NodeProbs<-} \title{ Gets or sets the conditional probability table associated with a Netica node. } \description{ A complete Bayesian networks defines a conditional probability distribution for a node given its parents. If all the nodes are discrete, this comes in the form of a conditional probability table a multidimensional array whose first several dimensions follow the parent variable and whose last dimension follows the child variable. } \usage{ NodeProbs(node) NodeProbs(node) <- value } \arguments{ \item{node}{ An active, discrete \code{\linkS4class{NeticaNode}} whose conditional probability table is to be accessed. } \item{value}{ The new conditional probability table. See details for the expected dimensions. } } \details{ Let \code{node} be the node of interest and \code{parent\var{1}}, \code{parent\var{2}}, ..., \code{parent\var{p}}, where \eqn{p} is the number of parents. Let \code{\var{pdim} = sapply(\link{NodeParents}(\var{node}), \link{NodeNumStates})} be a vector with the number of states for each parent. A parent configuration is defined by assigning each of the parent values to one of its possible states. Each parent configuration defines a (conditional) probability distribution over the possible states of \var{node}. The result of \code{NodeProbs(\var{node})} will be an array with dimensions \code{c(\var{pdim}, NodeNumStates(\var{node}))}. The first \eqn{p} dimensions will be named according to the \code{\link{NodeInputNames}(\var{node})} or the \code{\link{NodeName}(\var{parent})} if the input names are not set. The last dimension will be named according to the node itself. The \code{dimnames} for the resulting array will correspond to the state names. The setter form expects an array of the same dimensions as an argument, although it does not need to have the dimnames set. } \value{ A conditional probability array of class \code{c("\link{CPA}","array")}. See details. } \references{ \newcommand{\nref}{\href{http://norsys.com/onLineAPIManual/functions/#1.html}{#1()}} \url{http://norsys.com/onLineAPIManual/index.html}: \nref{GetNodeProbs_bn}, \nref{SetNodeProbs_bn} } \author{ Russell Almond } \note{ Note that the expression \code{node[...]} also accesses the partial or complete node conditional probability table. See \code{\link{Extract.NeticaNode}}. All of this assumes that these are discrete nodes, that is \code{\link{is.discrete}(node)} will return true for both \code{node} and all of the parents. It is unknown what Netica does is this is not right. This doc file is still pretty lame. Probably need to redo output as a CPT class. } \seealso{ \code{\link{Extract.NeticaNode}}, \code{\linkS4class{NeticaNode}}, \code{\link{NodeParents}()}, \code{\link{NodeInputNames}()}, \code{\link{NodeStates}()}, \code{\link{CPA}}, \code{\link{CPF}}, \code{\link{normalize}()} } \examples{ sess <- NeticaSession() startSession(sess) abc <- CreateNetwork("ABC", session=sess) A <- NewDiscreteNode(abc,"A",c("A1","A2","A3","A4")) B <- NewDiscreteNode(abc,"B",c("B1","B2","B3")) C <- NewDiscreteNode(abc,"C",c("C1","C2")) AddLink(A,B) AddLink(A,C) AddLink(B,C) NodeProbs(A)<-c(.1,.2,.3,.4) NodeProbs(B) <- normalize(matrix(1:12,4,3)) NodeProbs(C) <- normalize(array(1:24,c(4,3,2))) Aprobs <- NodeProbs(A) Bprobs <- NodeProbs(B) Cprobs <- NodeProbs(C) stopifnot( is.CPA(Aprobs), is.CPA(Bprobs), is.CPA(Cprobs) ) DeleteNetwork(abc) stopSession(sess) } \keyword{ interface } \keyword{ model }