
Dongle: A lightweight interface between EI, EA and AS processes
and the Presentation Process

Russell G Almond
ralmond@fsu.edu

1 Introduction

In the for process architecture (Almond, Steinberg, & Mislevy, 2002), the presentation pro-
cess often has real-time constraints. In an adaptive system, it is unacceptable for the subject
to wait for more than a few moments for the presentation process to load the next task. Sim-
ilarly, information about subject performance should be returned quickly to the presentation
process to avoid annoying delays. However, there is considerable uncertainty about how long
the evidence identification (EI), evidence accumulation (EA) and activity selection (AS) will
take to run.

The “Dongle” is a lightweight adapter between the presentation process and the other
three processes consisting of a database, a web server and a number of PHP scripts. When
the presentation process needs information from one of the other processes, it sends an HTTP
POST message to the appropriate script. The script fetches the appropriate record for the
given user and application from the database and returns it as a JSON document. The other
processes, when they complete their work, update the records in the database. If the EI, EA
or AS processing is not completed when the presentation process requests the information,
the most recent available information from the database is provided. This might be slightly
out of date, but this is often better than waiting. If no record is a available for a given user,
a default record for that application is returned. In this way the dongle process is as fast as
the load on the web server and network latency allows.

Figure 1 shows the basic architecture. At its heart, it is a modified LAMP (Linux, Apache,
Mongo R©,1 PHP stack. The game engine communicates to the other processes through HTTP
requests to the web server, and the other three processes (EI—evidence identification, EA—
evidence accumulation, and AS—activity selection) communicate through the database.

2 Proc4 Message Format

The Proc4 message is an object consisting of two parts: a header and a body. The header is
a series of mandatory and optional fields which are used to route and prioritize the message.
The data portion is a container object which can hold anything. In general, its value will be
determined by the message. Listing 1 shows the data structure in JSON (java script object
notation; Bassett, 2015) format.

The fields have the following definition

1The modification is that the Mongo database is substituted for the MySQL database used in many web

2

Apache

Linux

PHP

Mongo (r)

(Database)

EI EA AS

Figure 1: Proc4 Dongle Architecture.

Listing 1: A typical Proc4 message in JSON format.

1 {
2 app: "ecd://epls.coe.fsu.edu/PP",

3 uid: "Student 1",

4 context: "SpiderWeb",

5 sender: "Evidence Identification",

6 mess: "Task Observables",

7 timestamp: "2018-10-22 18:30:43 EDT",

8 processed: false,

9 data:{
10 trophy: "gold",

11 solved: true,

12 objects: 10,

13 agents: ["ramp","ramp","springboard"],

14 solutionTime: {time:62.25, units:"secs"}
15 }
16 }

3

app (String, Required). A globally unique identifier (guid) for the assessment application.
This should have a URL-like syntax with the first header corresponding to the domain
of the organization issuing the ID.

uid (String, Required). A unique identifier for the student or player. Note that admin-
istrative messages which correspond to all players could have an empty string as a
value.

context (String, Required) A unique identifier for the context in which the message was
generated. In Physics Playground this corresponds to game levels, but it might have
other meanings in other applications.

sender (String, Optional). An identifier for the process which generated the message.

mess (String, Required). An identifier for the contents of the message.

timestamp (String in POSIX format, Required). A timestamp for the message. Generally,
messages for the same uid need to be processed in chronological order.

processed (Boolean, Optional). A flag that can be set after the message has been processed.

error (Any, Optional). If an error occurs during the processing of the message, details can
be placed here.

data (Any, Required). The contents of the message. The expected content and format is
controlled by the application and vocabulary.

Note that this P4 Message class can be extended with additional header fields. For
example, Evidence Identification messages add verb and object fields.

The app field plays a special role in defining the vocabulary for the assessment. In
particular, the application defines the legal values for the context, mess and sender can
take, as well as the expected structure of the data for various values of mess

The dongle process uses a document-orient database (Mongo R©; “The MongoDB 4.0
Manual”, 2018). This allows indexes to be built for the header fields, while allowing the
data fields to be unrestricted. The database serves as a buffer between the game process,
communicating through the web server, and EI, EA and AS processes communicating directly
with the database.

applications.

4

3 Mongo Database Schemas

There are four database collections in the Proc4 database: AuthorizedApps, Players,
Statistics, and Activities. The latter three provide mechanisms for the EI, EA and
AS processes respectively to communicate with the game engines. When queried, all three
will return the record (or the latest record) matching the provided app and uid. If no
record is available with those ids, then a special default record for that application, with
uid="*DEFAULT*", will be returned.

The configuration resides in two places. The file /usr/local/share/Proc4/Proc4.js

contains initialization codes. In particular, it contains both the definition of the authorized
applications, and the credentials for the various databases (if secure login is enabled). The
script file setupDatabases.js sets up the security for the four processes (in the Proc4,
EIRecords, EARecords and ASRecords databases), and setupProc4.js sets up the collec-
tions and indexes in the Proc4 database. Most of the code in setupProc4.js is described
below. These files are located in the inst/config directory (or just config in the in-
stalled package) of the R Proc4 package. They can be run with the shell command mongo

script.js.

3.1 AuthorizedApps Collection

The AuthorizedApps collection has two purposes: to provide as a first line security and
to provide for a graceful shutdown of the EI, EA and AS processes. The security is some-
what minimal, it is just that a message with an app field that does not match one of the
AuthorizedApps records will return an error. While this will not stop a determined attacker,
it will make it harder for a hacker randomly looking for open ports to get data from the
database. The second is related to the active field of the record. The EI, EA, and AS
processes periodically check this, and if it is false, then they shut down gracefully.

This collection was never give an formal schema. Listing 2 shows the code that creates
it. The app and active fields should be counted as required and doc as recommended.

This fields is mostly manipulated with raw database commands setting the active field.
The launch scripts for the EI and EA processes both set the active field to true. (They will
also, if necessary, add a record for the application.) To signal a graceful shutdown, simply
set the active field to false. Listing 3 gives some example syntaxes (to run from the mongo
command shell).

The graceful shutdown causes the process to process all remaining events in the queue
and then stop. It became obvious that there was a need of a rapid shutdown as well.
In particular, there were cases where the processes should be shut down after finishing
processing the current event so that repairs could take place before continuing. A future
version of the code should have this.

5

Listing 2: AuthorizedApps Collection

1 // In Proc4.js configuration file.

2 var apps = [

3 {"app":"ecd :// epls.coe.fsu.edu/P4test","doc":"Testing",

4 "active":true},

5 {"app":"ecd :// epls.coe.fsu.edu/PhysicsPlayground/userControl",

6 "doc":"User Controlled (Spring 2019)","active":true},

7 {"app":"ecd :// epls.coe.fsu.edu/PhysicsPlayground/linear",

8 "doc":"linear (Spring 2019)","active":true},

9 {"app":"ecd :// epls.coe.fsu.edu/PhysicsPlayground/adaptive",

10 "doc":"adaptive (Spring 2019)","active":true}

11];

12 // In setupProc4.js setup file.

13 apps.forEach(function (row) {

14 db.AuthorizedApps.replaceOne ({"app":row.app},row ,

15 {"upsert":true });

16 });

Listing 3: AuthorizedApps Collection

1 // Shutdown just the P4test engine

2 db.AuthorizedApps.update ({app:{"$regex":"P4test"}},

3 {"$set":{ active:false }});

4 // Shutdown all active apps

5 db.AuthorizedApps.update ({ active:true},

6 {"$set":{ active:false }});

6

3.2 Players Collection

The original purpose of the Players collection was to notify the other processes about
which players were currently active in the game, and which were not. As the game engine
would send a message to the scoring server when the players logged in, the data field of the
Players collection was used to store information about the player which needed to persist
between game sessions; in particular, the player’s bank balance and the trophyHall, a list
of completed levels with the coin awarded for each. Listing 4 gives the schema for this
collection.

Note that this is a subset of the basic Proc4 message format. The active field should
be set to true when the player starts play, and to false when the stop. The PHP scripts
PlayerStart.php and PlayerStop.php start and stop the player. Note that current the
game may or may not post a message to the PlayerStop.php script. Currently, the other
processes are not relying on this, but this needs to be revisited later if it becomes important.

In addition to setting the active field, the PlayerStart.php script returns the current
value of the data field as part of a message. Currently, data is a named list (or dictionary)
with two elements: bankBalance and trophyHall. The first in an integer value giving the
players’ bank balance (as of the last event processed), and trophyHall is a named list with
the names corresponding to levels and the values corresponding to coins (“gold” or “silver”).
Levels for which a coin was not awarded do not appear in the list.

The EI process is responsible for keeping the Players collection up to date. There is a
special collection of rules called TrophyHallRules.json which contain the logic for doing
the update. These include special trigger rules which run to update the Players collection;
and a special listener which listens for those messages.

3.3 Statistics Collection

The EA process, in response to each release of observables from the EI process, performs the
following actions: (1) it fetches the student model for the reference uid, (2) it updates the
student model using the new evidence, (3) it updates a list of statistics for the updated
student model, (4) it posts the updated statistics so they can be viewed both other processes.
One of the places it posts the updated statistics is in the Statistics collection in the Proc4

database. Listing 5 provides the schema for that collection.
The EA process updates the data field of the record for the just processed student. The

value of the data field is a named list of statistics. The value of the statistic depends on the
specifications given to the EA process. There are three common kinds of statistics that are
used: real-valued statistics (for example the expected a posteriori or EAP statistic), string
valued statistics (for example, the mode or median of a Bayes net node), and vector valued
statistics (for example, the probability distribution for a node).

The script PlayerStats.php returns the current record in the Statistics collection for
the player.

7

Listing 4: Players Collection

1 db.createCollection("Players", {

2 validator: {

3 \$jsonSchema: {

4 bsonType: "object",

5 required: ["app","uid","active","timestamp"],

6 properties: {

7 app: {

8 bsonType: "string",

9 description: "Application ID (string)"

10 },

11 uid: {

12 bsonType: "string",

13 description: "User (student) ID (string)"

14 },

15 active: {

16 bsonType: "bool",

17 description: "Is the player currently active?"

18 },

19 context: {

20 bsonType: "string",

21 description: "Context (task) ID (string)"

22 },

23 timestamp: {

24 bsonType: "date",

25 description: "Timestamp"

26 },

27 data: {

28 bsonType: "object",

29 description: "Player State information passed to game engine at login."

30 }

31 }

32 }

33 },

34 validationAction: "warn"

35 });

36 db.Players.createIndex({ app:1, uid: 1});

8

Listing 5: Statistics Collection

1 db.createCollection("Statistics", {

2 validator: {

3 \$jsonSchema: {

4 bsonType: "object",

5 required: ["app","uid","timestamp"],

6 properties: {

7 app: {

8 bsonType: "string",

9 description: "Application ID (string)"

10 },

11 uid: {

12 bsonType: "string",

13 description: "User (student) ID (string)"

14 },

15 context: {

16 bsonType: "string",

17 description: "Context (task) ID (string)"

18 },

19 sender: {

20 bsonType: "string",

21 description: "Who posted this message."

22 },

23 mess: {

24 bsonType: "string",

25 description: "Topic of message"

26 },

27 timestamp: {

28 bsonType: "date",

29 description: "Timestamp"

30 },

31 data: {

32 bsonType: "object",

33 description: "Named list of statistics."

34 }

35 }

36 }

37 },

38 validationAction: "warn"

39 });

40 db.Statistics.createIndex({ app:1, uid: 1, timestamp: -1});

9

3.4 Activities Collection

The last collection was never actually implemented, but it was created for future expansion.
Listing 6 provides its draft schema. Its purpose was to provide a place the AS could post
messages about which level to provide next. The script PlayerLevel.php would return its
current value.

Although this was not implemented, the following notes describe the planned design. The
data field would contain four components: topic, completedLevels, availableLevels, and
supportMode. Topic is intended as a string valued field. The game levels would be divided
into a number of topics. When the internal criteria in the AS algorithm were met, the
player would “graduate” from the topic, and the value of the topic field would change. The
components completedLevels and availableLevels would list all of the levels in the topic.
The availableLevels would be sorted into the desired order. As levels were completed, they
would be moved to the completedLevels field. The supportMode component is a logical
variable that would be set if the player should be placed into a learning support rather than
the game at the start of a new level.

The design of the Activities collection is designed to be robust against latency problems
with the EI, EA and AS processes. In order to for the algorithm to be completely adaptive,
then all three processes must complete between the time the player finishes the game level
and the system requests a new game level. If this condition does not hold, the database
can return the sorted list of levels, taking the just completed level from the list of available
levels and putting it on the completed list. So although the next level played may not be
completely optimal, as long as the EI, EA and AS processes don’t fall too far behind it will
be at least close to optimal.

4 PHP communication Layer

A number of PHP scripts are provided to allow the game engine (or other process) to access
the information in the database. The PHP scripts always return the most recent information
available for the player, or if no information is available for the player, a default record is
returned. In particular, this means that the processes should never block, but they might
not return the most recent information if there are still unprocessed events working their
way through the EI, EA and AS processes.

All of the PHP scripts expect the headers in the basic P4 Message format using fields
of an HTTP POST request. In particular, it is looking for fields of with the names “app”,
“uid”, “context”, “sender”, “mess”, “timestamp”, and “data”. If accessed using the post
method, all of the pages should return a file of type ’application/json’ in utf-8 encoding. If
the php scripts are accessed using a GET rather than a POST request, then a HTML form
with these fields is returned (to be used for testing).

There are four primary files which are used for the communication:

10

Listing 6: Activities Collection

1 db.createCollection("Activities", {

2 validator: {

3 \$jsonSchema: {

4 bsonType: "object",

5 required: ["app","uid","timestamp"],

6 properties: {

7 app: {

8 bsonType: "string",

9 description: "Application ID (string)"

10 },

11 uid: {

12 bsonType: "string",

13 description: "User (student) ID (string)"

14 },

15 context: {

16 bsonType: "string",

17 description: "Context (task) ID (string)"

18 },

19 sender: {

20 bsonType: "string",

21 description: "Who posted this message."

22 },

23 mess: {

24 bsonType: "string",

25 description: "Topic of Message"

26 },

27 timestamp: {

28 bsonType: "date",

29 description: "Timestamp"

30 },

31 data: {

32 bsonType: "object",

33 description: "Data about Activity Selection."

34 }

35 }

36 }

37 },

38 validationAction: "warn"

39 });

40 db.Activity.createIndex({ app:1, uid: 1, timestamp: -1});

11

PlayerStart.php Called when player logs in on a given day. As data returns information
needed to restore gaming session (currently bank balance and list of trophies earned).
Note that player details are updated by the EI process.

PlayerStop.php Called when player logs out. Currently not used. It is designed to help
automatically shut down unneeded processed.

PlayerStats.php Called when current player competency estimates are required, e.g., when
displaying player scores. It returns a list of statistics and their values in the data field;
the exact statistics returned depend on the configuration of the EA process. This
database collection is updated by the EA process after each game level is processed.

PlayerLevels.php Called when the game wants the next level. The message data should
contain information about what topic the player is currently addressing and a list of
played and unplayed levels, with the unplayed levels sorted so the next level according
to protocol is first on the list. The complete list of levels should be returned so that if
levels on the list have already been completed, a new level would be entered. Although
the PHP script has been built, the AS process to feed it has not.

In addition to the primary files there are some auxiliary files that are available as well.

P4echo.php This script simply repeats back the message that was sent as a json object.
Intended for testing.

Proc4.ini This contains configuration information used by the other processes, particularly,
database credentials and a list of supported application names. A template file is pro-
vided in the config directory. It should be edited and moved to /usr/local/share/Proc4
(or other designated configuration directory).

config.php This script is called by the others, it is mainly calls the Proc4.ini script, so
this file can be modified if that script is in a non-standard location.

composer.json This file is generated by composer to get mongo to install.

The configuration file Proc4.ini contains a list of application IDs and the passwords for
the databases. The file is shown in Listing 7. The applications are particularly important
as they serve as a password for systems that use this facility. In particular, unless the app

field of the POST request is one of the applications listed in the ini file, then the scripts will
return an error. This should prevent random hacking, but more serious security might be
needed if there is a more substantial risk.

Installation requires the following steps:

1. Edit the Proc4.ini file (in the config subdirectory of the Proc4 package) and move
it to the configuration directory, by default /usr/local/share/Proc4.

12

Listing 7: PHP initialization file Proc4.ini.

1 [apps]

2 test = "ecd:// epls.coe.fsu.edu/P4test"

3 userControl = "ecd:// epls.coe.fsu.edu/PhysicsPlayground/userControl"

4 linear = "ecd:// epls.coe.fsu.edu/PhysicsPlayground/linear"

5 adaptive = "ecd:// epls.coe.fsu.edu/PhysicsPlayground/adaptive"

6

7 [users]

8 EIP = "secret"

9 EAP = "secret"

10 ASP = "secret"

11 C4 = "secret"

2. Edit the config.php file if necessary and copy the php scripts to a directory exposed
by the web server.

3. Install the mongo PHP drivers using PECL and composer. See the instructions at
https://docs.mongodb.com/ecosystem/drivers/php/. (Note for RHEL. Because
RHEL 7.5 is behind the curve on a large number of packages, the available drivers for
RHEL have lower version numbers. You may need to remove the composer.json file.
The dongle appears to work fine with version 1.1 of mongodb, which is what I get with
RHEL 7.5.)

5 Pulling statements from the learning record store.

Learning Locker R© stores events as xAPI (Betts & Smith, 2018) formatted JSON in a col-
lection called statements in a database called gameLRS (or at least that is the setup for
Physics Playground). All of the statements have a timestamp, so the extraction loop can
get only new messages after the first extraction. The scripts extractEvidence.sh and
importEvidence.sh facilitate the extraction from learning locker and the upload into the
EIRecords database.

Between extraction and importation, the messages must be converted from xAPI (actu-
ally a wrapped xAPI format) to P4 format. This is done by the bash script LLtoP4 (List-
ing 8). The translation is done in three steps. The first step, using the program jq (https://
stedolan.github.io/jq/), extracts the fields relevant for the P4 messages from the unused
information. Note that much of the useful information as defined in Physics Playground is
in the extension for the object element of the statement. The second step uses standard GNU
tool sed (Windows users, see http://gnuwin32.sourceforge.net/packages/sed.htm) to

13

Listing 8: LLtoP4 converter

1 #!/bin/bash

2 jq -f filter1.jq | sed -f filter2.sed | jq -f filter3.jq

shorten long URL-like guids to shorter keywords. The third step promotes some information
(in particular, the app and context fields) which are in the extensions to the header.

In theory, simply looping the shell command, extractEvidence.sh date | LLtoP4 |

importEvidence.sh, is all that is necessary. In practice, two additional steps are needed.
First, it is necessary to extract the most recent timestamp from the downloaded file. The
next extraction will be for all events after that timestamp. Second, it is often useful to filter
the events before uploading them to the database.

Adding an extra filtering step to the extraction loop is a big time saver, as events which
will not trigger any evidence rules can simply be discarded. The filter jq -f coreEvents.jq

is used to delete events which will not trigger rules. The result was about a 500-fold reduction
in the operational version of Physics Playground.

To allow for a graceful shutdown, the loop is given a name (the first argument to the
shell script) and a file /usr/local/share/Proc4/log/name.running is created when the
script starts. In every loop, that file is checked. If it no longer exists, the script exits.
So the loop can be shut down by removing the file. (The script is typically started us-
ing nohup LLtoP4Loop name date >../logs/name.log & so that it runs as background
process.) Listing 9 shows the listing.

6 Configuration

This manual assumes that a modify LAMP (Linux, Apache, Mongo, PHP) stack is configured
on the target machine. (Sorry, Windows users, a fair amount of adaptation will be needed
to run under Windows.) Refer to the help files for your Linux distribution and Mongo to
accomplish this task. Also, for the Proc4 for R library, R (R Core Team, 2018) will need to
be installed on the target system.

6.1 Configuration Files

The first step is to pick a configuration directory for Proc4. The current system assumes
that the configuration directory is /usr/local/share/Proc4/, but this could be changed
depending on local preferences. This directory will need to be created with root privileges,
but can then be set as writable by a normal user account. Create two subdirectories bin

and logs underneath the configuration directory. (The log directory could be a symlink to a
directory on another partition if space on the root partition is at a premium). This directory

14

Listing 9: Download capture loop

1 #!/bin/bash

2 IP =127.0.0.1

3 name=$1

4 starttime=$2

5 echo "Learning Locker to P4 extraction loop , $1, starting: $2"

6 ## Create a running file , when this file is deleted ,

7 ## the process will stop.

8 cd /usr/local/share/Proc4/bin

9 touch ../ logs/$name.running

10

11 cache1=$(mktemp --tmpdir ${name}. XXXXXXXXXX)

12 cache2=$(mktemp --tmpdir ${name}. XXXXXXXXXX)

13

14 while [-f ../ logs/$name.running]

15 do

16 ssh $IP ./ extractEvidence.sh $starttime >$cache1

17 if [$(tail -n +2 $cache1 | jq ’length ’) -gt 0]; then

18 tail -n +2 <$cache1 | ./ LLtoP4 | jq -f coreEvents.jq >$cache2

19 ./ importEvidence.sh <$cache2

20 starttime=$(jq ’[.[]|. timestamp."$date"]|max ’ $cache2)

21 fi

22 echo "Next extraction at $starttime"

23 sleep 10s

24 done

15

will be called the Proc4 directory in the sequel. Note that the location of the Proc4 directory
is hard coded into a number of files, and they will need to be manually edited if a different
location is chosen.

Finally, there are a number of configuration files that are stored in the R package tarball.
These can be accessed in one of two ways. First, install the R package, then use the command
library(help="Proc4")$path to determine the install location for the R package. The
config and dongle subdirectories are in that location. The alternative is to simply unpack
the Proc4 tarball in some known location (equivalently, one could download from SVN in
a given location). The subdirectories inst/config and inst/dongle contain the relevant
files. These directories will be called the config and dongle directories respectively.

Copy the files config/Proc4.js and config/Proc4.ini to the Proc4 directory. These
files will need to be edited to reflect the local configuration. In particular, if database
passwords are used, then they will need to be set in this file. Also, Proc4.ini has a list of
valid applications. The EI, EA and AS processes will also store their initialization files in
this directory.

6.2 Mongo Configuration

Using the mongo database, both security (user IDs and passwords) is optional. Running
mongo without security turned on is probably okay as long as the installation is (a) behind a
firewall, and (b) the firewall is configured to not allow connections on the mongo port except
from localhost. However, other users may want to turn on security.

The recommended security setup is to create four users, “EIP”, “EAP”, “ASP”, and
“C4” for the four processes and to assign a password to each. The URI’s of the database
connections then need to be modified to include the username and passwords. Each process
would have an ini.R file which contains its password which is stored in an appropriate
configuration directory.

The files Proc4/Proc4.ini (PHP format) and Proc4/Proc4.js (javascript format) are
used for saving the key usernames and passwords. Note that the mongo configuration files
read the usernames and passwords from Proc4/Proc4.js, so this file needs to be configured
before the following steps.

The file setupDatabases.js in the config directory creates databases for each of the
processes and stores the appropriate login credentials. This is a javascript file designed to
be run directly in mongo, i.e., mongo setupDatabases.js. Note that it must be run by a
user which has the appropriate privileges to create databases and modify their security (a
“root” user). This step is required if security is turned on in the database, and optional if it
is turned off.

The file config/setupProc4.js sets up schemas and indexes for collections in the Proc4
database which are used by the dongle process. Schemas are optional in mongo, but the
indexes should speed up operations.

16

6.3 PHP Dongle Configuration

To create the dongle process, pick a directory under apache control (e.g., a subdirectory
of https docs) in which to install the Dongle. This will determine the URL base for the
dongle scripts. Next, copy all of the PHP files and the file composer.json from the dongle

directory to the web directory. If the Proc4 directory is not at /usr/local/share/Proc4,
then file config.php should be edited to reflect the proper path.

The file Proc4/Proc4.ini will need to be edited (a) to ensure the proper passwords are
in place for the processes and (b) to list all of the legal applications in the app section. Note
that the scripts use the app field to verify that the requester is actually associated with the
project.

Ensure that the mongodb extensions for PHP have been installed (https://docs.mongodb
.com/ecosystem/drivers/php/). Note that the last step is to run composer in the URL
base directory for the dongle. (The supplied composer.json file was generated using Ubuntu
18.04. Under RHEL 7.5, an earlier version of the mongodb extension is needed. To install un-
der RHEL, delete composer.json and install using composer require mongodb/mongodb.

The file P4echo.php can be used for testing the configuration. Simply point the browser
at the file, and it will give you a form for sending a test message, which it will echo back.
The other scripts work in a similar way, issuing a GET request (i.e., pointing a browser
at the page) will return a form that can be used to POST a test message and return the
JSON message. This may not be particularly useful until the databases have been populated
though.

6.4 Event Loop Configuration

The remaining files (i.e., everything but the php files) in the dongle directory are for the event
loop. These should be copied to Proc4/bin. Many of the shell scripts assume the location
of the filter files (with .jq and .sed extensions) in the local directory, so the LLtoP4Loop

command needs to be edited to run in this directory.
In the Physics Playground implementation learning locker and Proc4 were run on differ-

ent servers. To implement this, the IP address in LLtoP4loop needs to be updated to the
name or IP address of the learning locker server. The file extractEvidence.sh also needs
to be copied to the learning locker server and put in the login directory. The script uses an
ssh tunnel to do the extraction; so this connection (both firewalls and ssh keys) needs to be
properly configured.

Finally, the file Proc4/bin/coreEvents.jq determines which events are imported into
the EI process queue. This will need editing depending on the rule set used by the EI process.

17

7 Acknowledgements

Work on the Proc4, EIEvent and EABN packages has been supported by the National Science
foundation grants DIP: Game-based Assessment and Support of STEM-related Competencies
(#1628937, Val Shute, PI) and Mathematical Learning via Architectual Design and Modeling
Using E-Rebuild. (#1720533, Fengfeng Ke, PI).

The Proc4 package developement was led by Russell Almond (Co-PI).

References

Almond, R. G., Steinberg, L. S., & Mislevy, R. J. (2002). Enhancing the design and delivery
of assessment systems: A four-process architecture. Journal of Technology, Learning,
and Assessment , 1 , (online). Retrieved from http://www.jtla.org/

Bassett, L. (2015). Introduction to JavaScript object notation: A to-the-point guide to JSON.
O’Reilly Media, Inc.

Betts, B., & Smith, R. (2018). The leraning technology manager’s guid to xAPI (2nd ed.)
[Computer software manual]. Retrieved from https://www.ht2labs.com/resources/

the-learning-technology-managers-guide-to-the-xapi/#gf 26

The mongodb 4.0 manual (4.0 ed.) [Computer software manual]. (2018). Retrieved from
https://docs.mongodb.com/manual/ (Retrieved 2018-09-03.)

R Core Team. (2018). R: A language and environment for statistical computing [Computer
software manual]. Vienna, Austria. Retrieved from https://www.R-project.org/

