
Package ‘Proc4’
April 4, 2020

Version 0.4-7

Date 2020/03/17

Title Four Process Assessment Database and Dispatcher

Author Russell Almond

Maintainer Russell Almond <ralmond@fsu.edu>

Depends R (>= 3.0), methods, jsonlite, mongolite, futile.logger

Description Extracts observables from a sequence of events.

License Artistic-2.0

URL https://pluto.coe.fsu.edu/Proc4

R topics documented:
Proc4-package . 2
as.json . 6
buildJQuery . 8
CaptureListener-class . 10
getOneRec . 11
InjectionListener-class . 14
Listener . 15
ListenerConstructors . 17
ListenerSet-class . 19
makeDBuri . 21
markAsProcessed . 23
MongoDB-class . 25
name . 26
notifyListeners . 27
P4Message . 28
P4Message-class . 30
parseMessage . 32
saveRec . 34
TableListener-class . 35
unboxer . 37
UpdateListener-class . 39

1

https://pluto.coe.fsu.edu/Proc4

2 Proc4-package

UpsertListener-class . 41
withFlogging . 42

Index 45

Proc4-package Four Process Assessment Database and Dispatcher

Description

Extracts observables from a sequence of events.

Details

The DESCRIPTION file: This package was not yet installed at build time.

Index: This package was not yet installed at build time.

This package exists to supply core functionality to other processes implementing processes in the
four process architecture (Almond, Steinberg and Mislevy, 2002). In particular, it contains low
level code dealing with implementing message queues in a document database (mongo) and read-
ing/writing messages from JSON.

There are five major features of this package documented below:

1. The P4Message object and the protocol for converting messages to JSON and saving them in
the mongo database.

2. A withFlogging function which wraps the flog.logger protocol.

3. A number of Listener objects which implement an observer protocol for messages.

4. The config directory contains a number of javascript files for building database schemas and
indexes.

5. The dongle directory contains a number of PHP scripts for exposing the database via a web
server.

P4 Messages

The extended four process architecture defines a message object (P4Message) with the following
fields:

_id: Used for internal database ID.

app: Object of class "character" which specifies the application in which the messages exit.

uid: Object of class "character" which identifies the user (student).

context: Object of class "character" which identifies the context, task, or item.

sender: Object of class "character" which identifies the sender. This is usually one of "Pre-
sentation Process", "Evidence Identification Process", "Evidence Accumulation Process", or
"Activity Selection Process".

Proc4-package 3

mess: Object of class "character" a general title for the message context.

timestamp: Object of class "POSIXt" which gives the time at which the message was generated.

data: Object of class "list" which contains the data to be transmitted with the message.

processed: A logical value: true if the message has been processed, and false if the message is
still in queue to be processed. This field is set with markAsProcessed.

pError: If a error occurs while processing this event, information about the error can be stored
here, either as an R object, or as an R object of class error (or any class). This field is accessed
with processingError and set with markAsError.

Other classes can extend this message protocol by adding additional fields, but the header fields of
the message object allow it to be routed.

In particular, the processed field allows a database collection of messages to be used as queue.
Simply search for unprocessed message and begin processing them oldest first, using markAsProcessed
to mark the complete process and markAsError to mark errors.

The functions saveRec, getOneRec and getManyRecs facilitate saving and loading message objects
from the database. These build on the mongolite (mongo) and jsonlite (toJSON) pack-
ages. The function buildJQuery gives R-like syntactic sugar to building mongo (JSON) queries.

The jsonlite package provides minimal support for storing S4 objects in the mongo database. In
particular, toJSON provides too little support and serializeJSON wraps the object in R-specific
metadata which makes the data difficult for other applications to extract. Instead, Proc4 introduces
a new protocol which is suitable for saving S4 classes: a generic as.json function for converting
the class to JSON, and a parseXXX function for reversing the process.

The as.json function calls attributes to convert the S4 object into a list, and then calls the
function as.jlist to massage the elements of the list for export into JSON. The function unboxer
is useful for preventing elements which should be scalars from being converted into lists. The
as.json function then runs the result through toJSON to get the result.

The parseXXX messages reverse this process. In particular, the record is retrieved from the database
and converted into a list using fromJSON. The parsing function is then called on the result to build
the object. The function parseMessage provides an example. The function cleanMessageJlist
does much of the interior work of the parsing and is intended for subclasses of P4Message. The
getOneRec and getManyRecs functions take a parseXXX function as an argument to construct
objects from the database.

Logging

The logging system for the Proc4 processes is mostly just the flog.logger protocol. Aside from
importing the futile.logger package, Proc4 makes one addition. The function withFlogging
executes a series of statements in an environment in which the error messages will be logged,
and at higher logging levels, stack traces for errors and warnings are given. The intention is that
most message handling functions will be wrapped in withFlogging, so that information about the
message causing the error/warning will be available for debugging.

Listeners

The Proc4 package implements an observer protocol called Listener. A listener is an abstract class
which implements the receiveMessage function. The argument of this function is a P4Message

4 Proc4-package

object, which the listener then does something with. (In most of the implemented examples, this
is to save it in a database.) Note that listeners should also define a isListener method to indicate
that it is a listener.

Four listeners are currently implemented (see Listener or the individal listener classes):

CaptureListener Creates an object of class CaptureListener which stores the messages in a
list.

InjectionListener Creates an object of class InjectionListener which inserts the message
into the designated database.

UpdateListener Creates an object of class UpdateListener which updates the designated field.

UpsertListener Creates an object of class UpsertListener which insert or replaces the message
in the designated collection.

TableListener Creates an object of class TableListener which adds details from message to
rows of a data frame.

The ListenerSet class is a mixin to associate a collection of listeners with an object (the EIEngine
and BNEngine classes use this). The generic function notifyListeners can be called. This logs
information about the message (see logging system above), save a copy of the message in a “Mes-
sages” database, and calls the receiveMessage method on all of the listener objects in its collection.

Configuration Files

Using the mongo database, both security (user IDs and passwords) is optional. Running mongo
without security turned on is probably okay as long as the installation is (a) behing a firewall, and
(b) the firewall is configured to not allow connections on the mongo port except from localhost.
However, other users may want to turn on security.

The recommended security setup is to create four users, “EIP”, “EAP”, “ASP”, and “C4” for the
four processes and to assign a password to each. The URI’s of the database connections then need to
be modified to include the username and passwords. Each process would have an ini.R file which
contains its password which is stored in an appropriate configuration directory. (On *nix systems,
the recommend location is /usr/local/share/Proc4.)

The files Proc4.ini (PHP format) and Proc4.js (javascript format) can be used for saving the key
usernames and passwords. These files are located in the directory file.path(library(help="Proc4")$path, "config").
To install these files it is necessary to copy the files to the configuration directory and edit them so
that the password reflects local preferences.

The file setupDatabases.js in the config directory creates databases for each of the processes
and stores the appropriate login credentials. (Note that this calls Proc4.js to get these credentials
so that file must be established first.) This is a javascript file designed to be run directly in mongo,
i.e., mongo setupDatabases.js. Note that it must be run by a user which has the appropriate
priveleges to create databases and modify their security (a “root” user).

The file setupProc4.js in the config directory sets up schemas and indexes for collections in the
Proc4 database which are used by the dongle process. Schemas are optional in mongo, but the
indexes should speed up operations.

Proc4-package 5

Dongle Files

The directory file.path(library(help="Proc4")$path, "config") contains files that facili-
tate direct communciation with the mongo database. In particular, there are a number of PHP scripts
which if put in a directory available to the web server will allow remote processes to get information
about users in the system. The scripts are:

PlayerStart.php Called when player logs in on a given day. As data returns information needed
to restore gaming session (currently bank balance and list of trophies earned). Note that player
details are updated by the EI process.

PlayerStop.php Called when player logs out. Currently not used. It is designed to help automat-
ically shut down unneeded processed.

PlayerStats.php Called when current player competency estimates are required, e.g., when dis-
playing player scores. It returns a list of statistics and their values in the data field; the exact
statistics returned depend on the configuration of the EA process. This database collection is
updated by the EA process after each game level is processed.

PlayerLevels.php Called when the game wants the next level. The message data should contain
information about what topic the player is currently addressing and a list of played and un-
played levels, with the unplayed levels sorted so the next level according to protocol is first on
the list. The complete list of levels should be returned so that if levels on the list have already
been completed, a new level would be entered. Although the PHP script has been built, the
AS process to feed it has not.

In addition, there is a file called LLtoP4 in that directory which is a bash script for translating
between xAPI and Proc4 message formats. The function LLtoP4Loop repeatedly downloads xAPI
statements from the learning locker database, translates them to P4 format, and uploads them to the
EI process database.

The vingette file Dongle.pdf describes the dongle and database structure in more detail.

Acknowledgements

Work on the Proc4, EIEvent and EABN packages has been supported by the National Science foun-
dation grants DIP: Game-based Assessment and Support of STEM-related Competencies (#1628937,
Val Shute, PI) and Mathematical Learning via Architectual Design and Modeling Using E-Rebuild.
(#1720533, Fengfeng Ke, PI).

The Proc4 package developement was led by Russell Almond (Co-PI).

Author(s)

Russell Almond

Maintainer: Russell Almond <ralmond@fsu.edu>

References

Almond, R. G., Steinberg, L. S., and Mislevy, R.J. (2002). Enhancing the design and delivery of As-
sessment Systems: A Four-Process Architecture. Journal of Technology, Learning, and Assessment,
1, http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671.

http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671

6 as.json

See Also

flog.logger, EIEvent, EABN

as.json Converts P4 messages to JSON representation

Description

These methods extend the toJSON function providing an extensible protocol for serializing S4 ob-
jects. The function as.json turns the object into a string containing a JSON document by first
calling as.jlist to convert the object into a list and then calling toJSON to do the work.

Usage

as.json(x, serialize=TRUE)
S4 method for signature 'ANY'
as.json(x, serialize=TRUE)
as.jlist(obj,ml, serialize=TRUE)

Arguments

x An (S4) object to be serialized.

obj The object being serialized

ml A list of fields of the object; usually attributes(obj).

serialize A logical flag. If true, serializeJSON is used to protect the data field (and
other objects which might contain complex R code.

Details

The existing toJSON does not support S4 objects, and the serializeJSON provides too much detail;
so while it is good for saving and restoring R objects, it is not good for sharing data between
programs. The function as.json and as.jlist are S4 generics, so they can be easily extended to
other classes.

The default method for as.json is essentially toJSON(as.jlist(x, attributes(x))). The
function attributes(x) turns the fields of the object into a list, and then the appropriate method
for as.jlist further processes those objects. For example, it can set the "_id" field used by the
Mongo DB as a unique identifier (or other derived fields) to NULL.

Another important step is to call unboxer on fields which should not be stored as vectors. The
function toJSON by default wraps all R objects in ‘[]’ (after all, they are all vectors), but that is
probably not useful if the field is to be used as an index. Wrapping the field in unboxer(), i.e.,
using ml$field <- unboxer(ml$field), suppresses the brackets. The function unboxer() in
this package is an extension of the jsonlite::unbox function, which does not properly unbox
POSIXt objects.

Finally, for a field that can contain arbitrary R objects, the function unparseData coverts the data
into a JSON string which will completely recover the data. The serialize argument is passed

as.json 7

to this function. If true, then serializeJSON is used which produces safe, but not particularly
human editable JSON. If false, a simpler method is employed which produes more human readable
code. This with should work for simpler data types, but does not support objects, and may fail with
complex lists.

Value

The function as.json returns a unicode string with a serialized version of the object.

The function as.jlist returns a list of the fields of the object which need to be serialized (usually
through a call to toJSON.

Author(s)

Russell Almond

See Also

In this package: parseMessage, saveRec, parseData

In the jsonlite package: toJSON, serializeJSON, jsonlite::unbox

Examples

mess1 <- P4Message("Fred","Task 1","Evidence ID","Scored Response",
as.POSIXct("2018-11-04 21:15:25 EST"),
list(correct=TRUE,seletion="D"))

as.json(mess1)
as.json(mess1,FALSE)

Not run:
This is the method for P4 Messages.
setMethod("as.jlist",c("P4Message","list"), function(obj,ml) {

ml$"_id" <- NULL
ml$class <-NULL
Use manual unboxing for finer control.
ml$app <- unboxer(ml$app)
ml$uid <- unboxer(ml$uid)
if (!is.null(ml$context) && length(ml$context)==1L)
ml$context <- unboxer(ml$context)

if (!is.null(ml$sender) && length(ml$sender)==1L)
ml$sender <- unboxer(ml$sender)

if (!is.null(ml$mess) && length(ml$mess)==1L)
ml$mess <- unboxer(ml$mess)

ml$timestamp <- unboxer(ml$timestamp) # Auto_unboxer bug.
Saves name data; need recursvie version.
ml$data <- unparseData(ml$data)
ml
})

End(Not run)

8 buildJQuery

buildJQuery Transforms a query into JQuery JSON.

Description

This function takes a query which is expressed in the argument list and transforms it into a JSON
query document which can be used with the Mongo Database. The function buildJQterm is a
helper function which builds up a single term of the query.

Usage

buildJQuery(..., rawfields = character())
buildJQterm(name,value)

Arguments

... This should be a named list of arguments. The values should be the desired
query value, or a more complex expression (see details).

rawfields These arguments are passed as character vectors directly into the query docu-
ment without processing.

name The name of the field.

value The value of the field or an expression which gives a query for the resulting
document.

Details

A typical query to a Mongo database collection is done with a JSON object which has a number
of bits that look like “field:value”, where field names a field in the document, and value is a value
to be matched. A record matches the query if all of the fields specified in the query match the
corresponding fields in the record.

Note that value could be a special expression which gives specifies a more complex expression
allowing for ranges of values. In particular, the Mongo query language supports the following
operators: "$eq", "$ne", "$gt", "$lt", "$gte", "$lte". These can be specified using a
value of the form c(<op>=<value>), where op is one of the mongo operators, without the leading
‘$’. Multiple op–value pairs can be specified; for example, count=c(gt=3,lt=6). If no op is
specified, then "$eq" is assumed. Additionally, the "$oid" operator can be used to specify that a
value should be treated as a Mongo record identifier.

The "$in" and "$nin" are also ops, but the corrsponding value is a vector. They test if the record is
in or not in the specified value. If the value is vector valued, and no operator is specified it defaults
to "$in".

The function buildJQuery processes each of its arguments, adding them onto the query document.
The rawfields argument adds the fields onto the document without further processing. It is useful
for control arugments like "$limit" and "$sort".

buildJQuery 9

Value

The function buildJQuery returns a unicode string which contains the JSON query document. The
function buildJQterm returns a unicode string with just one field in the query document.

Author(s)

Russell Almond

References

The MongoDB 4.0 Manual: https://docs.mongodb.com/manual/

See Also

as.json, parseMessage, getOneRec, getManyRecs mongo

Examples

Low level test of the JQterm possibilities for fields.

stopifnot(buildJQterm("uid","Fred")=='"uid":"Fred"')
stopifnot(buildJQterm("uid",c("Phred","Fred"))=='"uid":{"$in":["Phred","Fred"]}')
time1 <- as.POSIXct("2018-08-16 19:12:19 EDT")
stopifnot(buildJQterm("time",time1)=='"time":{"$date":1534461139000}')
time1l <- as.POSIXlt("2018-08-16 19:12:19 EDT")
stopifnot(buildJQterm("time",time1l)=='"time":{"$date":1534461139000}')
time2 <- as.POSIXct("2018-08-16 19:13:19 EDT")
stopifnot(buildJQterm("time",c(time1,time2))==

'"time":{"$in":[{"$date":1534461139000},{"$date":1534461199000}]}')
stopifnot(buildJQterm("time",c(gt=time1))==

'"time":{ "$gt":{"$date":1534461139000} }')
stopifnot(buildJQterm("time",c(lt=time1))==

'"time":{ "$lt":{"$date":1534461139000} }')
stopifnot(buildJQterm("time",c(gte=time1))==

'"time":{ "$gte":{"$date":1534461139000} }')
stopifnot(buildJQterm("time",c(lte=time1))==

'"time":{ "$lte":{"$date":1534461139000} }')
stopifnot(buildJQterm("time",c(ne=time1))==

'"time":{ "$ne":{"$date":1534461139000} }')
stopifnot(buildJQterm("time",c(eq=time1))==

'"time":{ "$eq":{"$date":1534461139000} }')
stopifnot(buildJQterm("time",c(gt=time1,lt=time2))==

'"time":{ "$gt":{"$date":1534461139000}, "$lt":{"$date":1534461199000} }')
stopifnot(buildJQterm("count",c(nin=1,2:4))==

'"count":{"$nin":[1,2,3,4]}')
stopifnot(buildJQterm("count",c("in"=1,2:4))==

'"count":{"$in":[1,2,3,4]}')
stopifnot(buildJQterm("count",c(ne=1,ne=5))==

'"count":{ "$ne":1, "$ne":5 }')

Some Examples of buildJQuery on complete queries.

https://docs.mongodb.com/manual/

10 CaptureListener-class

stopifnot(buildJQuery(app="default",uid="Phred")==
'{ "app":"default", "uid":"Phred" }')

stopifnot(buildJQuery("_id"=c(oid="123456789"))==
'{ "_id":{ "$oid":"123456789" } }')

stopifnot(buildJQuery(name="George",count=c(gt=3,lt=5))==
'{ "name":"George", "count":{ "$gt":3, "$lt":5 } }')

stopifnot(buildJQuery(name="George",count=c(gt=3,lt=5),
rawfields=c('"$limit":1','"$sort":{timestamp:-1}'))==

'{ "name":"George", "count":{ "$gt":3, "$lt":5 }, "$limit":1, "$sort":{timestamp:-1} }')

Queries on IDs need special handling
stopifnot(buildJQuery("_id"=c(oid="123456789abcdef"))==

'{ "_id":{ "$oid":"123456789abcdef" } }')

CaptureListener-class Class "CaptureListener"

Description

This listener simply takes its messages and adds them to a list. It is is mainly used for testing the
message system.

Details

This listener simply takes all messages and pushes them onto the messages field. The messages
field is the complete list of received messages, most recent to most ancient. The method lastMessage()
returns the most recent message.

Extends

This class implements the Listener interface.

All reference classes extend and inherit methods from "envRefClass".

Methods

isListener signature(x = "CaptureListener"): returns true.

receiveMessage signature(x = "CaptureListener"): If the message is in the messSet, it adds
the message to the message list. (See details)

Fields

messages: Object of class list the list of messages in reverse chronological order.

getOneRec 11

Class-Based Methods

lastMessage(): Returns the most recent message.

receiveMessage(mess): Does the work of inserting the message. See Details.

initialize(messages, ...): Sets the default values for the fields.

Author(s)

Russell Almond

References

This is an example of the observer design pattern. https://en.wikipedia.org/wiki/Observer_
pattern.

See Also

Listener, P4Message, CaptureListener, UpdateListener, UpsertListener, InjectionListener,
TableListener,

Examples

mess1 <- P4Message(app="default",uid="Phred",context="Down Hill",
sender="EABN",mess="Statistics",
details=list("Physics_EAP"=0.5237,"Physics_Mode"="High"))

cl <- CaptureListener()
receiveMessage(cl,mess1)
stopifnot(all.equal(mess1,cl$lastMessage()))

getOneRec Fetches Messages from a Mongo databas

Description

This function fetches P4Message objects from a mongo database. The message parser is passed as an
argument, allowing it to fetch other kinds of objects than P4Messages. The function getManyRecs
retrieves all matching objects and the function getOneRec retrieves the first matching object.

Usage

getOneRec(jquery, col, parser, sort = c(timestamp = -1))
getManyRecs(jquery, col, parser, sort = c(timestamp = 1), limit=0)

https://en.wikipedia.org/wiki/Observer_pattern
https://en.wikipedia.org/wiki/Observer_pattern

12 getOneRec

Arguments

jquery A string providing a Mongo JQuery to select the appropriate records. See
buildJQuery.

col A mongo collection object to be queried.

parser A function which will take the list of fields returned from the database and build
an appropriate R object. See parseMessage.

sort A named numeric vector giving sorting instructions. The names should corre-
pond to fields of the objects, and the values should be positive or negative one for
increasing or decreasing order. Use the value NULL to leave the results unsorted.

limit A numeric scalar giving the maximum number of objects to retrieve. If 0, then
all objects matching the query will be retrieved.

Details

This function assumes that a number of objects (usually, but not necessarily subclasses of P4Message
objects) have been stored in a Mongo database. The col argument is the mongo object in which they
are stored. These functions retrive the selected objects.

The first argument should be a string containing a JSON query document. Normally, thes are
constructed through a call to buildJQuery.

The query is used to create an iterator over JSON documents stored in the database. At each round,
the iterator extracts the JSON document as a (nested) list structure. This is pased to the parser
function to build an object of the specified type. See the parseMessage function for an example
parser.

The sorting argument controls the way the returned list of objects is sorted. This should be a
numeric vector with names giving the field for sorting. The default values c("timestamp"=1) and
c("timestamp"=-1) sort the records in ascending and decending order respectively. In particular,
the default value for getOneRec means that the most recent value will be returned. The defaults
assume that “timestamp” is a field of the stored object. To supress sorting of outputs, use NULL as
the argument to sort.

Value

The function getOneRec returns an object whose type is determined by the output of the parser
function. If parseMessage is used, this will be a P4Message object.

The function getManyRecs returns a list of object whose type is determined by the output of the
parser function.

Author(s)

Russell Almond

References

The MongoDB 4.0 Manual: https://docs.mongodb.com/manual/

https://docs.mongodb.com/manual/

getOneRec 13

See Also

saveRec, parseMessage, getOneRec, getManyRecs mongo

Examples

Not run:
Requires Mongo test database to be set up.

m1 <- P4Message("Fred","Task1","PP","Task Done",
details=list("Selection"="B"))

m2 <- P4Message("Fred","Task1","EI","New Obs",
details=list("isCorrect"=TRUE,"Selection"="B"))

m3 <- P4Message("Fred","Task1","EA","New Stats",
details=list("score"=1,"theta"=0.12345,"noitems"=1))

testcol <- mongo("Messages",
url="mongodb://test:secret@127.0.0.1:27017/test")

Mongodb is the protocol
user=test, password =secret
Host = 127.0.0.1 -- localhost
Port = 27017 -- Mongo default
db = test
collection = Messages
collection = Messages
Execute in Mongo Shell
db.createUser({
... user: "test",
... pwd: "secret",
... roles: [{role: "readWrite", db: "test"}]
... });

m1 <- saveRec(m1,testcol)
m2 <- saveRec(m2,testcol)
m3 <- saveRec(m3,testcol)

m1@data$time <- list(tim=25.4,units="secs")
m1 <- saveRec(m1,testcol)

Note use of oid keyword to fetch object by Mongo ID.
m1a <- getOneRec(buildJQuery("_id"=c(oid=m1@"_id")),testcol,parseMessage)
stopifnot(all.equal(m1,m1a))

m123 <- getManyRecs(buildJQuery(uid="Fred"),testcol,parseMessage)
m23 <- getManyRecs(buildJQuery(uid="Fred",sender=c("EI","EA")),

testcol,parseMessage)
m321 <- getManyRecs(buildJQuery(uid="Fred",timestamp=c(lte=Sys.time())),

testcol,parseMessage,sort=c(timestamp=-1))
getManyRecs(buildJQuery(uid="Fred",

timestamp=c(gte=Sys.time()-as.difftime(1,units="hours"))),

14 InjectionListener-class

testcol,parseMessage)

End(Not run)

InjectionListener-class

Class "InjectionListener"

Description

This listener takes messages that match its incomming set and inject them into another Mongo
database (presumably a queue for another service).

Details

The database is a mongo collection identified by dburi, dbname and colname (collection within the
database). The mess field of the P4Message is checked against the applicable messages in messSet.
If it is there, then the message is inserted into the collection.

Extends

This class implements the Listener interface.

All reference classes extend and inherit methods from "envRefClass".

Methods

isListener signature(x = "InjectionListener"): returns true.
receiveMessage signature(x = "InjectionListener"): If the message is in the messSet, it

saves the message to the database. (See details)

Fields

sender: Object of class character which is used as the sender field for the message.
dbname: Object of class character giving the name of the Mongo database
dburi: Object of class character giving the url of the Mongo database.
colname: Object of class character giving the column of the Mongo database.
messSet: A vector of class character giving the name of messages which are sent to the database.

Only messages for which mess(mess) is an element of messSet will be inserted.
db: Object of class MongoDB giving the database. Use messdb() to access this field to makes sure

it has been set up.

Class-Based Methods

messdb(): Accessor for the database collection. Initializes the connection if it has not been set up.
receiveMessage(mess): Does the work of inserting the message. See Details.
initialize(sender, dbname, dburi, colname, messSet, ...): Sets default values for fields.

Listener 15

Author(s)

Russell Almond

References

This is an example of the observer design pattern. https://en.wikipedia.org/wiki/Observer_
pattern.

See Also

Listener, P4Message, InjectionListener, UpdateListener, UpsertListener, CaptureListener,
TableListener, mongo

Examples

Not run:

mess1 <- P4Message(app="default",uid="Phred",context="Down Hill",
sender="EIEvent",mess="New Observables",
details=list(trophy="gold",solvedtime=10))

ilwind <- InjectionListener(sender="EIEvent",messSet="New Observables")
receiveMessage(ilwind,mess1)

End(Not run)

Listener A listener is an object which can recieve a message.

Description

A listener an an object that takes on the observer or listerner role in the the listener (or observer)
design pattern. A listener will register itself with a speaker, and when the speaker sends a message
it will act accordingly. The receiveMessage generic function must be implemented by a listener.
It is called when the speaker wants to send a message.

Usage

receiveMessage(x, mess)
isListener(x)
S4 method for signature 'ANY'
isListener(x)

Arguments

x A object of the virtual class Listner.

mess A P4Message which is being transmitted.

https://en.wikipedia.org/wiki/Observer_pattern
https://en.wikipedia.org/wiki/Observer_pattern

16 Listener

Details

The Listener class is a virtual class. Any object can become a listener by giving it a method
for receiveMessage. The message is intended to be a subclass of P4Message, but in practice, no
restriction is placed on the type of the message.

As Listener is a virtual class, it does not have a formal definition. Instead the generic function
isListner is used to test if the object is a proper listener or not. The default method checks for the
presence of a receiveMessage method. As this might not work properly with S3 objects, an object
can also register itself directly by setting a method for isListner which returns true.

Typically, a lister will register itself with the speaker objects. For example the ListenerSet$addListener
method adds itself to a list of listeners maintained by the object. When the ListenerSet$notifyListeners
method is called, the receiveMessage method is called on each listener in the list.

Value

The isListener function should return TRUE or FALSE, according to whether or not the object
follows the listner protocol.

The receiveMessage function is typically invoked for side effects and it may have any return value.

Author(s)

Russell Almond

References

https://en.wikipedia.org/wiki/Observer_pattern

See Also

Implementing Classes: CaptureListener, UpdateListener, UpsertListener, InjectionListener,
TableListener

Related Classes: ListenerSet, P4Message

Examples

Not run: ## Requires Mongo database set up.
MyListener <- setClass("MyListener",slots=c("name"="character"))
setMethod("receiveMessage","MyListener",

function(x,mess)
cat("I (",x@name,") just got the message ",mess(mess),"\n"))

lset <-
ListenerSet$new(sender="Other",dburi="mongodb://localhost",

colname="messages")
lset$addListener("me",MyListener())

mess1 <- P4Message("Fred","Task 1","Evidence ID","Scored Response",
as.POSIXct("2018-11-04 21:15:25 EST"),

https://en.wikipedia.org/wiki/Observer_pattern

ListenerConstructors 17

list(correct=TRUE,seletion="D"))

mess2 <- P4Message("Fred","Task 2","Evidence ID","Scored Response",
as.POSIXct("2018-11-04 21:17:25 EST"),
list(correct=FALSE,seletion="D"))

lset$notifyListeners(mess1)

lset$removeListener("me")

notifyListeners(lset,mess2)

End(Not run)

ListenerConstructors Constructors for Listener Classes

Description

These functions create objects of class CaptureListener, UpdateListener, UpsertListener,
InjectionListener, and TableListener.

Usage

CaptureListener(messages = list(), ...)
InjectionListener(sender = "sender", dbname = "test",

dburi = "mongodb://localhost",
messSet = character(), colname = "Messages", ...)

UpdateListener(dbname = "test", dburi = "mongodb://localhost",
messSet = character(), colname = "Messages", targetField = "data",
qfields = c("app", "uid"), jsonEncoder = "unparseData", ...)

UpsertListener(sender = "sender", dbname = "test",
dburi = "mongodb://localhost",
messSet = character(), colname = "Messages",
qfields = c("app", "uid"), ...)

TableListener(name = "ppData",
fieldlist = c(uid = "character", context = "character"),
messSet = character(), ...)

Arguments

messages A list into which to add the messages.

sender A character value used as the sender field of the message.

dbname A character value giving the name of the database in which to put the message.
See mongo.

dburi A character vector giving the URI for the database. See mongo.

18 ListenerConstructors

messSet A character vector giving the message values of the messages that will be pro-
cessed. Messages whose mess value are not in this list will be ignored by this
listener.

colname The name of the database column into which the messages will be sent. See
mongo.

targetField The name of the field that will be modified in the database by the UpdateListener.

jsonEncoder A function that will be used to encode the data object as JSON before it is set.
See UpdateListener.

qfields The fields that will be used as a key when trying to find matching messages in
the database for the UpsertListener.

name An object of class character naming the listener.

fieldlist A named character vector giving the names and types of the columns of the
output matrix. See TableListener.

... Other arguments passed to the constructor.

Details

The functions are as follows:

CaptureListener Creates an object of class CaptureListener which stores the messages in a
list.

InjectionListener Creates an object of class InjectionListener which inserts the message
into the designated database.

UpdateListener Creates an object of class UpdateListener which updates the designated field.

UpsertListener Creates an object of class UpsertListener which insert or replaces the message
in the designated collection.

TableListener Creates an object of class TableListener which adds details from message to
rows of a data frame.

See the class descriptions for more information.

Value

An object of the virtual class Listener.

Author(s)

Russell Almond

References

This is an example of the observer design pattern. https://en.wikipedia.org/wiki/Observer_
pattern.

See Also

Listener, P4Message, UpsertListener, UpdateListener, CaptureListener, InjectionListener,
TableListener, ListenerSet, mongo

https://en.wikipedia.org/wiki/Observer_pattern
https://en.wikipedia.org/wiki/Observer_pattern

ListenerSet-class 19

Examples

cl <- CaptureListener()

il <- InjectionListener(sender="EI_app",
dbname="EARecords",dburi="mongodb://localhost",
colname="EvidenceSets",messSet="New Observables")

upsl <- UpsertListener(sender="EI_app",
dbname="EARecords",dburi="mongodb://localhost",
colname="LatestEvidence",messSet="New Observables",
qfields=c("app","uid"))

trophy2json <- function(dat) {
paste('{', '"trophyHall"', ':','[',

paste(
paste('{"',names(dat$trophyHall),'":"',dat$trophyHall,'"}',

sep=""), collapse=", "), '],',
'"bankBalance"', ':', dat$bankBalance, '}')

}
ul <- UpdateListener(dbname="Proc4",dburi="mongodb://localhost",

colname="Players",targetField="data",
messSet=c("Money Earned","Money Spent"),
jsonEncoder="trophy2json")

tabMaker <- TableListener(name="Trophy Table",
messSet="New Observables",
fieldlist=c(uid="character", context="character",

timestamp="character",
solvedtime="numeric",
trophy="ordered(none,silver,gold)"))

ListenerSet-class Class "ListenerSet"

Description

This is a “mix-in” class that adds a speaker protocol to an object, which is complementary to the
Listener protocol. This object maintains a list of listeners. When the notifyListeners method
is called, it notifies each of the listeners by calling the receiveMessage method on the listener.

Extends

All reference classes extend and inherit methods from "envRefClass".

Methods

isListener signature(x = "ListenerSet"): Returns true, as the ListenerSet follows the listener
protocol.

20 ListenerSet-class

receiveMessage signature(x = "ListenerSet"): A synonym for notifyListeners.

notifyListeners signature(sender = "ListenerSet"): A synonym for the notifyListeners
internal method.

Protocol

The key to this class is the notifyListeners method. This method should receive as its argument a
P4Message object. (The protocol is fairly robust to the type of message and the type is not enforced.
In fact, any object which has a as.jlist method should work.)

When the notifier is called it performs the following functions:

1. It saves the message to the collection represented by messdb(). If messdb() is NULL (dburi
is the empty string) then the messages is not saved.

2. It calls the receiveMessage method on each of the objects in the listener list.

3. It logs the messages sent using the flog.logger, in the "Proc4" logger. The sending of the
messages is logged a the “INFO” level, and the actual message at the “DEBUG” level.

In addition, the ListenerSet maintains a named list of Listener objects (that is, objects that have
a receiveMessage method). The methods addListener and removeListener maintain this list.

Fields

sender: Object of class character:the name of the source of the messages.

dburi: Object of class character: the URI for the mongo database. If null, then no recording of
messages to a database is done (except possibly in the listeners).

dbname: Object of class character: the name of the database in which messages should be logged.

colname: Object of class character: the name of the collection in which messages should be
logged.

listeners: A named list of Listener objects, that is objects for which isListener is true.

db: Object of class MongoDB which is a handle to the collection where messages are logged, or NULL
if the log database has not been initialized. As the database may have not been initialized,
programs should call the messdb() method which will open the database connection if it is
not yet open.

Class-Based Methods

notifyListeners(mess): This method calls receiveMessage on all of the listeners. See Protocol
section above.

addListener(name, listener): This method addes a lsitener to the list.

initialize(sender, dburi, listeners, colname, ...): This creates the listener. Note, this
does not initialize the database collection. Call messdb() to initialize the collection.

removeListener(name): This removes a listener from the collection by its name.

messdb signature(): Returns the mongo database collection to which to log messages. Creates
the column if it has not been initialized.

makeDBuri 21

Note

The notifyListeners method uses the flog.logger protocol. In particular, it logs sending the
message at the “INFO” level, and the actual message sent at the “DEBUG” level. In particular,
setting flog.threshold(DEBUG,name="Proc4") will turn on logging of the actual message and
flog.threshold(WARN,name="Proc4") will turn off logging of the message sent messages.

It is often useful to redirect the Proc4 logger to a log file. In addition, changing the logging format to
JSON, will allow the message to be recovered. Thus, try flog.layout(layout.json,name="Proc4"
to activate logging in JSON format.

Author(s)

Russell Almond

References

https://en.wikipedia.org/wiki/Observer_pattern

See Also

Listener, receiveMessage, notifyListeners, flog.logger, mongo, P4Message

Listener Classes. CaptureListener, UpdateListener, UpsertListener, InjectionListener,
TableListener

Examples

showClass("ListenerSet")

makeDBuri Creates the URI needed to connect to a mongo database.

Description

This function formats the universal record indicator (URI) for connecting to a Mongo database. It
is mostly a utility function for formatting the string.

Usage

makeDBuri(username = "", password = "", host = "localhost", port = "",
protocol="mongodb")

https://en.wikipedia.org/wiki/Observer_pattern

22 makeDBuri

Arguments

username The name of the database user (login credential), or an empty string if no user-
name is required.

password The name of the database password (login credential), or an empty string if no
password is required.

host The name or IP address of the system hosting the database.

port The port to be used for connections. Note that the port for a default configuration
of mongo is 27018. This can be left blank to use the default port.

protocol A character scalar giving the protocol to use when connecting, e.g., “mongodb”.

Value

A character string giving the database URI which can be passed to the mongo function to create a
database collection handle.

Note that the password is stored in clear text, so appropriate care should be taken with the result of
this function.

Author(s)

Russell Almond

See Also

MongoDB, mongo

This is an input argument to a number of other classes which use mongo connections.

Examples

stopifnot(makeDBuri()=="mongodb://localhost")

stopifnot(makeDBuri(user="admin",password="secret")==
"mongodb://admin:secret@localhost")

No password
stopifnot(makeDBuri(user="admin")==

"mongodb://admin@localhost")

stopifnot(makeDBuri(host="example.com",port=12345) ==
"mongodb://example.com:12345")

markAsProcessed 23

markAsProcessed Functions for manipulating entries in a message queue.

Description

A collection of message objects can serve as a queue: they can be sorted by their timestamp and
then processed one at a time. The function markAsProcessed sets the processed flag on the message
and then saves it back to the database. The function processed returns the processed flag.

The function markAsError attaches an error to the message and saves it. The function processingError
returns the error (if it exists).

Usage

markAsProcessed(mess, col)
markAsError(mess, col, e)
processed(x)
processingError(x)

Arguments

mess An object of class P4Message to be modified.

col A mongo collection where the message queue is stored. This can also be NULL in
which case the message will not be saved to the database.

e An object indicating the error occurred. Note this could be either a string giving
the error message of an object of an error class. In either case, it is converted to
a string before saving.

x A message object to be queried.

Details

A mongo collection of messages can serve as a queue. As messages are added into the queue,
the processed flag is set to false. The handler then fetches them one at a time (sorting by the
timestamp). It then does whatever action is required to handle the message. Then the function
markAsProcessed is called to set the processed flag to true and update the entry in the database.

A typical query (this example is taken from the EIEvent-package) is getOneRec(buildJQuery(app=app, processed=FALSE), eventdb(), parseEvent, sort = c(timestamp = 1)).
Here the buildJQuery call searches for unprocessed events corresponding to a particular app. The
sort argument ensures that the records will be sorted in ascending order according to timestamp. In
this example eventdb() in an internal method which returns the event collection, and parseEvent
create event objects (which are a subclass of P4Message.

Some thought needs to be given as to how to handle errors. The function markAsError attaches an
error object to the message and then updates it in the collection. The error object is turned into a
string (using toString) before saving, so it can be any type of R object (in particular, it could be
either the error message or the actual error object thrown by the function).

24 markAsProcessed

Value

The functions markAsProcessed and markAsError both return the modified message.

The function processed returns a logical value indicating whether or not the message has been
processed.

The function processingError returns the error object attached to the message, or NULL if no error
object is returned. Note that the error object could be of any type.

Note

The functions markAsProcessed and markAsError do not save the complete record, they just up-
date the processed or error field.

There was a bug in early version of this function, which caused the error to be put into a list when
it was saved. This needs to be carefully checked.

Author(s)

Russell Almond

See Also

P4Message, getOneRec, buildJQuery, timestamp

Examples

col <- mongo("TestMessages")
col$remove('{}') # Clear out anything else in queue.
mess1 <- P4Message("One","Adder","Tester","Add me",app="adder",

details=list(x=1,y=1))
mess2 <- P4Message("Two","Adder","Tester","Add me",app="adder",

details=list(x="two",y=2))
mess1 <- saveRec(mess1,col,FALSE)
mess2 <- saveRec(mess2,col,FALSE)

mess <- getOneRec(buildJQuery(app="adder", processed=FALSE),
col, parseMessage, sort = c(timestamp = 1))

iterations <- 0
while (!is.null(mess)) {

if (iterations > 4L)
stop ("Test not terminating, flag not being set?")

iterations <- iterations + 1
print(mess)
print(details(mess))
out <- try(print(details(mess)$x+details(mess)$y))
if (is(out,'try-error'))
mess <- markAsError(mess,col,out)
mess <- markAsProcessed(mess,col)
mess <- getOneRec(buildJQuery(app="adder", processed=FALSE),

col, parseMessage, sort = c(timestamp = 1))

MongoDB-class 25

}

mess1a <- getOneRec(buildJQuery(app="adder",uid="One"),col,parseMessage)
mess2a <- getOneRec(buildJQuery(app="adder",uid="Two"),col,parseMessage)
stopifnot(processed(mess1a),processed(mess2a),

is.null(processingError(mess1a)),
grepl("Error",processingError(mess2a)))

MongoDB-class Class "MongoDB"

Description

An S4-style class for the mongo class. Note that this is actually a class union, allowing for NULL if
the database is not yet initialized.

Objects from the Class

NULL is an object of this class.

Objects of this class can be created with calls to mongo.

Methods

No methods defined with class "MongoDB" in the signature.

Note

The original mongo class is an S3 class. Rather than just call setOldClass and exposing that, I’ve
explosed a class union (setClassUnion) with the mongo class and NULL.

A typical usage would have this type used in the slot of an object, which would initialize the value
to NULL, and then set it to a mongo object when the database connection is openned.

Author(s)

Russell Almond

See Also

ListenerSet, mongo

Examples

showClass("MongoDB")
showClass("ListenerSet")
lset <- ListenerSet$new()
lset$messdb

26 name

name Returns the name of an object.

Description

This returns a character string identifying the object.

Usage

name(x)

Arguments

x An object whose name is of interest.

Value

A character scalar identifying the object.

Author(s)

Russell Almond

See Also

TableListener

Examples

mess1 <- P4Message(app="default",uid="Phred",context="Down Hill",
sender="EIEvent",mess="New Observables",
details=list(trophy="gold",solvedtime=10))

tabMaker <- TableListener(name="Trophy Table",
messSet="New Observables",
fieldlist=c(uid="character", context="character",

timestamp="character",
solvedtime="numeric",
trophy="ordered(none,silver,gold)"))

name(tabMaker)

notifyListeners 27

notifyListeners Notifies listeners that a new message is available.

Description

This is a generic function for objects that send P4Message objects. When this function is called,
the message is sent to the listeners; that is, the receiveMessage function is called on the listener
objects. Often, this protocol is implemented by having the sender include a ListenerSet object.

Usage

notifyListeners(sender, mess)

Arguments

sender An object which sends messages.

mess A P4Message to be sent.

Value

Function is invoked for its side effect, so return value may be anything.

Author(s)

Russell Almond

See Also

P4Message, Listener, ListenerSet

Examples

Not run: ## Requires Mongo database set up.
MyListener <- setClass("MyListener",slots=c("name"="character"))
setMethod("receiveMessage","MyListener",

function(x,mess)
cat("I (",x@name,") just got the message ",mess(mess),"\n"))

lset <-
ListenerSet$new(sender="Other",dburi="mongodb://localhost",

colname="messages")
lset$addListener("me",MyListener())

mess1 <- P4Message("Fred","Task 1","Evidence ID","Scored Response",
as.POSIXct("2018-11-04 21:15:25 EST"),
list(correct=TRUE,seletion="D"))

mess2 <- P4Message("Fred","Task 2","Evidence ID","Scored Response",

28 P4Message

as.POSIXct("2018-11-04 21:17:25 EST"),
list(correct=FALSE,seletion="D"))

lset$notifyListeners(mess1)

lset$removeListener("me")

notifyListeners(lset,mess2)

End(Not run)

P4Message Constructor and accessors for P4 Messages

Description

The function P4Message() creates an object of class "P4Message". The other functions access
fields of the messages.

Usage

P4Message(uid, context, sender, mess, timestamp = Sys.time(), details = list(), app = "default", processed=FALSE)
m_id(x)
app(x)
uid(x)
mess(x)
context(x)
sender(x)
timestamp(x)
details(x)
S4 method for signature 'P4Message'
toString(x,...)
S4 method for signature 'P4Message'
show(object)
S3 method for class 'P4Message'
all.equal(target, current, ..., checkTimestamp = FALSE,

check_ids = TRUE)

Arguments

uid A character object giving an identifier for the user or student.

context A character object giving an identifier for the context, task, or item.

sender A character object giving an identifier for the sender. In the four-process archi-
tecture, this should be one of “Activity Selection Process”, “Presentation Pro-
cess”, “Evidnece Identification Process”, or “Evidence Accumulation Process”.

mess A character object giving a message to be sent.

P4Message 29

timestamp The time the message was sent.

details A list giving the data to be sent with the message.

app An identifier for the application using the message.

processed A logical flag: true if the message has been processed and false otherwise.

x A message object to be queried, or converted to a string.

... Addtional arguments for show or all.equal.

object A message object to be converted to a string.

target A P4Message to compare.

current A P4Message to compare.

checkTimestamp Logical flag. If true, the timestamps are compared as part of the equality test.

check_ids Logical flag. If true, the database ids are compared as part of the equality test.

Details

This class represents a semi-structured data object with certain header fields which can be indexed
plus the free-form details() field which contains the body of the message. It can be serielized in
JSON format (using as.json in the Mongo database (using the mongolite package).

Using the public methods, the fields can be read but not set. The generic functions are exported so
that other object can extend the P4Message class. The m_id function accesses the mongo ID of the
object (the _id field).

The function all.equal.P4Message checks two messages for identical contents. The flags checkTimestamp
and check_ids can be used to suppress the checking of those fields. If timestamps are checked,
they must be within .1 seconds to be considered equal.

Value

An object of class P4Message.

The app(), uid(), context(), sender(), and mess() functions all return a character scalar. The
timestamp(), function returns an object of type POSIXt and the details() function returns a list.

The function all.equal.P4Message returns either ‘TRUE’ or a vector of mode "character" de-
scribing the differences between target and current.

Author(s)

Russell G. Almond

References

Almond, R. G., Steinberg, L. S., and Mislevy, R.J. (2002). Enhancing the design and delivery of As-
sessment Systems: A Four-Process Architecture. Journal of Technology, Learning, and Assessment,
1, http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671.

See Also

P4Message — class parseMessage, saveRec, getOneRec

http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671

30 P4Message-class

Examples

mess1 <- P4Message("Fred","Task 1","Evidence ID","Scored Response",
as.POSIXct("2018-11-04 21:15:25 EST"),
list(correct=TRUE,selection="D"))

stopifnot(
app(mess1) == "default",
uid(mess1) == "Fred",
context(mess1) == "Task 1",
sender(mess1) == "Evidence ID",
mess(mess1) == "Scored Response",
timestamp(mess1) == as.POSIXct("2018-11-04 21:15:25 EST"),
details(mess1)$correct==TRUE,
details(mess1)$selection=="D"

)

mess2 <- P4Message("Fred","Task 1","Evidence ID","Scored Response",
as.POSIXct("2018-11-04 21:15:25 EST"),
list(correct=FALSE,selection="E"))

all.equal(mess1,mess2)
stopifnot(!isTRUE(all.equal(mess1,mess2)))

P4Message-class Class "P4Message"

Description

This is a message which is sent from one process to another in the four process architecture. There
are certain header fields with are used to route the message and the details field which is an arbitrary
list of data which will can be used by the receiver.

This class represents a semi-structured data object with certain header fields which can be indexed
plus the free-form details() field which contains the body of the message. It can be serielized in
JSON format (using as.json) or saved in the Mongo database (using the mongolite package).

Objects from the Class

Objects can be created by calls to the P4Message() function.

Message Queues

Because all messages have a processed flag and a timestamp, a message collection becomes a queue.
Simply search for the message with the earliest timestamp with processed(mess)==FALSE and
excute that. Then sets processed equal to true using markAsProcessed.

If an error occurs during processing, the error can be associated with the message by setting the
pError field using markAsError.

P4Message-class 31

Slots

_id: Used for internal database ID.
app: Object of class "character" which specifies the application in which the messages exit.
uid: Object of class "character" which identifies the user (student).
context: Object of class "character" which identifies the context, task, or item.
sender: Object of class "character" which identifies the sender. This is usually one of "Pre-

sentation Process", "Evidence Identification Process", "Evidence Accumulation Process", or
"Activity Selection Process".

mess: Object of class "character" a general title for the message context.
timestamp: Object of class "POSIXt" which gives the time at which the message was generated.
data: Object of class "list" which contains the data to be transmitted with the message.
processed: A logical value: true if the message has been processed, and false if the message is

still in queue to be processed. This field is set with markAsProcessed.
pError: If a error occurs while processing this event, information about the error can be stored

here, either as an R object, or as an R object of class error (or any class). This field is accessed
with processingError and set with markAsError.

Methods

m_id signature(x = "ANY"): returns the _id field, the database ID.
app signature(x = "P4Message"): returns the app field.
as.jlist signature(obj = "P4Message", ml = "list"): coerces the object into a list to be

processed by toJSON.
as.json signature(x = "P4Message"): Coerces the message into a JSON string.
context signature(x = "P4Message"): returns the context field.
details signature(x = "P4Message"): returns the data associated with the message as a list.
mess signature(x = "P4Message"): returns the message field.
sender signature(x = "P4Message"): returns the sender field.
timestamp signature(x = "P4Message"): returns the timestamp.
uid signature(x = "P4Message"): returns the user ID.
processing signature(x = "P4Message"): returns a logical value indicated whether or not the

message has been marked as processed.
processingError signature(x = "P4Message"): if an error occurred while processing this mes-

sage, returns a value describing the error. Otherwise, returns NULL.

Author(s)

Russell G. Almond

References

Almond, R. G., Steinberg, L. S., and Mislevy, R.J. (2002). Enhancing the design and delivery of As-
sessment Systems: A Four-Process Architecture. Journal of Technology, Learning, and Assessment,
1, http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671.

http://ejournals.bc.edu/ojs/index.php/jtla/article/view/1671

32 parseMessage

See Also

P4Message() — constructor parseMessage, saveRec, getOneRec

Examples

showClass("P4Message")

parseMessage Converts a JSON object into a P4 Message

Description

The parseMessage function is a parser to use with the getOneRec and getManyRecs database query
functions. This function will convert the documents fetched from the database into P4Message
objects. The function parseData is a helper function for parsing the data field of the P4Message
object, and unparseData is its inverse.

Usage

parseMessage(rec)
cleanMessageJlist(rec)
parseData(messData)
parseSimpleData(messData)
unparseData(data, serialize=TRUE)

Arguments

rec A named list containing JSON data.
messData A named list containing JSON data.
data An R object to be serialized.
serialize A logical flag. If true, serializeJSON is used to protect the data field (and

other objects which might contain complex R code.

Details

The $iterator() method of the mongo object returns a list containing the fields of the JSON ob-
ject with a name=value format. This is the rec argument. The parseMessage function takes the
fields of the JSON object and uses them to populate a corresponding P4Message object. Usually,
some cleaning is done first (e.g., to check the argument types and insert default values). The func-
tion cleanMessageJlist does that cleaning for the common fields of the P4Message object, so
subclasses P4Message can inheret the parsing for the commond message fields.

The data field needs extra care as it could contain arbitrary R objects. There are two strategies
for handling the data field. First, use serializeJSON to turn the data field into a slob (string large
object), and unserializeJSON to decode it. This strategy should cover most special cases, but does
not result in easily edited JSON output. Second, recursively apply unboxer and use the function
parseSimpleMessage to undo the coding. This results in output which should be more human
readable, but does not handle objects (either S3 or S4). It also may fail on more complex list
structures.

parseMessage 33

Value

The function parseMessage returns a P4Message object populated with fields from the rec argu-
ment. The function cleanMessageJlist returns the cleaned rec argument.

The function unparseData returns a JSON string representing the data. The functions parseData
and parseSimpleData return a list containing the data.

Note

I hit the barrier pretty quickly with trying to unparse the data manually. In particular, it was impos-
sible to tell the difference between a list of integers and a vector of integers (or any other storage
type). So, I went with the serialize solution.

The downside of the serial solution is that it stores the data field as a slob. This means that data
values cannot be indexed. If this becomes a problem, a more complex implementation may be
needed.

Author(s)

Russell Almond

See Also

as.jlist, getOneRec, getManyRecs, P4Message

mongo, serializeJSON, unserializeJSON

Examples

m1 <- P4Message("Fred","Task1","PP","Task Done",
details=list("Selection"="B"))

m2 <- P4Message("Fred","Task1","EI","New Obs",
details=list("isCorrect"=TRUE,"Selection"="B"))

m3 <- P4Message("Fred","Task1","EA","New Stats",
details=list("score"=1,"theta"=0.12345,"noitems"=1))

ev1 <- P4Message("Phred","Level 1","PP","Task Done",
timestamp=as.POSIXct("2018-12-21 00:01:01"),
details=list("list"=list("one"=1,"two"=1:2),"vector"=(1:3)))

m1a <- parseMessage(ununboxer(as.jlist(m1,attributes(m1))))
m2a <- parseMessage(ununboxer(as.jlist(m2,attributes(m2))))
m3a <- parseMessage(ununboxer(as.jlist(m3,attributes(m3))))

ev1a <- parseMessage(ununboxer(as.jlist(ev1,attributes(ev1))))

stopifnot(all.equal(m1,m1a),
all.equal(m2,m2a),
all.equal(m3,m3a),
all.equal(ev1,ev1a))

34 saveRec

Not run: #Requires test DB setup.
testcol <- mongo("Messages",

url="mongodb://test:secret@127.0.0.1:27017/test")
Mongodb is the protocol
user=test, password =secret
Host = 127.0.0.1 -- localhost
Port = 27017 -- Mongo default
db = test
collection = Messages
testcol$remove('{}') ## Clear everything for test.

m1 <- saveRec(m1,testcol)
m2 <- saveRec(m2,testcol)
m3 <- saveRec(m3,testcol)
ev1 <- saveRec(ev1,testcol)

m1 <- saveRec(m1,testcol)
m1b <- getOneRec(buildJQuery("_id"=c("oid"=m1@"_id")),testcol,parseMessage)
stopifnot(all.equal(m1,m1b))
m23 <- getManyRecs(buildJQuery("uid"="Fred",sender=c("EI","EA")),

testcol,parseMessage)
stopifnot(length(m23)==2L)
ev1b <- getOneRec(buildJQuery("uid"="Phred"),

testcol,parseMessage)
stopifnot(all.equal(ev1,ev1b))

End(Not run)

saveRec Saves a P4 Message object to a Mongo database

Description

This function saves an S4 object as a record in a Mongo databalse. It uses as.json to covert the
object to a JSON string.

Usage

saveRec(mess, col, serialize=TRUE)

Arguments

mess The message (object) to be saved.

col A mongo collection object, produced with a call to mongo(). This can also be
NULL, in which case the message will not be saved.

serialize A logical flag. If true, serializeJSON is used to protect the data field (and
other objects which might contain complex R code.

TableListener-class 35

Value

Returns the message argument, which may be modified by setting the "_id" field if this is the first
time saving the object.

Author(s)

Russell Almond

See Also

as.json, P4Message, parseMessage, getOneRec, mongo

Examples

Not run: ## Need to set up database or code won't run.
m1 <- P4Message("Fred","Task1","PP","Task Done",

details=list("Selection"="B"))
m2 <- P4Message("Fred","Task1","EI","New Obs",

details=list("isCorrect"=TRUE,"Selection"="B"))
m3 <- P4Message("Fred","Task1","EA","New Stats",

details=list("score"=1,"theta"=0.12345,"noitems"=1))

testcol <- mongo("Messages",
url="mongodb://test:secret@127.0.0.1:27017/test")

Mongodb is the protocol
user=test, password =secret
Host = 127.0.0.1 -- localhost
Port = 27017 -- Mongo default
db = test
collection = Messages

Save them back to capture the ID.
m1 <- saveRec(m1,testcol)
m2 <- saveRec(m2,testcol)
m3 <- saveRec(m3,testcol)

End(Not run)

TableListener-class Class "TableListener"

Description

A listener that captures data from a P4Message and puts it into a dataframe.

36 TableListener-class

Details

This listener builds up a data frame with selected data from the messages. What data is captured is
controlled by the fieldlist object. This is a named character vector whose names correspond to
field names and whose values correspond to type names (see typeof. The type can also be one of
the two special types, ordered or factor. The following is a summary of the most common types:

"numeric", "logical", "integer", "double": These are numeric values.

"character": These are character values. They are not converted to factors (see factor types be-
low).

"list","raw", other values returned by typeof: These are usuable, but should be used with cau-
tion because the output data frame may not be easy to export to other program.

"ordered(...)", "factor(...)": These produce objects of type ordered and factor with the
comma separated values between the parenthesis passed as the levels argument. For exam-
ple, "ordered(Low,Medium,High)" will produces an ordered factor with three levels. (Note
that levels should be in increasing order for ordered factors, but this doesn’t matter for un-
ordered factors.)

For most fields, the field name is matched to the corresponding element of the details of the
messages. The exceptions are the names app, context, uid, mess, sender, timestamp, which
return the value of the corresponding header fields of the message. Note that

Extends

This class implements the Listener interface.

All reference classes extend and inherit methods from "envRefClass".

Methods

isListener signature(x = "TableListener"): TRUE

receiveMessage signature(x = "TableListener"): If the message is in the messSet, it adds a
row to its internal table using the fields specified in fieldlist. (See details.)

name signature(x = "TableListener"): returns the name of the table. This is usually also the
filename where the table will be stored.

Fields

name: Object of class character naming the listener.

fieldlist: A named character vector giving the names and types of the columns of the output
matrix. See details.

df: Object of class data.frame this is the output data frame. Note that the first line is blank line.
Use the function $returnDF() to get the valid rows.

messSet: A vector of class character giving the name of messages which are sent to the database.
Only messages for which mess(mess) is an element of messSet will be added to the table..

unboxer 37

Class-Based Methods

receiveMessage(mess): Processes the message argument.

initDF(): An internal function that sets up the first row of the table as a blank line of the proper
types. Called by receiveMessage().

initialize(name, fieldlist, messSet, ...): Initializes the fields.

returnDF(): Returns the part of the df which has data (e.g., omits first line which is used to set
the types.)

Author(s)

Russell Almond, Lukas Liu, Nan Wang

References

This is an example of the observer design pattern. https://en.wikipedia.org/wiki/Observer_
pattern.

See Also

Listener, P4Message, UpdateListener, InjectionListener, CaptureListener, UpsertListener,
TableListener,

Examples

mess1 <- P4Message(app="default",uid="Phred",context="Down Hill",
sender="EIEvent",mess="New Observables",
details=list(trophy="gold",solvedtime=10))

tabMaker <- TableListener(name="Trophy Table",
messSet="New Observables",
fieldlist=c(uid="character", context="character",

timestamp="character",
solvedtime="numeric",
trophy="ordered(none,silver,gold)"))

receiveMessage(tabMaker,mess1)
tabMaker$returnDF()

unboxer Marks scalar objects to be preserved when converting to JSON

https://en.wikipedia.org/wiki/Observer_pattern
https://en.wikipedia.org/wiki/Observer_pattern

38 unboxer

Description

The function toJSON coverts vectors (which all R objects are) to vectors in the JSON code. The
function jsonlite::unbox protects the object from this behavior, which makes the fields eaiser
to search and protects against loss of name attributes. The function unboxer extents unbox to
recursively unbox lists (which preserves names). The function ununbox removes the unboxing flag
and is mainly used for testing parser code.

Usage

unboxer(x)
ununboxer(x)

Arguments

x Object to be boxed/unboxed.

Details

The jsonlite::unbox function does not necessarily preserve the name attributes of elements of
the list. In other words the sequence as.jlist -> toJSON -> fromJSON -> parseMessage might
not be the identity.

The solution is to recursively apply unbox to the elements of the list. The function unboxer can be
thought of as a recursive version of unbox which handles the entire tree struction. If x is not a list,
then unboxer and unbox are equivalent.

The typical use of this function is defining methods for the as.jlist function. This gives the
implementer fine control of which attributes of a class should be scalars and vectors.

The function ununbox clears the unboxing flag. Its main purpose is to be able to test various parsers.

Value

The function unboxer returns the object with the added class scalar, which is the jsonlite marker
for a scalar.

The function ununboxer returns the object without the scalar class marker.

Warning: Dependence on jsonlite implementation

These functions currently rely on some internal mechanisms of the jsonline pacakge. In particu-
lar, it uses the internal function jsonlite:::as.scalar, and ununbox relies on the “scalar” class
mechanism.

Note

There is a bug in the way that POSIXt classes are handled, unboxer fixes that problem.

Author(s)

Russell Almond

UpdateListener-class 39

See Also

unbox, toJSON, as.jlist, parseMessage

Examples

as.jlist method shows typical use of unboxer.
getMethod("as.jlist",c("P4Message","list"))

Use ununboxer to test as.jlist/parseMessage pair.
m4 <- P4Message("Phred","Task1","PP","New Stats",

details=list("agents"=c("ramp","ramp","lever")))
m4jl <- as.jlist(m4,attributes(m4))
m4a <- parseMessage(ununboxer(m4jl))
stopifnot(all.equal(m4,m4a))

UpdateListener-class Class "UpdateListener"

Description

This Listener updates an existing record (in a Mongo collection) for the student (uid), with the
contents of the data (details) field of the message.

Details

The database is a mongo collection identified by dburi, dbname and colname (collection within the
database). The mess field of the P4Message is checked against the applicable messages in messSet.
If it is there, then the record in the database corresponding to the qfields (by default app(mess)
and uid(mess)) is updated. Specifically, the field targetField is set to details(mess). The
function jsonEncoder is called to encode the target field as a JSON object for injection into the
database.

Extends

This class implements the Listener interface.

All reference classes extend and inherit methods from "envRefClass".

Methods

isListener signature(x = "UpdateListener"): TRUE

receiveMessage signature(x = "UpdateListener"): If the message is in the messSet, it up-
dates the record corresponding to app(mess) and uid(mess) in the database with the contents
of details(mess). (See details.)

40 UpdateListener-class

Fields

dbname: Object of class character giving the name of the Mongo database

dburi: Object of class character giving the url of the Mongo database.

colname: Object of class character giving the column of the Mongo database.

messSet: A vector of class character giving the name of messages which are sent to the database.
Only messages for which mess(mess) is an element of messSet will be inserted.

db: Object of class MongoDB giving the database. Use messdb() to access this field to makes sure
it has been set up.

qfields: Object of class character giving the names of the fields which should be considered a
key for the messages.

targetField: Object of class character naming the field which is to be set.

jsonEncoder: Object of class character naming a function which will be used to encode details(mess)
as a JSON object. The default is unparseData.

Class-Based Methods

messdb(): Accessor for the database collection. Initializes the connection if it has not been set up.

receiveMessage(mess): Does the work of updating the database. See Details.

initialize(sender, dbname, dburi, colname, messSet, ...): Sets default values for fields.

Author(s)

Russell Almond

References

This is an example of the observer design pattern. https://en.wikipedia.org/wiki/Observer_
pattern.

See Also

Listener, P4Message, UpdateListener, InjectionListener, CaptureListener, UpsertListener,
TableListener, mongo

The function unparseData is the default encoder.

Examples

mess2 <- P4Message(app="default",uid="Phred",context="Down Hill",
sender="EIEvent",mess="Money Earned",
details=list(trophyHall=list(list("Down Hill"="gold"),

list("Stairs"="silver")),
bankBalance=10))

data2json <- function(dat) {
toJSON(sapply(dat,unboxer))

}
upwind <- UpdateListener(messSet=c("Money Earned","Money Spent"),

targetField="data",colname="Players",

https://en.wikipedia.org/wiki/Observer_pattern
https://en.wikipedia.org/wiki/Observer_pattern

UpsertListener-class 41

jsonEncoder="data2json")

receiveMessage(upwind,mess2)

UpsertListener-class Class "UpsertListener"

Description

This listener takes messages that match its incomming set and inject them into another Mongo
database (presumably a queue for another service). If a matching message exists, it is replaced
instead.

Details

The database is a mongo collection identified by dburi, dbname and colname (collection within the
database). The mess field of the P4Message is checked against the applicable messages in messSet.
If it is there, then the message is saved in the collection.

Before the message is saved, the collection is checked to see if another message exits which matches
on the fields listed in qfields. If this is true, the message in the database is replaced. If not, the
message is inserted.

Extends

This class implements the Listener interface.

All reference classes extend and inherit methods from "envRefClass".

Methods

isListener signature(x = "UpsertListener"): returns true.

receiveMessage signature(x = "UpsertListener"): If the message is in the messSet, it saves
or replaces the message inthe database. (See details)

Fields

sender: Object of class character which is used as the sender field for the message.

dbname: Object of class character giving the name of the Mongo database

dburi: Object of class character giving the url of the Mongo database.

colname: Object of class character giving the column of the Mongo database.

qfields: Object of class character giving the names of the fields which should be considered a
key for the messages.

messSet: A vector of class character giving the name of messages which are sent to the database.
Only messages for which mess(mess) is an element of messSet will be inserted.

db: Object of class MongoDB giving the database. Use messdb() to access this field to makes sure
it has been set up.

42 withFlogging

Class-Based Methods

messdb(): Accessor for the database collection. Initializes the connection if it has not been set up.

receiveMessage(mess): Does the work of inserting the message. See Details.

initialize(sender, dbname, dburi, colname, messSet, qfields, ...): Sets the default
values for the fields.

Author(s)

Russell Almond

References

This is an example of the observer design pattern. https://en.wikipedia.org/wiki/Observer_
pattern.

See Also

Listener, P4Message, UpsertListener, UpdateListener, CaptureListener, InjectionListener,
TableListener, mongo

Examples

Not run:
mess1 <- P4Message(app="default",uid="Phred",context="Down Hill",

sender="EABN",mess="Statistics",
details=list("Physics_EAP"=0.5237,"Physics_Mode"="High"))

ul <- UpsertListener(colname="Statistics",qfields=c("app","uid"),
messSet=c("Statistics"))

receiveMessage(ul,mess1)

End(Not run)

withFlogging Invoke expression with errors logged and traced

Description

This is a version of try with a couple of important differences. First, error messages are redirected
to the log, using the flog.logger mechanisms. Second, extra context information can be provided
to aid with debugging. Third, stack traces are added to the logs to assist with later debugging.

Usage

withFlogging(expr, ..., context = deparse(substitute(expr)), loggername = flog.namespace(), tracelevel = c("WARN", "ERROR", "FATAL"))

https://en.wikipedia.org/wiki/Observer_pattern
https://en.wikipedia.org/wiki/Observer_pattern

withFlogging 43

Arguments

expr The expression which will be exectued.

... Additional context arguments. Each additional argument should have an explicit
name. In the case of an error or warning, the additional context details will be
added to the log.

context A string identifying the context in which the error occurred. For example, it can
identify the case which is being processed.

loggername This is passed as the name argument to flog.logger. It defaults to the package
in which the call to withFlogging was made.

tracelevel A character vector giving the levels of conditions for which stack traces should
be added to the log. Should be strings with values “TRACE”, “DEBUG”,
“INFO”, “WARN”, “ERROR” or “FATAL”.

Details

The various processes of the four process assessment design are meant to run as servers. So when
errors occur, it is important that they get logged with sufficient detail that they can be reproduced,
fixed and added to the test suite to prevent recurrance.

First, signals are caught and redirected to the appropriate flog.logger handler. This has sev-
eral important advantages. First, the output can be directed to various files depending on the
origin package. In general, the name of the package should be the name of the logger. So,
flog.appender(appender.file("/var/log/Proc4/EIEvent_log.json"), name="EIEvent")
would log error from the EIEvent package to the named file. Furthermore, flog.layout(layout.json,name="EIEvent")
will cause the log to be in JSON format.

Second, additional context information is logged at the “DEBUG” level when an condition is sig-
naled. The context string is printed along with the error or warning message. This can be used,
for example, to provide information about the user and task that was being processed when the
condition was signaled. In addition, any of the ... arguments are printed. This can be used to print
information about the message being processed and the initial state of the system, so that the error
condition can be reproduced.

Third, if the class of the exception is in the tracelevel list, then a stack trace will be logged (at
the “DEBUG” level) along with the error. This should aid debugging.

Fourth, in the case of an error or fatal error, an object of class try-error (see try). Among other
things, this guarentees that withFlogging will always return control to the next statement.

Value

If expr executes successfully (with no errors or fatal errors) then the value of expr will be returned.
If an error occurs during execution, then an object of class try-error will be returned.

Author(s)

Russell Almond

44 withFlogging

References

The code for executing the stack trace was taken from https://stackoverflow.com/questions/
1975110/printing-stack-trace-and-continuing-after-error-occurs-in-r

See Also

try, flog.logger, flog.layout, flog.appender

Examples

Not run:
Setup to log to file in json format.
flog.appender(appender.file("/var/log/Proc4/Proc4_log.json"),

name="Proc4")
flog.layout(layout.json,name="EIEvent")

End(Not run)

xy <- withFlogging(stop("shoes untied"),context="walking",foot="left")
stopifnot(is(xy,"try-error"))

xx <- withFlogging(log(-1))
stopifnot(is.nan(xx))

withFlogging(log(-1),tracelevel=c("ERROR","FATAL"))

https://stackoverflow.com/questions/1975110/printing-stack-trace-and-continuing-after-error-occurs-in-r
https://stackoverflow.com/questions/1975110/printing-stack-trace-and-continuing-after-error-occurs-in-r

Index

∗Topic IO
as.json, 6

∗Topic classes
CaptureListener-class, 10
InjectionListener-class, 14
ListenerSet-class, 19
MongoDB-class, 25
P4Message, 28
P4Message-class, 30
TableListener-class, 35
UpdateListener-class, 39
UpsertListener-class, 41

∗Topic database
buildJQuery, 8
getOneRec, 11
ListenerConstructors, 17
makeDBuri, 21
markAsProcessed, 23
parseMessage, 32
Proc4-package, 2
saveRec, 34

∗Topic debugging
withFlogging, 42

∗Topic error
withFlogging, 42

∗Topic interfaces
as.json, 6

∗Topic interface
buildJQuery, 8
getOneRec, 11
Listener, 15
ListenerConstructors, 17
makeDBuri, 21
markAsProcessed, 23
notifyListeners, 27
parseMessage, 32
unboxer, 37

∗Topic manip
name, 26

∗Topic objects
Listener, 15
notifyListeners, 27

∗Topic package
Proc4-package, 2

all.equal, 29
all.equal.P4Message (P4Message), 28
app, 23, 36
app (P4Message), 28
app,P4Message-method (P4Message-class),

30
as.jlist, 3, 20, 33, 38, 39
as.jlist (as.json), 6
as.jlist,P4Message,list-method

(P4Message-class), 30
as.json, 3, 6, 9, 29, 30, 34, 35
as.json,ANY-method (as.json), 6
as.json,P4Message-method

(P4Message-class), 30
attributes, 3

BNEngine, 4
buildJQterm (buildJQuery), 8
buildJQuery, 8, 12, 23, 24

CaptureListener, 4, 11, 15–18, 21, 37, 40, 42
CaptureListener (ListenerConstructors),

17
CaptureListener-class, 10
cleanMessageJlist, 3
cleanMessageJlist (parseMessage), 32
context, 36
context (P4Message), 28
context,P4Message-method

(P4Message-class), 30

details, 36
details (P4Message), 28
details,P4Message-method

(P4Message-class), 30

45

46 INDEX

EABN, 6
EIEngine, 4
EIEvent, 6
envRefClass, 10, 14, 19, 36, 39, 41

factor, 36
flog.appender, 44
flog.layout, 21, 44
flog.logger, 2, 3, 6, 20, 21, 42–44
flog.threshold, 21
fromJSON, 3, 38

getManyRecs, 3, 9, 13, 32, 33
getManyRecs (getOneRec), 11
getOneRec, 3, 9, 11, 13, 24, 29, 32, 33, 35

InjectionListener, 4, 11, 15–18, 21, 37, 40,
42

InjectionListener
(ListenerConstructors), 17

InjectionListener-class, 14
isListener, 4, 20
isListener (Listener), 15
isListener,ANY-method (Listener), 15
isListener,CaptureListener-method

(CaptureListener-class), 10
isListener,InjectionListener-method

(InjectionListener-class), 14
isListener,ListenerSet-method

(ListenerSet-class), 19
isListener,TableListener-method

(TableListener-class), 35
isListener,UpdateListener-method

(UpdateListener-class), 39
isListener,UpsertListener-method

(UpsertListener-class), 41

layout.json, 21
Listener, 2–4, 10, 11, 14, 15, 15, 18–21, 27,

36, 37, 39–42
Listener-class (Listener), 15
ListenerConstructors, 17
ListenerSet, 4, 16, 18, 25, 27
ListenerSet (ListenerSet-class), 19
ListenerSet-class, 19

m_id (P4Message), 28
m_id,ANY-method (P4Message-class), 30
makeDBuri, 21

markAsError, 3, 30, 31
markAsError (markAsProcessed), 23
markAsProcessed, 3, 23, 30, 31
mess, 18, 36
mess (P4Message), 28
mess,P4Message-method

(P4Message-class), 30
mongo, 2, 3, 9, 11–15, 17, 18, 20–23, 25, 29,

30, 32–35, 39–42
MongoDB, 20, 22
MongoDB (MongoDB-class), 25
MongoDB-class, 25

name, 26
name,TableListener-method

(TableListener-class), 35
notifyListeners, 4, 21, 27
notifyListeners,ListenerSet-method

(ListenerSet-class), 19

ordered, 36

P4Message, 2, 3, 11, 12, 14–16, 18, 20, 21, 23,
24, 27, 28, 28, 29, 30, 32, 33, 35, 37,
39–42

P4Message-class, 30
parseData, 7
parseData (parseMessage), 32
parseEvent, 23
parseMessage, 3, 7, 9, 12, 13, 29, 32, 32, 35,

38, 39
parseSimpleData (parseMessage), 32
POSIXt, 38
Proc4 (Proc4-package), 2
Proc4-package, 2
processed, 3, 30
processed (markAsProcessed), 23
processed,P4Message-method

(P4Message-class), 30
processingError, 3, 31
processingError (markAsProcessed), 23
processingError,P4Message-method

(P4Message-class), 30

receiveMessage, 3, 4, 19–21, 27
receiveMessage (Listener), 15
receiveMessage,CaptureListener-method

(CaptureListener-class), 10
receiveMessage,InjectionListener-method

(InjectionListener-class), 14

INDEX 47

receiveMessage,ListenerSet-method
(ListenerSet-class), 19

receiveMessage,TableListener-method
(TableListener-class), 35

receiveMessage,UpdateListener-method
(UpdateListener-class), 39

receiveMessage,UpsertListener-method
(UpsertListener-class), 41

saveRec, 3, 7, 13, 29, 32, 34
sender, 17, 36
sender (P4Message), 28
sender,P4Message-method

(P4Message-class), 30
serializeJSON, 3, 6, 7, 32–34
setClassUnion, 25
setOldClass, 25
show, 29
show,P4Message-method (P4Message), 28

TableListener, 4, 11, 15–18, 21, 26, 37, 40,
42

TableListener (ListenerConstructors), 17
TableListener-class, 35
timestamp, 23, 24, 36
timestamp (P4Message), 28
timestamp,P4Message-method

(P4Message-class), 30
toJSON, 3, 6, 7, 31, 38, 39
toString, 23
toString,P4Message-method (P4Message),

28
try, 42–44
typeof, 36

uid, 36
uid (P4Message), 28
uid,P4Message-method (P4Message-class),

30
unbox, 6, 7, 38, 39
unboxer, 3, 32, 37
unparseData, 6, 40
unparseData (parseMessage), 32
unserializeJSON, 32, 33
ununboxer (unboxer), 37
UpdateListener, 4, 11, 15–18, 21, 37, 40, 42
UpdateListener (ListenerConstructors),

17
UpdateListener-class, 39

UpsertListener, 4, 11, 15–18, 21, 37, 40, 42
UpsertListener (ListenerConstructors),

17
UpsertListener-class, 41

withFlogging, 2, 3, 42

	Proc4-package
	as.json
	buildJQuery
	CaptureListener-class
	getOneRec
	InjectionListener-class
	Listener
	ListenerConstructors
	ListenerSet-class
	makeDBuri
	markAsProcessed
	MongoDB-class
	name
	notifyListeners
	P4Message
	P4Message-class
	parseMessage
	saveRec
	TableListener-class
	unboxer
	UpdateListener-class
	UpsertListener-class
	withFlogging
	Index

