
Package ‘EABN’
April 3, 2020

Version 0.5-2

Date 2020/02/15

Title Evidence Accumulation Bayes Net Engine

Author Russell Almond

Maintainer Russell Almond <ralmond@fsu.edu>

Depends R (>= 3.0), methods, mongolite, jsonlite, Peanut (>= 0.8),
Proc4 (>= 0.3), futile.logger

Description Extracts observables from a sequence of events.

License Artistic-2.0

URL http://pluto.coe.fsu.edu/Proc4

Collate Evidence.R StudentRec.R EAEngine.R EAEngineMongo.R
EAEngineNDB.R EngineGears.R

R topics documented:
accumulateEvidence . 2
BNEngine-class . 5
BNEngineMongo . 8
BNEngineMongo-class . 10
BNEngineNDB . 13
BNEngineNDB-class . 15
configStats . 17
EvidenceSet . 19
EvidenceSet-class . 20
fetchNextEvidence . 21
fetchSM . 23
getRecordForUser . 26
getSR . 29
history . 31
loadManifest . 33
logEvidence . 35
mainLoop . 38

1

http://pluto.coe.fsu.edu/Proc4

2 accumulateEvidence

observables . 40
parseEvidence . 41
parseStats . 43
parseStudentRecord . 44
setupDefaultSR . 47
sm . 49
stat . 50
StudentRecord . 51
StudentRecord-class . 53
StudentRecordSet . 55
StudentRecordSet-class . 57
updateHist . 59
updateSM . 62
updateStats . 64

Index 67

accumulateEvidence Merge evidence from an evidence set with the student record.

Description

The function accumulateEvidence combines the evidence in the EvidenceSet with the exiting
beliefs in the StudentRecord, updating the student record. The function handleEvidence is a
wrapper around this which takes care of finding and updating the evidence sets.

Usage

accumulateEvidence(eng, rec, evidMess, debug = 0)
handleEvidence(eng, evidMess, srser = NULL, debug = 0)

Arguments

eng The BNEngine which controls the process.

rec The StudentRecord which will be updated.

srser A serialized version of the student record for the no-database version of the
model.

evidMess An EvidenceSet which has the evidence to be incorporated.

debug An integer flag. If greater than 1, then recover() will be called at strategic
places during the processing to allow inspection of the process.

accumulateEvidence 3

Details

The function accumulateEvidence performs the following steps:

1. Update the student record to associate it with the new evidence (updateRecord).

2. Update the student model with the new evidence (updateSM).

3. Update the statistics for the new student model (updateStats).

4. Update the history for the new evidence (updateHist).

5. Announce the availablity of new statistics (announceStats).

6. Save the updated student record (saveSR).

The function handleEvidence is a wrapper around accumulateEvidence which finds the student
record. Note for BNEngineNDB, it is expected that the student record will be passed in as a serialized
object (see getRecordForUser). It performs the following steps:

1. Fetch the student record for the uid associated with the evidence set (getRecordForUser).

2. Mark the evidence as belonging to this student record (logEvidence).

3. Update the record by calling accumulateEvidence.

4. Mark the evidence as processed (markProcessed).

If an error is encountered, then the error message is added to the evidence set.

Value

The modified StudentRecord which was just processed. If an error occurs during the call to
accumulateEvidence both function will return an object of class try-error instead of the stu-
dent record.

Logging, Error Handling and Debugging

The functions handleEvidence, accumulateEvidence and many of the functions they call use the
flog.logger protocol. The default logging level of INFO will give messages in response to the
announcements and warnings when an error occur. The DEBUG and TRACE levels will provide
more information about the details of the update algorithm.

The body of accumulateEvidence is wrapped in withFlogging which captures and logs errors.
This function returns an object of class try-error when an error occurs. Although handleEvidence
does not use the flogging error handler, it will still pass on the try-error if one is generated.

The debug argument can be used to pause execution. Basically, recover() will be called between
every step. This only happens in interactive mode as it just does not make sense in batch model.

Author(s)

Russell Almond

References

Almond, Mislevy, Steinberg, Yan and Williamson (2015). Bayesian Networks in Educational As-
sessment. Springer. Especially Chapters 5 and 13.

4 accumulateEvidence

See Also

Classes: BNEngine BNEngineMongo, BNEngineNDB StudentRecord, EvidenceSet

Main Loop Functions: mainLoop, getRecordForUser, logEvidence, updateRecord, updateSM,
updateStats, updateHist, announceStats, saveSR

Examples

Requires database setup, also PNetica
library(RNetica) ## Must load to setup Netica DLL
app <- "ecd://epls.coe.fsu.edu/EITest"
sess <- RNetica::NeticaSession()
RNetica::startSession(sess)

config.dir <- file.path(library(help="Peanut")$path, "auxdata")
net.dir <- file.path(library(help="PNetica")$path,"testnets")

netman <- read.csv(file.path(config.dir, "Mini-PP-Nets.csv"),
row.names=1, stringsAsFactors=FALSE)

stattab <- read.csv(file.path(config.dir, "Mini-PP-Statistics.csv"),
as.is=TRUE)

Nethouse <- PNetica::BNWarehouse(netman,session=sess,
address=net.dir)

cl <- new("CaptureListener")
listeners <- list("cl"=cl)

ls <- ListenerSet(sender= paste("EAEngine[",app,"]"),
dburi="", listeners=listeners)

eng <- BNEngineNDB(app=app,warehouse=Nethouse,
listenerSet=ls,manifest=netman,
profModel="miniPP_CM",
histNodes="Physics",
statmat=stattab,
activeTest="EAActive.txt")

Standard initialization methods.
loadManifest(eng,netman)
eng$setHistNodes("Physics")
configStats(eng,stattab)
setupDefaultSR(eng)

sr0 <- getRecordForUser(eng,"S1")

eap0 <- stat(sr0,"Physics_EAP")

e1 <- EvidenceSet(uid="S1",app="Test",context="PPcompEM",
obs=list("CompensatoryObs"="Right"))

BNEngine-class 5

e1 <- logEvidence(eng,sr0,e1)
sr1 <- accumulateEvidence(eng,sr0,e1)
stopifnot(m_id(sr1)!=m_id(sr0),sr1@prev_id==m_id(sr0))
stopifnot(seqno(sr1)==1L, seqno(e1)==1L)

eap1 <- stat(sr1,"Physics_EAP")
stopifnot(abs(eap1-eap0) > .001)
stopifnot(nrow(history(sr1,"Physcis"))==2L)

handle Evidence.
sr1.ser <- as.json(sr1)
e2 <- EvidenceSet(uid="S2",app="Test",context="PPconjEM",

obs=list("ConjunctiveObs"="Wrong"))

sr2 <- handleEvidence(eng,e2,fromJSON(sr1.ser))
eap2 <- stat(sr2,"Physics_EAP")
stopifnot(uid(sr2)==uid(sr1),

m_id(sr1)==sr2@prev_id,
nrow(history(sr2,"Physics"))==3L,
abs(eap1-eap2) > .001)

<<HERE>> Need test with Mongo engine.

BNEngine-class Class "BNEngine"

Description

A generic engine for handling evidence messages (EvidenceSet objects).

Details

This is the basic class for running the evidence accumulation process. This is actually an abstract
class, there are two subclasses: BNEngineMongo, which uses the Mongo database to store student
records and as a message queue, and BNEngineNDB, which operates without a database. Note that
the BNEngine constructor generates an error.

The following functions form the core of the Engine Protocol:

loadManifest This loads the network manifest for the PnetWarehouse.

setupDefaultSR Sets up the default Student Record (used for creating new student records)

configStats Configures the statistics that are reported in the main loop.

baselineHist Sets up the baselines for histories.

mainLoop This runs through a queue of messages, handling the evidence.

6 BNEngine-class

handleEvidence Handles evidence from one scoring context and one user.

accumulateEvidence Does the actual work of processing the evidence.

getRecordForUser Fetches the student record for a user, essentially a call to getSR.

logEvidence Logs the evidence as part of the student record.

updateSM Updates the student model for the new evidence.

updateStats Calculates new statistics for the revised student model.

updateHist Updates the history for the revised student model.

announceStats Updates other processes about the existance of updated statistics.

Extends

All reference classes extend and inherit methods from "envRefClass".

Methods

app signature(x = "BNEngine"): Returns the guid identifying the application that this engine
is handling.

notifyListeners signature(sender = "BNEngine"): Notifies other processes that student records
have been updated.

fetchNextEvidence signature(eng = "BNEngine"): Returns the next unprocessed EvidenceSet
in the queue.

markProcessed signature(eng = "BNEngine", eve = "EvidenceSet"): marks the
eve argument as processed.

Fields

app: Object of class character giving an globally unique identifier for the application

srs: Object of class StudentRecordSet of NULL giving the student record set for the application.

profModel: Object of class character giving the name of the proficiency model (for the default
student record) in the warehouse manifest.

listenerSet: Object of class ListenerSet giving a set of listeners who will listen for new statis-
tics.

statistics: Object of class list containing Statistic objects to be run on every update cycle.

histNodes: Object of class character giving the names of the nodes in the proficiency model
whose history will be recorded.

warehouseObj: Object of class PnetWarehouse which stores the Bayes nets, both evidence models
and student models are stored here.

waittime: Object of class numeric giving the time in seconds the main event loop should wait
before checking again for messages.

processN: Object of class numeric giving the number of times that the main loop should run
before stopping. If Inf, then the main loop will run without stopping.

BNEngine-class 7

Class-Based Methods

isActivated(): This function checks the database to see whether or not the flag is set to cause the
process to stop.

setHistNodes(nodenames): Sets the names of the history nodes. Note this should be called before
the call to baselineHist or the history nodes will not be set properly in the default student
record.

fetchNextEvidence(): Fetches the next evidence set to be handled.
setError(mess, e): Adds an error flag to an evidence set that generated an error.
getHistNodes(): Retrieves the history nodes.
saveStats(statmat): Updates the set of statitics associated with this engine.
studentRecords(): Fetches the StudentRecordSet associated with the engine. Note: This method

should be called instead of the raw field as it will initialize the field if it is not set up yet.
fetchStats(): Fetches statistic objects from the database.
stats(): Returns the set of Statistic objects associate with the engine.
activate(): Sets the flag to indicate that the process is running.
fetchManifest(): Fetches the network manifest from the database.
setManifest(manifest): Sets the manifest for the PnetWarehouse.
saveManifest(manifest): Saves the network manifest to the database.
show(): Providse a printed representation of the database.
setProcessed(mess): Sets an evidence set message as processed.
warehouse(): Returns the PnetWarehouse associated with this engine. Again, this function should

be called in preference to directly accessing the field as it forces initialization when necessary.
evidenceSets(): A reference to the collection of evidence sets.

Author(s)

Russell Almond

References

Almond, Mislevy, Steinberg, Yan and Williamson (2015). Bayesian Networks in Educational As-
sessment. Springer. Especially Chapter 13.

See Also

Subclasses: BNEngineMongo, BNEngineNDB

Constituent parts: StudentRecordSet, PnetWarehouse

Setup Functions: loadManifest, setupDefaultSR, configStats, baselineHist,

Main Loop Functions: mainLoop, handleEvidence, getRecordForUser, logEvidence, accumulateEvidence,
updateRecord, updateSM, updateStats, updateHist, announceStats,

Examples

showClass("BNEngine")

8 BNEngineMongo

BNEngineMongo Creates a Bayes Net Engine attached to a Mongo database.

Description

The BNEngineMongo is a BNEngine which is attached to a MongoDB-class database, which hold
both the queue and the StudentRecordSet.

Usage

BNEngineMongo(app = "default", warehouse, listenerSet = NULL,
dburi = "mongodb://localhost", dbname = "EARecords", processN = Inf,
admindbname = "Proc4", waittime = 0.25, profModel = character(),
...)

Arguments

app A character scalar giving the globally unique identifier for the application.

warehouse A PnetWarehouse which stores the default student model and evidence models.
(It will also store the student models.

listenerSet A ListenerSet which contains the listeners for clients of the engine’s mes-
sages.

dburi A character scalar giving the login information for the mongo database. See
makeDBuri.

dbname The name for the EA database.

processN The number of records to process before stopping. The default value Inf runs
the process until the active flag is cleared.

admindbname The name of the admin database used to check for shutdown requests.

waittime The amout of time (in seconds) to wait before checking again for new evidence
sets when the evidence set queue is empty.

profModel The name of the proficiency model (its ID in the warehouse manifest).

... Extra room in case we later think of more things we should add.

Details

This creates an uninitialized BNEngine, specifically a BNEngineMongo.

The makeDBuri function provides a useful shorthand for calculating the dburi field.

Value

An object of calls BNEngineMongo which is capable of scoring student models.

BNEngineMongo 9

Note

The database connections are not created right away, so it is important to use the class-based
functions, manifestdb(), statdb(), evidenceSets(), histNodesdb(), studentRecords(), and
admindb() rather than accessing the fields directly.

Author(s)

Russell Almond

References

Almond, Mislevy, Steinberg, Yan and Williamson (2015). Bayesian Networks in Educational As-
sessment. Springer. Especially Chapter 13.

See Also

Classes: BNEngine, BNEngineNDB

Constituent parts: StudentRecordSet, PnetWarehouse ListenerSet

Setup Functions: loadManifest, setupDefaultSR, configStats, baselineHist,

Main Loop Functions: mainLoop, accumulateEvidence, handleEvidence, getRecordForUser,
logEvidence, updateSM, updateStats, updateHist, announceStats,

Examples

Requires database setup, also PNetica
library(RNetica) ## Must load to setup Netica DLL
app <- "ecd://epls.coe.fsu.edu/EITest"
sess <- RNetica::NeticaSession()
RNetica::startSession(sess)

config.dir <- file.path(library(help="Peanut")$path, "auxdata")
net.dir <- file.path(library(help="PNetica")$path,"testnets")

netman <- read.csv(file.path(config.dir, "Mini-PP-Nets.csv"),
row.names=1, stringsAsFactors=FALSE)

stattab <- read.csv(file.path(config.dir, "Mini-PP-Statistics.csv"),
as.is=TRUE)

Nethouse <- PNetica::BNWarehouse(netman,session=sess,
address=net.dir)

cl <- new("CaptureListener")
listeners <- list("cl"=cl)
ls <- ListenerSet(sender= paste("EAEngine[",basename(app),"]"),

dbname="EARecords", dburi=makeDBuri(host="localhost"),
listeners=listeners,
colname="Messages")

10 BNEngineMongo-class

eng <- BNEngineMongo(app=app,warehouse=Nethouse,
listenerSet=ls,
dburi=makeDBuri(host="localhost"),
dbname="EARecords",profModel="miniPP_CM",
histNodes="Physics")

Standard initialization methods.
loadManifest(eng,netman)
eng$setHistNodes("Physics")
configStats(eng,stattab)
setupDefaultSR(eng)

BNEngineMongo-class Class "BNEngineMongo"

Description

A Bayes net engine hooked to a Mongo database.

Extends

Class "BNEngine", directly.

All reference classes extend and inherit methods from "envRefClass".

Activation

When the mainLoop runs out of evidence sets to process, it checks the is.active() method of the
engine. If this returns, false, it stops.

For the BNEngineMongo this checks the “AuthorizedApps” collection in the database to see if the
current app is active. It returns the value of the active field for the app’s record.

Fields

app: Object of class character giving an globally unique identifier for the application

srs: Object of class StudentRecordSet of NULL giving the student record set for the application.

profModel: Object of class character giving the name of the proficiency model (for the default
student record) in the warehouse manifest.

listenerSet: Object of class ListenerSet giving a set of listeners who will listen for new statis-
tics.

statistics: Object of class list containing Statistic objects to be run on every update cycle.

histNodes: Object of class character giving the names of the nodes in the proficiency model
whose history will be recorded.

BNEngineMongo-class 11

warehouseObj: Object of class PnetWarehouse which stores the Bayes nets, both evidence models
and student models are stored here.

waittime: Object of class numeric giving the time in seconds the main event loop should wait
before checking again for messages.

processN: Object of class numeric giving the number of times that the main loop should run
before stopping. If Inf, then the main loop will run without stopping.

dburi: Object of class character giving the URI for the mongo database.

dbname: Object of class character giving the name of the database to be used.

manifestDB: Object of class MongoDB-class giving the collection used to store the manifest.
This object may not be initialized so it should be accessed through the class-based function
manifestdb().

evidenceDB: Object of class MongoDB-class accessing the evidence set collection. This object
may not be initialized so it should be accessed through the class-based function evidenceSets().

statDB: Object of class MongoDB giving the statistics to use. This object may not be initialized so
it should be accessed through the class-based function statdb().

histNodesDB: Object of class MongoDB giving the history nodes. This object may not be initialized
so it should be accessed through the class-based function histNodesdb().

admindbname: Object of class character giving name admin (Proc4) database, used for various
listeners and the is.active() method.

adminDB: Object of class MongoDB giving the link to the admin database. This object may not be
initialized so it should be accessed through the class-based function admindb().

Methods

statdb(): Returns the database contianing the statistic objects.

studentRecords(): Returns the StudentRecordSet associated with this engine.

fetchStats(): Fetches the statistics marked in the database configuration.

activate(): Sets the field in the Proc4 database used to indicate that this application is active.

initialize(app, warehouse, listeners, username, password, host, port, dbname, P4dbname, profModel, waittime, statistics, histNodes, processN, ...):
initializes the class. Note that some initialization is done in the various XXXdb() functions, so
these should be called instead of directly accessing the fields.

manifestdb(): Returns the MongoDB-class handle to the manifest information collection.

admindb(): Returns the MongoDB-class handle to the “AuthorizedApps” collection.

histNodesdb(): Returns the MongoDB-class handle to the hist nodes collection.

saveManifest(manifest): Saves the current PnetWarehouse manifest to the manifestdb() col-
lection

fetchManifest(): Retrieves the saved manifest from the manifestdb() collection.

fetchNextEvidence(): Retrieves the next EvidenceSet from the evidenceSets() collection.
Returns NULL if there are not unprocessed evidence sets.

saveStats(statmat): Saves the update statistic definitions to the statdb() collection.

setHistNodes(nodenames): Saves the history nodes to the histNodesdb() collection.

isActivated(): Checks to see if the active flag is set.

12 BNEngineMongo-class

setError(mess, e): Added an error message to an evidence set.

evidenceSets(): Returns a MongoDB-class handle to the collection/queue of evidence sets.

getHistNodes(): Fetches the history nodes from the histNodesdb() collection.

show(): Provides a printed representation of the engine.

The following methods are inherited (from the corresponding class): evidenceSets ("BNEngine"),
getHistNodes ("BNEngine"), stats ("BNEngine"), setProcessed ("BNEngine"), setManifest ("BNEngine"),
activate ("BNEngine"), isActivated ("BNEngine"), saveManifest ("BNEngine"), studentRecords
("BNEngine"), saveStats ("BNEngine"), fetchNextEvidence ("BNEngine"), warehouse ("BNEngine"),
show ("BNEngine"), setHistNodes ("BNEngine"), setError ("BNEngine"), fetchManifest ("BNEngine"),
fetchStats ("BNEngine")

Note

The database connections are not created right away, so it is important to use the class-based
functions, manifestdb(), statdb(), evidenceSets(), histNodesdb(), studentRecords(), and
admindb() rather than accessing the fields directly.

Author(s)

Russell Almond

References

Almond, Mislevy, Steinberg, Yan and Williamson (2015). Bayesian Networks in Educational As-
sessment. Springer. Especially Chapter 13.

See Also

Classes: BNEngine, BNEngineNDB

Constituent parts: StudentRecordSet, PnetWarehouse

Setup Functions: loadManifest, setupDefaultSR, configStats, baselineHist,

Main Loop Functions: mainLoop, accumulateEvidence, handleEvidence, getRecordForUser,
logEvidence, updateSM, updateStats, updateHist, announceStats,

Examples

showClass("BNEngineMongo")

BNEngineNDB 13

BNEngineNDB Creates a Bayes net engine not attached to a database.

Description

The BNEngineNDB is a BNEngine which is not attached to the database. In particular, it cannot store
student records, so it cannot maintain state between scoring sessions without extenal help.

Usage

BNEngineNDB(app = "default", warehouse, listenerSet = NULL,
manifest = data.frame(), processN = Inf, waittime = 0.25,
profModel = character(), statmat = data.frame(),
evidenceQueue = list(), activeTest =
"EAActive.txt", ...)

Arguments

app A character scalar giving the globally unique identifier for the application.

warehouse A PnetWarehouse which stores the default student model and evidence models.
(It will also store the student models.

listenerSet A ListenerSet which contains the listeners for clients of the engine’s mes-
sages.

manifest A data frame providing a manifest for the PnetWarehouse.

processN The number of records to process before stopping. The default value Inf runs
the process until the active flag is cleared.

waittime The amout of time (in seconds) to wait before checking again for new evidence
sets when the evidence set queue is empty.

profModel The name of the proficiency model (its ID in the warehouse manifest).

statmat A data.frame describing the statistics. See configStats.

evidenceQueue A list of EvidenceSet objects to be processed.

activeTest The pathname for the file whose existance will be used to determine when the
engine should shut down.

... Extra room in case we later think of more things we should add.

Details

This creates an uninitialized BNEngine, specifically a BNEngineNDB.

Value

An object of calls BNEngineNDB which is capable of scoring student models.

14 BNEngineNDB

Author(s)

Russell Almond

References

Almond, Mislevy, Steinberg, Yan and Williamson (2015). Bayesian Networks in Educational As-
sessment. Springer. Especially Chapter 13.

See Also

Classes: BNEngine, BNEngineMongo

Constituent parts: StudentRecordSet, PnetWarehouse ListenerSet

Setup Functions: loadManifest, setupDefaultSR, configStats, baselineHist,

Main Loop Functions: mainLoop, accumulateEvidence, handleEvidence, getRecordForUser,
logEvidence, updateSM, updateStats, updateHist, announceStats,

Examples

Requires database setup, also PNetica
library(RNetica) ## Must load to setup Netica DLL
app <- "ecd://epls.coe.fsu.edu/EITest"
sess <- RNetica::NeticaSession()
RNetica::startSession(sess)

config.dir <- file.path(library(help="Peanut")$path, "auxdata")
net.dir <- file.path(library(help="PNetica")$path,"testnets")

netman <- read.csv(file.path(config.dir, "Mini-PP-Nets.csv"),
row.names=1, stringsAsFactors=FALSE)

stattab <- read.csv(file.path(config.dir, "Mini-PP-Statistics.csv"),
as.is=TRUE)

Nethouse <- PNetica::BNWarehouse(netman,session=sess,
address=net.dir)

cl <- new("CaptureListener")
listeners <- list("cl"=cl)

ls <- ListenerSet(sender= paste("EAEngine[",app,"]"),
dburi="", listeners=listeners)

eng <- BNEngineNDB(app=app,warehouse=Nethouse,
listenerSet=ls,manifest=netman,
profModel="miniPP_CM",
histNodes="Physics",
statmat=stattab,
activeTest="EAActive.txt")

BNEngineNDB-class 15

Standard initialization methods.
loadManifest(eng,netman)
eng$setHistNodes("Physics")
configStats(eng,stattab)
setupDefaultSR(eng)

BNEngineNDB-class Class "BNEngineNDB"

Description

A BNEngine instance which is not connected to a database.

Extends

Class "BNEngine", directly.

All reference classes extend and inherit methods from "envRefClass".

Methods

evidence signature(x = "BNEngineNDB"): Returns list of EvidenceSets in the queue.

evidence signature(x = "BNEngineNDB", value="list"): Sets the list of EvidenceSets in
the queue.

Activation

When the mainLoop runs out of evidence sets to process, it checks the is.active() method of the
engine. If this returns, false, it stops.

For the BNEngineNDB this checks the existance of the file activeTest. If this file exists, the engine
is considered active. Deleting this file will cause the engine to become inactive and stop after it
finishes processing existing events.

Fields

app: Object of class character giving an globally unique identifier for the application

srs: Object of class StudentRecordSet of NULL giving the student record set for the application.

profModel: Object of class character giving the name of the proficiency model (for the default
student record) in the warehouse manifest.

listenerSet: Object of class ListenerSet giving a set of listeners who will listen for new statis-
tics.

statistics: Object of class list containing Statistic objects to be run on every update cycle.

histNodes: Object of class character giving the names of the nodes in the proficiency model
whose history will be recorded.

16 BNEngineNDB-class

warehouseObj: Object of class PnetWarehouse which stores the Bayes nets, both evidence models
and student models are stored here.

waittime: Object of class numeric giving the time in seconds the main event loop should wait
before checking again for messages.

processN: Object of class numeric giving the number of times that the main loop should run
before stopping. If Inf, then the main loop will run without stopping.

manifest: Object of class data.frame which provides the manifest for the PnetWarehouse

histnodes: Object of class character which gives the names of the nodes for whom history will
be recorded.

evidenceQueue: A list of EvidenceSet events to be processed.

statmat: Object of class data.frame which gives the descriptions of the Statistic objects to be
used with the net.

activeTest: A pathname to the file whose existance will be checked to determine whether or not
the engine should be considered active.

Class-Based Methods

studentRecords(): Returns the StudentRecordSet associated with this engine.

fetchStats(): Fetches the statistics marked in the database configuration.

activate(): Creates the activeTest file to activate the engine.

fetchStats(): Fetches the statistics or information in the statmat field.

initialize(app, warehouse, listeners, profModel, waittime, statistics, histNodes, evidenceQueue, processN, statmat, ...):
Initializes this class

saveManifest(manifest): This sets the internal manifest field.

fetchManifest(): This returns the internal manifest field.

fetchNextEvidence(): This returns the first evidence set from the evidenceQueue field, and re-
moves that element from the queue.

saveStats(statmat): This saves the statistic table to the internal field.

isActivated(): This checks for the existance of the field in the activeTets field.

evidenceSets(): This returns NULL

show(): This produces a printable summary.

The following methods are inherited (from the corresponding class): evidenceSets ("BNEngine"),
stats ("BNEngine"), setProcessed ("BNEngine"), setManifest ("BNEngine"), activate ("BNEngine"),
isActivated ("BNEngine"), saveManifest ("BNEngine"), setHistNodes ("BNEngine"), studentRecords
("BNEngine"), saveStats ("BNEngine"), fetchNextEvidence ("BNEngine"), setError ("BNEngine"),
getHistNodes ("BNEngine"), warehouse ("BNEngine"), show ("BNEngine"), fetchManifest ("BNEngine"),
fetchStats ("BNEngine")

Note

The assumption of this engine is that the serialized student model will be passed in along with the
evidence and will be returned along with the updated statistics.

configStats 17

Author(s)

Russell Almond

References

Almond, Mislevy, Steinberg, Yan and Williamson (2015). Bayesian Networks in Educational As-
sessment. Springer. Especially Chapter 13.

See Also

Classes: BNEngine, BNEngineMongo

Constituent parts: StudentRecordSet, PnetWarehouse

Setup Functions: loadManifest, setupDefaultSR, configStats, baselineHist,

Main Loop Functions: mainLoop, accumulateEvidence, handleEvidence, getRecordForUser,
logEvidence, updateSM, updateStats, updateHist, announceStats,

Examples

showClass("BNEngineNDB")

configStats Configures the Statistic Objects for the BNEninge

Description

As part of the scoring cycle, the BNEngine calculates the values of certain statistics of the student
model. This function sets up those statistics.

Usage

configStats(eng, statmat = data.frame())

Arguments

eng The BNEngine to be configured.

statmat A data frame containing the statistic descriptions, see details.

Details

A Statistic is a functional that is applied to the student model (sm) of a StudentRecord. At the
end of the evidence processing cycle, the function updateStats is called to calculate new values
for the specified statistics.

The statmat argument should be a data.frame with three columns (all of mode character):

Name This column gives an identifier for the statistic used in the output message.

18 configStats

Fun This column gives the name of a function (see Statistic for a list of possible values) which
calculates the statistic value.

Node This gives the name of a node in the competency model which is the focus of the statistic.

If the statmat argument is not supplied, then a default value based on the engine type is used. For
the BNEngineMongo this data frame is taken from a table in the database. For the BNEngineNDB the
default statmat is stored in a field in the engine.

Value

The modified engine argument is returned.

Author(s)

Russell Almond

References

Almond, Mislevy, Steinberg, Yan and Williamson (2015). Bayesian Networks in Educational As-
sessment. Springer. Especially Chapter 13.

See Also

Classes: BNEngine, Statistic updateStats, announceStats

Examples

Requires database setup, also PNetica
library(RNetica) ## Must load to setup Netica DLL
app <- "ecd://epls.coe.fsu.edu/EITest"
sess <- RNetica::NeticaSession()
RNetica::startSession(sess)

config.dir <- file.path(library(help="Peanut")$path, "auxdata")
net.dir <- file.path(library(help="PNetica")$path,"testnets")

netman <- read.csv(file.path(config.dir, "Mini-PP-Nets.csv"),
row.names=1, stringsAsFactors=FALSE)

stattab <- read.csv(file.path(config.dir, "Mini-PP-Statistics.csv"),
as.is=TRUE)

Nethouse <- PNetica::BNWarehouse(netman,session=sess,
address=net.dir)

cl <- new("CaptureListener")
listeners <- list("cl"=cl)

ls <- ListenerSet(sender= paste("EAEngine[",app,"]"),
dburi="", listeners=listeners)

EvidenceSet 19

eng <- BNEngineNDB(app=app,warehouse=Nethouse,
listenerSet=ls,manifest=netman,
profModel="miniPP_CM",
histNodes="Physics",
activeTest="EAActive.txt")

Standard initialization methods.
configStats(eng,stattab)
stats <- eng$stats()
stopifnot(all(sapply(stats,StatName)==stattab$Name),

all(sapply(stats,function(s) s@fun)==stattab$Fun),
all(sapply(stats,function(s) s@node)==stattab$Node))

EvidenceSet Creates an Evidence Set Message

Description

An EvidenceSet is a P4Message which contains observable variables for the Bayes net engine. It
provides the observavbles associated with a single scoring context.

Usage

EvidenceSet(uid, context, timestamp = Sys.time(), obs = list(), app =
"default", mess = "Accumulate", sender = "EI", processed = FALSE)

Arguments

uid A character scalar giving unique identifier for the student/player.

context A character scalar giving a unique identifier for the scoring context (often game
level or task).

timestamp The time at which the evidence was recorded (POSIXt format).

obs A named list giving the observable variables. The names and legal values corre-
spond to the context and app values.

app A character scalar giving the globally unique identifier of the application.

mess A character scalar giving the message associated with the observables. (Part of
the Proc 4 procotol).

sender A character scalar giving the identity of the process which created the message.
This will usually be an evidence identification process.

processed A flag that is set when the evidence set has been processed.

Details

Aside from the seqno field, this is pretty much a generic P4Message. The data of the P4Message
is the observables value fo the EvidenceSet.

20 EvidenceSet-class

Value

An object of class EvidenceSet.

Author(s)

Russell Almond

See Also

Class: EvidenceSet Methods: observables, seqno, parseEvidence

Using classes: StudentRecord

Examples

e1 <- EvidenceSet(uid="S1",app="Test",context="PPcompEM",
obs=list("CompensatoryObs"="Right"))

e2 <- EvidenceSet(uid="S1",app="Test",context="PPdurAttEM",
obs=list("Attempts"=2,"Duration"=38.3))

EvidenceSet-class Class "EvidenceSet"

Description

An EvidenceSet is a collection of observables that comes from a particular context (scoring win-
dow, task). It also has information about where it appears in the sequence of evidence that is
recorded about a student. It is an extension of the P4Message class.

Objects from the Class

Objects can be created calls to the function EvidenceSet(uid, context, timestamp, obs, app, mess, sender).

Slots

seqno: Object of class "integer" which contains the order in which this object was processed.

_id: Object of class "character" which contains the database ID.

app: Object of class "character" which gives a guid for the application.

uid: Object of class "character" which gives an id for the student.

context: Object of class "character" which gives an id for the scoring context.

sender: Object of class "character" which gives an ID for the source of the evidence.

fetchNextEvidence 21

mess: Object of class "character" which gives a message about what is contained in the message.

timestamp: Object of class "POSIXt" which tells when the evidence was collected.

processed: Object of class "logical" which is a flag to tell of the evidence has been incorporated
into the StudentRecord.

pError: Object of class "ANY" which contains processing error.

data: Named list which contains the evidence.

Extends

Class "P4Message", directly.

Methods

as.jlist signature(obj = "EvidenceSet", ml = "list"): This is a helper function used in
serialization. See as.json.

observables signature(x = "EvidenceSet"): returns a named list of observables (the data)
field.

seqno signature(x = "EvidenceSet"): returns the sequence number.

seqno<- signature(x = "EvidenceSet"): sets the sequence number.

show signature(object = "EvidenceSet"): prints a summary of the evidence set.

toString signature(x = "EvidenceSet"): provides a summary string for the evidence set.

Author(s)

Russell Almond

See Also

StudentRecord, accumulateEvidence, handleEvidence, logEvidence,

parseEvidence, seqno, observables

Examples

showClass("EvidenceSet")

fetchNextEvidence Fetches evidence from the evidence stream and marks it as pocessed.

Description

The BNEngine processes a queue of evidence objects (either in a database or in a list). The function
fetchNextEvidence fetches the oldest unprocessed EvidenceSet from the queue. The function
markProcessed marks the evidence set as processed.

22 fetchNextEvidence

Usage

fetchNextEvidence(eng)
markProcessed(eng, eve)

Arguments

eng A BNEngine which is the event handling system.

eve A EvidenceSet which has been processed.

Details

For the BNEngineMongo the EvidenceSets reside in a collection. The fetchNextEvidence fetches
the oldest unprocessed record from the collection. The markProcessed updates the record in the
database to indicate that it has been processed.

For the BNEngineNDB the queue is an in-memory list. The fetchNextEvidence fetches the pops the
next element from the list, and markProcessed marks it as processed, but otherwise does nothing.

Value

Both functions return the EvidenceSet.

Author(s)

Russell Almond

See Also

BNEngine, BNEngineMongo, BNEngineNDB, EvidenceSet

mainLoop, handleEvidence

Examples

Requires database setup, also PNetica
library(RNetica) ## Must load to setup Netica DLL
app <- "ecd://epls.coe.fsu.edu/EITest"
sess <- RNetica::NeticaSession()
RNetica::startSession(sess)

config.dir <- file.path(library(help="Peanut")$path, "auxdata")
net.dir <- file.path(library(help="PNetica")$path,"testnets")

netman <- read.csv(file.path(config.dir, "Mini-PP-Nets.csv"),
row.names=1, stringsAsFactors=FALSE)

stattab <- read.csv(file.path(config.dir, "Mini-PP-Statistics.csv"),
as.is=TRUE)

Nethouse <- PNetica::BNWarehouse(netman,session=sess,
address=net.dir)

fetchSM 23

cl <- new("CaptureListener")
listeners <- list("cl"=cl)

ls <- ListenerSet(sender= paste("EAEngine[",app,"]"),
dburi="", listeners=listeners)

eng <- BNEngineNDB(app=app,warehouse=Nethouse,
listenerSet=ls,manifest=netman,
profModel="miniPP_CM",
histNodes="Physics",
statmat=stattab,
activeTest="EAActive.txt")

Standard initialization methods.
loadManifest(eng,netman)
eng$setHistNodes("Physics")
configStats(eng,stattab)
setupDefaultSR(eng)

e1 <- EvidenceSet(uid="S1",app="Test",context="PPcompEM",
obs=list("CompensatoryObs"="Right"))

e1@"_id" <- "_E1"

e2 <- EvidenceSet(uid="S1",app="Test",context="PPdurAttEM",
obs=list("Attempts"=2,"Duration"=38.3))

e2@"_id" <- "_E2"

evidence(eng) <- list(e1,e2)

eve1 <- fetchNextEvidence(eng)
stopifnot(m_id(eve1)==m_id(e1))

eve1 <- markProcessed(eng,eve1)
stopifnot(eve1@processed)

stopifnot(length(evidence(eng))==1L)

eve2 <- fetchNextEvidence(eng)
stopifnot(m_id(eve2)==m_id(e2))

fetchSM Fetches student model from database or JSON

24 fetchSM

Description

The function fetchSM retrieves the student model from a PnetWarehouse or if not there, attempts
to recreate it from a serialized version. The function unpackSM does this unpacking.

Usage

fetchSM(sr, warehouse)
unpackSM(sr, warehouse)

Arguments

sr An object of class StudentRecord whose student model we wish to retrieve.

warehouse A PnetWarehouse which stores the student models.

Details

The StudentRecord object has two fields related to student models: sm and smser. The former
contains the actual student model or NULL if it has not yet been initialized or restored from the
database. The latter contains a character string which contains a serialized version of the student
model. In particular, it is this serialized student model which is stored in the database, not the actual
student model.

The function fetchSM is used to set the sm field. It checks the following places in order:

1. It looks in the warehouse for a student net for the given uid for the record.

2. It calls unpackSM to unpack the serialized record.

The function unpackSM is wrapper for the function WarehouseUnpack.

Value

The function fetchSM returns the modified StudentRecord.

The function unpackSM returns the student model (a Pnet).

Author(s)

Russell Almond

See Also

StudentRecord

PnetWarehouse, WarehouseUnpack

fetchSM 25

Examples

library(PNetica)

##Start with manifest
sess <- NeticaSession()
startSession(sess)

BNWarehouse is the PNetica Net Warehouse.
This provides an example network manifest.
config.dir <- file.path(library(help="Peanut")$path, "auxdata")
netman1 <- read.csv(file.path(config.dir,"Mini-PP-Nets.csv"),

row.names=1, stringsAsFactors=FALSE)
net.dir <- file.path(library(help="PNetica")$path, "testnets")
Nethouse <- BNWarehouse(manifest=netman1,session=sess,key="Name",

address=net.dir)

dsr <- StudentRecord("*DEFAULT*",app="ecd://epls.coe.fsu.edu/P4Test",
context="*Baseline*")

sm(dsr) <- WarehouseSupply(Nethouse,"miniPP_CM")
PnetCompile(sm(dsr))

dsr <- updateStats(eng,dsr)
statmat <- read.csv(file.path(config.dir,"Mini-PP-Statistics.csv"),

stringsAsFactors=FALSE)
rownames(statmat) <- statmat$Name
statlist <- sapply(statmat$Name,function (st)

Statistic(statmat[st,"Fun"],statmat[st,"Node"],st))
names(statlist) <- statmat$Name
dsr@stats <- lapply(statlist,

function (stat) calcStat(stat,sm(dsr)))
names(dsr@stats) <- names(statlist)

dsr <- baselineHist(eng,dsr)
dsr@hist <- lapply(c("Physics"),

function (nd)
EABN:::uphist(sm(dsr),nd,NULL,"*Baseline*"))

names(dsr@hist) <- "Physics"

pnodenames <- names(PnetPnodes(sm(dsr)))

Serialization and unserialization
dsr.ser <- as.json(dsr)

dsr1 <- parseStudentRecord(fromJSON(dsr.ser))
stopifnot(is.null(sm(dsr1)))
at this point, SM has not yet been restored.

It is there in the serial field
net1 <- unpackSM(dsr1,Nethouse)

26 getRecordForUser

stopifnot(all.equal(pnodenames,names(PnetPnodes(net1))))
dsr1 <- fetchSM(dsr1,Nethouse)
stopifnot(all.equal(pnodenames,names(PnetPnodes(sm(dsr1)))))

Try this again, but first delete net from warehouse,
So we are sure we are building it from serialized version.
WarehouseFree(Nethouse,PnetName(sm(dsr)))

dsr1 <- parseStudentRecord(fromJSON(dsr.ser))
stopifnot(is.null(sm(dsr1)))
at this point, SM has not yet been restored.

It is there in the serial field
net1 <- unpackSM(dsr1,Nethouse)
stopifnot(all.equal(pnodenames,names(PnetPnodes(net1))))
dsr1 <- fetchSM(dsr1,Nethouse)
stopifnot(all.equal(pnodenames,names(PnetPnodes(sm(dsr1)))))

getRecordForUser Gets or makes the student record for a given student.

Description

The BNEngine contains a StudentRecordSet, which is a collection of StudentRecord objects.
The function getRecordForUser fetches one from the collection (if it exists) or creates a new one.

Usage

getRecordForUser(eng, uid, srser = NULL)

Arguments

eng The BNEngine in question.

uid A character scalar giving the unique identifier for the student.

srser A serialized version of the student record. Used to extract the student record in
database-free mode. This should either be a list which is the output of fromJSON
or NULL.

Details

The student record set can either be attached to a database (the dburi field passed to StudentRecordSet
is non-empty, or not. In the database mode, recrods are saved in the database, so that they can be re-
trieved across sessions. In the database-free mode, the serialized student record (if it exists) should
be passed into the getRecordForUser function.

If no student record is available for the uid, then a new one is created by cloning the default student
record (see setupDefaultSR).

getRecordForUser 27

This function mostly just calls getSR on the StudentRecordSet; however, if a new record is gen-
erated, then announceStats is called to advertise the baseline statistics for the new user.

Value

The StudentRecord object is returned.

Warning

Calling this multiple times will not return the same student record. In particular, the student model
associated with the old version of the record could be replaced with a new version, rendering the
student model in the old records inactive. Be careful when dealing with old records.

Author(s)

Russell Almond

References

Almond, Mislevy, Steinberg, Yan and Williamson (2015). Bayesian Networks in Educational As-
sessment. Springer. Especially Chapter 13.

See Also

BNEngine, StudentRecordSet, StudentRecord

handleEvidence, setupDefaultSR, fetchSM, getSR

Examples

library(PNetica)

##Start with manifest
sess <- NeticaSession()
startSession(sess)

BNWarehouse is the PNetica Net Warehouse.
This provides an example network manifest.
config.dir <- file.path(library(help="Peanut")$path, "auxdata")
netman1 <- read.csv(file.path(config.dir,"Mini-PP-Nets.csv"),

row.names=1, stringsAsFactors=FALSE)
net.dir <- file.path(library(help="PNetica")$path, "testnets")
stattab <- read.csv(file.path(config.dir, "Mini-PP-Statistics.csv"),

as.is=TRUE)
Nethouse <- BNWarehouse(manifest=netman1,session=sess,key="Name",

address=net.dir)

cl <- new("CaptureListener")
listeners <- list("cl"=cl)

28 getRecordForUser

ls <- ListenerSet(sender= "EAEngine[Test]",
dburi="", listeners=listeners)

eng <- BNEngineNDB(app="Test",warehouse=Nethouse,
listenerSet=ls,manifest=netman,
profModel="miniPP_CM",
histNodes="Physics",
statmat=stattab,
activeTest="EAActive.txt")

Standard initialization methods.
loadManifest(eng,netman1)
eng$setHistNodes("Physics")
configStats(eng,stattab)
setupDefaultSR(eng)

sr0a <- getRecordForUser(eng,"Student1")
sr0 <- getRecordForUser(eng,"Student1")
This is announcing twice, so not quite working with NDB engine.

stopifnot(is.active(sm(sr0)),!is.active(sm(sr0a)))
stopifnot(all.equal(stats(sr0),stats(sr0a)))
eap0<- stat(sr0,"Physics_EAP")

e1 <- EvidenceSet(uid="Student1",app="Test",context="PPcompEM",
obs=list("CompensatoryObs"="Right"))

e1 <- logEvidence(eng,sr0,e1)
sr1 <- accumulateEvidence(eng,sr0,e1)
stopifnot(m_id(sr1)!=m_id(sr0),sr1@prev_id==m_id(sr0))
stopifnot(seqno(sr1)==1L, seqno(e1)==1L)

eap1 <- stat(sr1,"Physics_EAP")
stopifnot(abs(eap1-eap0) > .001)
stopifnot(nrow(history(sr1,"Physcis"))==2L)

sr1.ser <- as.json(sr1)
WarehouseFree(Nethouse,PnetName(sm(sr1))) # Delete student model to

force restore.
sr1a <- getRecordForUser(eng,"Student1",fromJSON(sr1.ser))
#PnetCompile(sm(sr1a))
eap1a <- stat(sr1a,"Physics_EAP")
stopifnot(abs(eap1-eap1a) < .001)
stopifnot(nrow(history(sr1a,"Physcis"))==2L)

<<Here>> Need test with Mongo engine

getSR 29

getSR Save and retrieve student records from a record set.

Description

A StudentRecordSet is a collection of StudentRecord objects. The function getSR fetches one
from the collection if it exists. The function newSR creates a new one. The function saveSR saves
the student record, and clearSRs clears out the saved student records.

Usage

getSR(srs, uid, ser = "")
newSR(srs, uid)
saveSR(srs, rec)
clearSRs(srs)

Arguments

srs The StudentRecordSet in question.

uid A character scalar giving the unique identifier for the student.

ser A serialized version of the student record. Used to extract the student record in
database-free mode. This should either be a list which is the output of fromJSON
or NULL.

rec A StudentRecord to be saved.

Details

The student record set can either be attached to a database (the dburi field passed to StudentRecordSet
is non-empty, or not. In the database mode, recrods are saved in the database, so that they can be re-
trieved across sessions. In the database-free mode, the serialized student record (if it exists) should
be passed into the getSR function.

The functions operate as follows:

getSR If the ser argument is not NULL, then the serialized student record is used to fetch the student
record. Otherwise, the database (if it exists) is searched for a student record with the proper
application and user ids. Then fetchSM is called to fetch the student model. If both of those
methods fail, it returns NULL.

newSR This creates a new StudentRecord from the defaultSR field of the student record set (see
setupDefaultSR). The function saveSR is called to save the new record.

saveSR If the database exists, the student record is saved to the database. Otherwise, if no m_id
exists for the record one is created from the uid and seqno.

clearSRs In database mode, it clears the database. Otherwise, nothing is done.

30 getSR

Value

The functions getSR, newSR and saveSR return the student record or NULL if the record was not
found or created.

The function clearSRs returns the student record set (its argument).

Author(s)

Russell Almond

See Also

Classes: BNEngine, StudentRecordSet, StudentRecord

Functions: handleEvidence, setupDefaultSR, fetchSM, StudentRecordSet

Examples

Requires database setup, also PNetica
library(RNetica) ## Must load to setup Netica DLL
app <- "ecd://epls.coe.fsu.edu/EITest"
sess <- RNetica::NeticaSession()
RNetica::startSession(sess)

config.dir <- file.path(library(help="Peanut")$path, "auxdata")
net.dir <- file.path(library(help="PNetica")$path,"testnets")

netman <- read.csv(file.path(config.dir, "Mini-PP-Nets.csv"),
row.names=1, stringsAsFactors=FALSE)

stattab <- read.csv(file.path(config.dir, "Mini-PP-Statistics.csv"),
as.is=TRUE)

Nethouse <- PNetica::BNWarehouse(netman,session=sess,
address=net.dir)

cl <- new("CaptureListener")
listeners <- list("cl"=cl)

ls <- ListenerSet(sender= paste("EAEngine[",app,"]"),
dburi="", listeners=listeners)

eng <- BNEngineNDB(app=app,warehouse=Nethouse,
listenerSet=ls,manifest=netman,
profModel="miniPP_CM",
histNodes="Physics",
statmat=stattab,
activeTest="EAActive.txt")

Standard initialization methods.
loadManifest(eng,netman)
eng$setHistNodes("Physics")

history 31

configStats(eng,stattab)
setupDefaultSR(eng)

tr1 <- newSR(eng$studentRecords(),"Test1")
PnetCompile(sm(tr1))
stopifnot(uid(tr1)=="Test1",abs(stat(tr1,"Physics_EAP")) < .0001)
stopifnot(is.na(m_id(tr1))) # id is NA as it has not been saved yet.

tr1 <- saveSR(eng$studentRecords(),tr1)
m_id(tr1)
stopifnot(!is.na(m_id(tr1))) # Now set

sr0 <- getRecordForUser(eng,"S1")

eap0 <- stat(sr0,"Physics_EAP")

e1 <- EvidenceSet(uid="S1",app="Test",context="PPcompEM",
obs=list("CompensatoryObs"="Right"))

e1 <- logEvidence(eng,sr0,e1)
sr1 <- accumulateEvidence(eng,sr0,e1)
stopifnot(m_id(sr1)!=m_id(sr0),sr1@prev_id==m_id(sr0))
stopifnot(seqno(sr1)==1L, seqno(e1)==1L)

eap1 <- stat(sr1,"Physics_EAP")
stopifnot(abs(eap1-eap0) > .001)
stopifnot(nrow(history(sr1,"Physcis"))==2L)

sr1.ser <- as.json(sr1)
WarehouseFree(Nethouse,PnetName(sm(sr1))) # Delete student model to

force restore.

sr1a <- getSR(eng$studentRecords(),"S1",fromJSON(sr1.ser))
PnetCompile(sm(sr1a))
eap1a <- stat(sr1a,"Physics_EAP")
stopifnot(abs(eap1-eap1a) < .001)
stopifnot(nrow(history(sr1a,"Physcis"))==2L)

<<Here>> Need test with Mongo implementation

history Retrieves node histories from a Student Record

Description

A history is a data.frame whose rows correspond to EvidenceSet objects and whose columns
correspond to the states of a Pnode. Each row is a probability distribution, and they show the

32 history

changes to the probabilities over time.

The function history returns the history for a single node in a given StudentRecord. The function
histNames returns the names of the nodes for which the record has history information.

Usage

history(sr, name)
histNames(sr)

Arguments

sr A StudentRecord whose history is to be accessed.

name The name of the node whose history is requested.

Details

When the student record is first initialized, the function baselineHist is called to setup “*BASE-
LINE*” values for each of the history nodes identified by the BNEngine. These are data.frame
objects giving the prior marginal distributions for each of the identified variables.

After the student model is updated in response to evidence (see handleEvidence, the updateHist
function is called to add a new row to each of the data frames.

The histNames function returns the names of the history nodes being tracked by a student model.
The history function returns the history for a node.

Value

The function histNames returns a list of node names. These are suitable for the name argument of
the history function.

The function history returns a data frame with rows corresponding to evidence sets and columns
corresponding to states of the variables. Each row is a marginal probability distribution.

Note

These are designed to work with the functions woeHist and woeBal in the CPTtools-package.

Author(s)

Russell Almond

See Also

StudentRecord for student records.

baselineHist and updateHist for history construction.

BNEngine for specifying the history nodes.

woeHist and woeBal for applications.

loadManifest 33

Examples

library(PNetica)

##Start with manifest
sess <- NeticaSession()
startSession(sess)

BNWarehouse is the PNetica Net Warehouse.
This provides an example network manifest.
config.dir <- file.path(library(help="Peanut")$path, "auxdata")
netman1 <- read.csv(file.path(config.dir,"Mini-PP-Nets.csv"),

row.names=1, stringsAsFactors=FALSE)
net.dir <- file.path(library(help="PNetica")$path, "testnets")
Nethouse <- PNetica::BNWarehouse(manifest=netman1,session=sess,key="Name",

address=net.dir)
dsr <- StudentRecord("*DEFAULT*",app="ecd://epls.coe.fsu.edu/P4Test",

context="*Baseline*")
sm(dsr) <- WarehouseSupply(Nethouse,"miniPP_CM")
PnetCompile(sm(dsr))
dsr <- updateStats(eng,dsr)

statmat <- read.csv(file.path(config.dir,"Mini-PP-Statistics.csv"),
stringsAsFactors=FALSE)

rownames(statmat) <- statmat$Name
statlist <- sapply(statmat$Name,function (st)

Statistic(statmat[st,"Fun"],statmat[st,"Node"],st))
names(statlist) <- statmat$Name
dsr@stats <- lapply(statlist,

function (stat) calcStat(stat,sm(dsr)))
names(dsr@stats) <- names(statlist)
stat(dsr,"Physics_EAP")
stat(dsr,"Physics_Margin")

dsr <- baselineHist(eng,dsr)

dsr@hist <- lapply(c("Physics"),
function (nd)
EABN:::uphist(sm(dsr),nd,NULL,"*Baseline*"))

names(dsr@hist) <- "Physics"
stopifnot(histNames(dsr)=="Physics")
history(dsr,"Physics")

loadManifest Loads the mainifest for the compentency and evidence models in the
BNEngine

34 loadManifest

Description

This sets the manifest of networks used in the scoring engine. In particular, it sets the WarehouseManifest
of the PnetWarehouse associated with a BNEngine.

Usage

loadManifest(eng, manifest = data.frame())

Arguments

eng A BNEngine whose manifest is to be set.

manifest A dataframe containing a network manifest (see BuildNetManifest). If miss-
ing, then the manifest will be retrieved from the database or other cached source.

Details

The BNEngine requires a proficiency or competency model (which is used to build student mod-
els) and a collection of evidence models (one for each scoring context) which are all expressed as
Pnets. The manifest is basically a table of which evidence model networks go with which scoring
contexts. The proficienty model usually serves as the hub in the hub-and-spoke framework. (In fact,
if the profModel argument is not supplied when the BNEngine is built, the engine will look for a
network which has no hub in the manifest.

In fact, the manifest is part of the PnetWarehouse which is a field of the engine. It should have the
format associate with manifests described in WarehouseManifest. Note that the Bayes nets should
have already been built, so the the warehouse should point to where they can be loaded from the
filesystem on demand.

For the BNEngineMongo, the default manifest is located in a table in the database. If no manifest is
supplied, then the manifest is read from the database. For the BNEngineNDB, the manifest must be
specified manually when the engine is contructed (or when loadManifest is called).

Value

This function returns the engine argument.

Note

The loadManifest call is part of the initialization sequence for the BNEngine. However, if the
manifest is loaded into the PnetWarehouse as it is built, it is really redundant.

Author(s)

Russell Almond

References

Almond, Mislevy, Steinberg, Yan and Williamson (2015). Bayesian Networks in Educational As-
sessment. Springer. Especially Chapter 13.

logEvidence 35

See Also

Classes: BNEngine, BNEngineMongo, BNEngineNDB, PnetWarehouse

Functions: WarehouseManifest, BuildNetManifest

Examples

Requires database setup, also PNetica
library(RNetica) ## Must load to setup Netica DLL
app <- "ecd://epls.coe.fsu.edu/EITest"
sess <- RNetica::NeticaSession()
RNetica::startSession(sess)

config.dir <- file.path(library(help="Peanut")$path, "auxdata")
net.dir <- file.path(library(help="PNetica")$path,"testnets")

netman <- read.csv(file.path(config.dir, "Mini-PP-Nets.csv"),
row.names=1, stringsAsFactors=FALSE)

stattab <- read.csv(file.path(config.dir, "Mini-PP-Statistics.csv"),
as.is=TRUE)

Deliberately build warehouse without empty manifest.
Nethouse <- PNetica::BNWarehouse(session=sess,

address=net.dir)

cl <- new("CaptureListener")
listeners <- list("cl"=cl)

ls <- ListenerSet(sender= paste("EAEngine[",app,"]"),
dburi="", listeners=listeners)

eng <- BNEngineNDB(app=app,warehouse=Nethouse,
listenerSet=ls,manifest=netman,
profModel="miniPP_CM",
histNodes="Physics",
statmat=stattab,
activeTest="EAActive.txt")

stopifnot(nrow(WarehouseManifest(eng$warehouse())) == 0L)

Standard initialization methods.
loadManifest(eng,netman)
stopifnot(nrow(WarehouseManifest(eng$warehouse())) == 5L)

logEvidence Handle the relationship between evidence sets and student records.

36 logEvidence

Description

A StudentRecord differs from the baseline student record according to how many EvidenceSet
objects have been incorporated into the estimate. These functions tie and student record and evi-
dence set together.

Usage

update
logEvidence(eng, rec, evidMess)
seqno(x)
seqno(x) <- value
evidence(x)
evidence(x) <- value

Arguments

eng A BNEngine which is currently not used (could later be used to save the evidence
to a database).

rec A StudentRecord into which the evidence will be incorporated.

evidMess A EvidenceSet which will be associated with the student record.

x An EvidenceSet object.

value For seqno(x) <- value, an integer giving a new sequence number. For
evidence(x) <- value, a character vector giving the sequence of evidence
ID.

Details

There are several fields in the StudentRecord class which need to be updeated in the face of new
evidence.

context and timestamp These needs to be set to the values in the new evidence message.

seqno This needs to be incremented.

evidence The new evidence needs to be prepended to this list.

prev_id and "_id" The prev_id needs to point to the old field and the "_id" is set to NA (it will be
updated on save).

In the case of the BNEngineMongo, the IDs in question are the database ids for these objects so that
they can be easily found. The function m_id For the BNEngineNDB case presumably some external
system is issuing IDs to evidence sets and student records.

The evidence field of a StudentRecord is a list of IDs (m_id) for the accumulated evidence.

The seqno field is an optional ordering used to track the order in which evidence sets were incor-
porated into the student model. The value of seqno gives the number of evidence sets incorporated
into the recrod.

The logEvidence function sets the sequence number of the evidence message to one more than the
last sequence number for the student record. If no m_id exists for the record (no database mode),
then one is generated by concatenating the uid and the seqno.

logEvidence 37

Value

The updateRecord returns a new StudentRecord object, which points back to the old one.

The logEvidence function returns the modified EvidenceSet.

The function seqno returns an integer (or NA if has not been set).

The function evidence returns a character vector giving the IDs (m_id) of the encorpated evidence
sets.

Note

This is largely untested code for future fast retraction of evidence.

The prev_id field of the StudentRecord should leave a trace of previous student records in the
database, including old serialized models. This should allow the scoring engine to quickly jump
back in time.

The evidence field provides a list of the m_ids of all the incorporated evidence sets. This should
enable one or more evidence sets to be replaced and the student model to be recalculated.

Author(s)

Russell Almond

See Also

BNEngine, EvidenceSet, EvidenceSet StudentRecord, handleEvidence P4Message

Examples

recset <- StudentRecordSet(dburi="")

sr0 <-
StudentRecord("S1","*baseline*",as.POSIXct("2020-03-30 09:00:00"))

seqno(sr0) <- 0
sr0 <- saveSR(recset,sr0) # Sets the m_id

e1 <- EvidenceSet(uid="S1",app="Test",context="PPcompEM",
obs=list("CompensatoryObs"="Right"))

e2 <- EvidenceSet(uid="S1",app="Test",context="PPdurAttEM",
obs=list("Attempts"=2,"Duration"=38.3))

stopifnot(is.na(seqno(e1)), seqno(sr0)==0L)
stopifnot(length(evidence(sr0))==0L)

e1 <- logEvidence(NULL,sr0,e1)
stopifnot(seqno(e1)==1L,!is.na(m_id(e1)))

sr1 <- updateRecord(sr0,e1)
stopifnot(is.na(m_id(sr1)),sr1@prev_id==m_id(sr0))
sr1 <- saveSR(recset,sr1) # Sets the m_id

38 mainLoop

stopifnot(length(evidence(sr1))==1L,any(m_id(e1)==evidence(sr1)))
stopifnot(context(sr1)==context(e1),timestamp(sr1)==timestamp(e1))

e2 <- logEvidence(NULL,sr1,e2)
stopifnot(seqno(e2)==2L,!is.na(m_id(e2)))

sr2 <- updateRecord(sr1,e2)
stopifnot(is.na(m_id(sr2)),sr2@prev_id==m_id(sr1))
sr2 <- saveSR(recset,sr2) # Sets the m_id

stopifnot(length(evidence(sr2))==2L,any(m_id(e2)==evidence(sr2)))
stopifnot(context(sr2)==context(e2),timestamp(sr2)==timestamp(e2))

mainLoop This function loops through the processing of evidence sets.

Description

The mainLoop is used when the BNEngine is used as a server. It checks the queue (database or
internal list), for unprocessed EvidenceSet objects, and calls handleEvidence on them in the
order of their timestamps. As a server, this is potentially an infinite loop, see details for ways of
gracefully terminating the loop.

Usage

mainLoop(eng)

Arguments

eng An BNEngine which will handle the evidence sets.

Details

The BNEngineMongo class uses the EvidenceSets collection in the database as a queue. All events
have a processed field which is set to true when the evidence set is processed. The function
fetchNextEvidence fetches the oldest unprocessed evidence set.

The BNEngineNDB has an internal eventQueue field which is a list of evidence setsn. The fetchNextEvidence
simply fetches the first evidence set in the queue.

The mainLoop function iterates over the following steps.

1. Fetch the oldest unprocessed Event: eve <- fetchNextEvidence().

2. Process the evidence set: out <- handleEvidence(eng,eve). (Note: this expression
will always return. If it generates an error, the error will be logged and an object of class
try-error will be returned.)

3. Mark the event as processed: markProcessed(eve).

mainLoop 39

At its simplest level, the funciton produces an infinite loop over these three statements, with some
additional steps related to logging and control.

First, if the event queue is empty, the process sleeps for a time given by eng$waittime and then
checks the queue again. At the same time, it checks status of the active flag for the process using
the eng$isActivated() call.

For the Mongo implementation, eng$isActivated() checks the active field of the record corre-
sponding to app(eng) in the collection AuthorizedApps in the database Proc4. Setting that field to
false manually will result in the mainLoop terminating when the queue is empty. As R is running in
server mode when this happens, this often needs to be done using an external process. The follow-
ing command issues from the Mongo shell will shut down the server for an application containing
the string "appName" as part of its name.

db.AuthorizedApps.update({app:{$regex:"appName"}}, {$set:{active:false}});

For the no database implementation, eng$isActivated() checks for the existance of the file named
in the activeTest field. Deleting that file will have the same effect as setting the active field to
false in the database version.

To facilitate testing, the field eng$processN can be set to a finite value. This number is decremented
at every cycle, and when it reaches 0, the mainLoop is terminated, whether or not their are any
remaining events to be processed. Setting eng$processN to an infinite value, will result in an
infinite loop that can only be stopped by using the active flag (or interrupting the process).

Value

There is no return value. The function is used entirely for its side effects.

Note

Currently, when running in server model (i.e., with eng$processN set to infinity), there are two
ways of stopping the engine: a clean stop after all events are processed using the active flag, and
an immediate stop, possibly mid cycle, by killing the server process. It became apparent during
testing that there was a need for a graceful but immediate stop, i.e., a stop after processing the
current event. This should appear in later versions.

Author(s)

Russell Almond

See Also

BNEngine, BNEngineMongo, BNEngineNDB

fetchNextEvidence, handleEvidence

Examples

Not run:
From EABN.R script

app <- "ecd://epls.coe.fsu.edu/P4test"
loglevel <- "DEBUG"

40 observables

source("/usr/local/share/Proc4/EAini.R")
flog.appender(appender.file(logfile))
flog.threshold(loglevel)

sess <- NeticaSession(LicenseKey=NeticaLicenseKey)
startSession(sess)
listeners <- lapply(names(EA.listenerSpecs),

function (ll) do.call(ll,EA.listenerSpecs[[ll]]))
names(listeners) <- names(EA.listenerSpecs)

eng <- do.call(BNEngineMongo,
c(EAeng.params,list(session=sess,listeners=listeners),

EAeng.common))
loadManifest(eng)
configStats(eng)
setupDefaultSR(eng)

Activate engine (if not already activated.)
eng$activate()
mainLoop(eng)
Wait for cows to come home.

End(Not run)

observables Access parts of an evidence set message.

Description

The function observables access the list of observables contained in this EvidenceSet. The func-
tion seqno access the order in which the evidence sets were incorporated into the student record.

Usage

observables(x)

Arguments

x An EvidenceSet object.

Details

The observables function access the data field of the underlying P4Message. This should be a
named list of values that the BNEngine knows how to process.

Value

The function observables returns a named list of observable values.

parseEvidence 41

Author(s)

Russell Almond

See Also

EvidenceSet, EvidenceSet StudentRecord, handleEvidence P4Message

Examples

e1 <- EvidenceSet(uid="S1",app="Test",context="PPcompEM",
obs=list("CompensatoryObs"="Right"))

e2 <- EvidenceSet(uid="S1",app="Test",context="PPdurAttEM",
obs=list("Attempts"=2,"Duration"=38.3))

stopifnot(all.equal(observables(e1),
list("CompensatoryObs"="Right")))

stopifnot(all.equal(observables(e2)$Attempts,2))

stopifnot(is.na(seqno(e1)))
seqno(e1) <- 1
stopifnot(seqno(e1)==1L)

parseEvidence Convert EvidenceSet objects to and from JSON

Description

The as.json function takes an EvidenceSet (among other objects) and turns it into JSON. The
function parseEvidence takes the list produced as the output to fromJSON and turns it back into an
EvidenceSet object.

Usage

parseEvidence(rec)
S4 method for signature 'EvidenceSet,list'
as.jlist(obj, ml, serialize=TRUE)

42 parseEvidence

Arguments

rec A list which comes from running fromJSON on a JSON string, or database ex-
traction method.

obj The object being serialized; usually attributes(obj).

ml A list of fields of the object.

serialize A logical flag. If true, serializeJSON is used to protect the data field (and
other objects which might contain complex R code.

Details

See the description for as.json for more description of the JSON conversion prototocl.

The parseEvidence method is designed to be used with the getOneRec and getManyRecs functions
for fetching information from the database.

Value

The function parseEvidence returns an object of class EvidenceSet.

The as.jlist method returns a list which can be passed to toJSON to produce legible JSON from
the R object.

Author(s)

Russell Almond

See Also

EvidenceSet, as.json, getOneRec, getManyRecs

Examples

e1 <- EvidenceSet(uid="S1",app="Test",context="PPcompEM",
obs=list("CompensatoryObs"="Right"))

e2 <- EvidenceSet(uid="S1",app="Test",context="PPdurAttEM",
obs=list("Attempts"=2,"Duration"=38.3))

e1.ser <- as.json(e1)
e1a <- parseEvidence(fromJSON(e1.ser))
e2.ser <- as.json(e2)
e2a <- parseEvidence(fromJSON(e2.ser))

stopifnot(all.equal(e1,e1a), all.equal(e2,e2a))

parseStats 43

parseStats Functions for (un)serializing stats from student records.

Description

The functions unparseStats and stats2json serialize the statistics as a JSON record. The func-
tion parseStats reverses the process.

Usage

parseStats(slist)
unparseStats(slist, flatten=FALSE)
stats2json(slist, flatten=FALSE)

Arguments

slist A list of statistics. For parseStats this should be the output of fromJSON. For
the others, this is just a list of statistic values.

flatten If true, then vector-valued statistics (i.e., PnodeMargin, will have their values
flattened into scalars. If not they will be left as vectors.

Details

The function unparseStats massages the list of statistics so it will be output in clean JSON (in
particular, using unboxer to make sure scalars appear as scalars and not vectors). The function
stats2json is just toJSON(unparseStats(slist)).

If flatten is true, then vector value statstics will be flattened. For example, if the statistic “Physics_Margin”
has three values with labels “High”, “Medium”, and “Low”, then it will be replaced with three statis-
tics with the names “Physics_Margin.High”, “Physics_Margin.Medium”, and “Physics_Margin.Low”.

The function parseStatistics is designed to reverse the process.

Value

The function unparseStats returns a list which is ready to be passed to toJSON. In particular,
scalars are marked using unboxer.

The function stats2json returns a string containing the JSON.

The function parseStats returns a list of statistics values. this is suitable for being set to the stats
field of the StudentRecord object.

Note

When using flatten=TRUE, avoid periods, ‘.’, in the names of statistics, as this marker is used to
recreate the nested structure in parseStats.

Author(s)

Russell Almond

44 parseStudentRecord

See Also

ParseMessage gives general information about how the parsing/unparsing protocol works.

Statistic gives a list of available statistics.

StudentRecord talks about the statitic fields of the student records.

Examples

stats <- list(Physics_EAP=0,EnergyTransfer_EAP=.15,
Physics_Margin=c(High=1/3,Medium=1/3,

Low=1/3))
stats2json(stats)

stats1 <- parseStats(ununboxer(unparseStats(stats)))
stopifnot(all.equal(stats,stats1,tolerance=.0002))

stats2json(stats,flatten=TRUE)

stats2 <- parseStats(ununboxer(unparseStats(stats,flatten=TRUE)))
stopifnot(all.equal(stats,stats2,tolerance=.0002))

parseStudentRecord Covert Student Records to/from JSON

Description

The as.json function takes an StudentRecord (among other objects) and turns it into JSON. The
function parseStudentRecord takes the list produced as the output to fromJSON and turns it back
into an StudentRecord object.

Usage

parseStudentRecord(rec)
S4 method for signature 'StudentRecord,list'
as.jlist(obj, ml, serialize=TRUE)

Arguments

rec A list which comes from running fromJSON on a JSON string, or database ex-
traction method.

obj The object being serialized; usually attributes(obj).

ml A list of fields of the object.

serialize A logical flag. If true, serializeJSON is used to protect the data field (and
other objects which might contain complex R code.

parseStudentRecord 45

Details

See the description for as.json for more description of the general JSON conversion prototocl.

The StudentRecord contains a Pnet field in the student model. This takes some post-processing to
to properly restore.

The as.jlist method for the StudentRecord serializes the sm field using the PnetSerialize
method. This produces a slob (string large object) which is stored in the smser field of the StudentRecord.

The parseStudentRecord function restores the smser field, but not the sm field. This must be done
in the context of the StudentRecordSet, or equivalently the PnetWarehouse, which is currently
managing the networks. To finish the process, call fetchSM to restore the student model network.

Value

The function parseStudentRecord returns a student record object with the student model not yet
initialized.

The as.jlist method returns a list which can be passed to toJSON to produce legible JSON from
the R object.

Author(s)

Russell Almond

See Also

StudentRecord, as.json, getOneRec, getManyRecs

fetchSM, PnetSerialize

Examples

Requires database setup, also PNetica
library(RNetica) ## Must load to setup Netica DLL
app <- "ecd://epls.coe.fsu.edu/EITest"
sess <- RNetica::NeticaSession()
RNetica::startSession(sess)

config.dir <- file.path(library(help="Peanut")$path, "auxdata")
net.dir <- file.path(library(help="PNetica")$path,"testnets")

netman <- read.csv(file.path(config.dir, "Mini-PP-Nets.csv"),
row.names=1, stringsAsFactors=FALSE)

stattab <- read.csv(file.path(config.dir, "Mini-PP-Statistics.csv"),
as.is=TRUE)

Nethouse <- PNetica::BNWarehouse(netman,session=sess,
address=net.dir)

cl <- new("CaptureListener")
listeners <- list("cl"=cl)

46 parseStudentRecord

ls <- ListenerSet(sender= paste("EAEngine[",app,"]"),
dburi="", listeners=listeners)

eng <- BNEngineNDB(app=app,warehouse=Nethouse,
listenerSet=ls,manifest=netman,
profModel="miniPP_CM",
histNodes="Physics",
statmat=stattab,
activeTest="EAActive.txt")

Standard initialization methods.
loadManifest(eng,netman)
eng$setHistNodes("Physics")
configStats(eng,stattab)
setupDefaultSR(eng)

recset <- eng$studentRecords()

sr0 <- getRecordForUser(eng,"S1")
eap0 <- stat(sr0,"Physics_EAP")

sr0.ser <- as.json(sr0)
sr0a <- parseStudentRecord(fromJSON(sr0.ser))
sr0a <- fetchSM(sr0a,recset$warehouse)
This should relink to the same student model
stopifnot(sm(sr0a)==sm(sr0),abs(eap0-stat(sr0a,"Physics_EAP")) <.0001)

Next add some evidence and test again.

e1 <- EvidenceSet(uid="S1",app="Test",context="PPcompEM",
obs=list("CompensatoryObs"="Right"))

e1 <- logEvidence(eng,sr0,e1)
sr1 <- accumulateEvidence(eng,sr0,e1)
eap1 <- stat(sr1,"Physics_EAP")
sr1.ser <- as.json(sr1)

Force delete student model to make sure that it is properly
recovered.
WarehouseFree(Nethouse,PnetName(sm(sr1)))
stopifnot(!is.active(sm(sr1))) # No longer active.

sr1a <- parseStudentRecord(fromJSON(sr1.ser))
sr1a <- fetchSM(sr1a,recset$warehouse)
eap1a <- stat(sr1a,"Physics_EAP")
stopifnot(all(evidence(sr1)==evidence(sr1a)),

abs(eap1-eap1a) <.001)

setupDefaultSR 47

setupDefaultSR Set up the Default Student Record for an StudentRecordSet

Description

The default student record is a field associated with a StudentRecordSet which provides a template
student record for a student just staring the assessment. The setupDefaultSR function needs to be
called at the start of every scoring session to initialize the defaultSR field of the student record set.

Usage

setupDefaultSR(eng)

Arguments

eng A BNEngine which contains the student record details.

Details

This function creates a new StudentRecord object with the special uid “*DEFAULT*” and the
special context ID “*Baseline*”. The student model is actually the competency or proficiency
model: the baseline student model giving the population distribution of the the measured proficien-
cies. This is fetched by name from the PnetWarehouse attached to the engine; the name is given in
the profModel field of the eng.

Setting up a default student record actually takes a number of steps:

1. The student record set (eng$studentRecrods()) is cleared by calling clearSRs.

2. A new blank student record (uid="*DEFAULT*") is created.

3. The sm field of the new student record is initialized to the proficiency model.

4. The student model is compiled (PnetCompile).

5. The baseline statisics are calculated (updateStats).

6. The baseline history is set (baselineHist).

7. The default student record is saved in the defaultSR field of the StudentRecordSet and in
the database (saveSR).

8. The baseline statistics are announced (announceStats).

Value

This function is called for its side effects.

Author(s)

Russell Almond

48 setupDefaultSR

References

Almond, Mislevy, Steinberg, Yan and Williamson (2015). Bayesian Networks in Educational As-
sessment. Springer. Especially Chapter 13.

See Also

Classes: BNEngine, StudentRecord, StudentRecordSet, PnetWarehouse

Functions: clearSRs, PnetCompile, updateStats, baselineHist, saveSR, announceStats

Examples

Requires database setup, also PNetica
library(RNetica) ## Must load to setup Netica DLL
app <- "ecd://epls.coe.fsu.edu/EITest"
sess <- RNetica::NeticaSession()
RNetica::startSession(sess)

config.dir <- file.path(library(help="Peanut")$path, "auxdata")
net.dir <- file.path(library(help="PNetica")$path,"testnets")

netman <- read.csv(file.path(config.dir, "Mini-PP-Nets.csv"),
row.names=1, stringsAsFactors=FALSE)

stattab <- read.csv(file.path(config.dir, "Mini-PP-Statistics.csv"),
as.is=TRUE)

Nethouse <- PNetica::BNWarehouse(netman,session=sess,
address=net.dir)

cl <- new("CaptureListener")
listeners <- list("cl"=cl)

ls <- ListenerSet(sender= paste("EAEngine[",app,"]"),
dburi="", listeners=listeners)

eng <- BNEngineNDB(app=app,warehouse=Nethouse,
listenerSet=ls,manifest=netman,
profModel="miniPP_CM",
histNodes="Physics",
statmat=stattab,
activeTest="EAActive.txt")

Standard initialization methods.
loadManifest(eng,netman)
eng$setHistNodes("Physics")
configStats(eng,stattab)
setupDefaultSR(eng)

defrec <- eng$studentRecords()$defaultSR

sm 49

stopifnot(uid(defrec)=="*DEFAULT*", app(defrec)==app(eng),
context(defrec)=="*Baseline*",
PnetName(sm(defrec))==eng$profModel)

sm Access the student model (Pnet) associated with a studnet record

Description

A characteristic of the EABN model is that each code StudentRecord is associated with a student
model–a Pnet which tracks our knowledge about the student’s knowledge skills and abilities. The
function sm accesses the net.

Usage

sm(x)
sm(x) <- value

Arguments

x An object of class StudentRecord whose student model will be accessed.

value A Pnet object which will be the new student model.

Value

The function sm returns an object which implements the Pnet protocol, or none is the student model
has not been generated.

The setter version returns the student record.

Author(s)

Russell Almond

See Also

fetchSM, unpackSM, setupDefaultSR

Examples

library(PNetica)

##Start with manifest
sess <- NeticaSession()
startSession(sess)

50 stat

BNWarehouse is the PNetica Net Warehouse.
This provides an example network manifest.
config.dir <- file.path(library(help="Peanut")$path, "auxdata")
netman1 <- read.csv(file.path(config.dir,"Mini-PP-Nets.csv"),

row.names=1, stringsAsFactors=FALSE)
net.dir <- file.path(library(help="PNetica")$path, "testnets")
Nethouse <- BNWarehouse(manifest=netman1,session=sess,key="Name",

address=net.dir)

dsr <- StudentRecord("*DEFAULT*",app="ecd://epls.coe.fsu.edu/P4Test",
context="*Baseline*")

sm(dsr) <- WarehouseSupply(Nethouse,"miniPP_CM")
PnetCompile(sm(dsr))

stat Access statistics from a Student Record

Description

These functions access the stats field of a StudentRecord object. The function stat accesses a
single statistics and stats returns all of the statistics. The function statNames returns the names
of the available statistics.

Usage

stat(sr, name)
stats(x)
statNames(sr)

Arguments

sr, x A StudentRecord object whose statsitics are to be accessed.

name A character object giving the name of the specific statististic to access.

Value

The function stat returns the value of a single statistic, which could be numeric, character or
something else.

The function stats returns a named list of statistics.

The function statNames returns a character vector.

Author(s)

Russell Almond

StudentRecord 51

See Also

StudentRecord for the student record class.

Statistic for statistic objects which return the statistics.

Examples

stats <- list(Physics_EAP=0,EnergyTransfer_EAP=.15,
Physics_Margin=c(High=1/3,Medium=1/3,

Low=1/3))

dsr <- StudentRecord("*DEFAULT*",app="ecd://epls.coe.fsu.edu/P4Test",
context="*Baseline*",stats=stats)

stats(dsr)
stopifnot(all.equal(stats,stats,tolerance=.0002))

statNames(dsr)
stopifnot(all(statNames(dsr)==names(stats)))

stat(dsr,"Physics_Margin")
stopifnot(all.equal(stat(dsr,"Physics_Margin"),stats[[3]],tolerance=.0002))

StudentRecord Constructor for StudentRecord object

Description

This is the constructor for a StudentRecord object. Basically, this is a wrapper around the studnet
model for the appropriate user, with meta-data about the evidence that has been absorbed.

Usage

StudentRecord(uid, context = "", timestamp = Sys.time(), smser = list(), sm = NULL, stats = list(), hist = list(), evidence = character(), app = "default", seqno = -1L, prev_id = NA_character_)

Arguments

uid A user identifier for the student/player.

context An identifer for the scoring context/window.

timestamp Timestamp of the last evidence set absorbed for this user.

smser A serialized Bayesian network (see WarehouseUnpack).

sm A Pnet containing the student model (or NULL if it has not been initialized.

stats A list of statistics calculated for the model.

52 StudentRecord

hist A list of node histories for the measured nodes.

evidence A character vector of ids for the absorbed evidence sets.

app A guid (string) identifying the application.

seqno A sequence number, basically a count of absorbed evidence sets.

prev_id The database ID of the previous student model.

Value

An object of class StudentRecord.

Author(s)

Russell Almond

See Also

StudentRecord

Examples

library(PNetica)

##Start with manifest
sess <- NeticaSession()
startSession(sess)

BNWarehouse is the PNetica Net Warehouse.
This provides an example network manifest.
config.dir <- file.path(library(help="Peanut")$path, "auxdata")
netman1 <- read.csv(file.path(config.dir,"Mini-PP-Nets.csv"),

row.names=1, stringsAsFactors=FALSE)
net.dir <- file.path(library(help="PNetica")$path, "testnets")
Nethouse <- BNWarehouse(manifest=netman1,session=sess,key="Name",

address=net.dir)

dsr <- StudentRecord("*DEFAULT*",app="ecd://epls.coe.fsu.edu/P4Test",
context="*Baseline*")

sm(dsr) <- WarehouseSupply(Nethouse,"miniPP_CM")
PnetCompile(sm(dsr))

dsr <- updateStats(eng,dsr)
statmat <- read.csv(file.path(config.dir,"Mini-PP-Statistics.csv"),

stringsAsFactors=FALSE)
rownames(statmat) <- statmat$Name
statlist <- sapply(statmat$Name,function (st)

Statistic(statmat[st,"Fun"],statmat[st,"Node"],st))
names(statlist) <- statmat$Name
dsr@stats <- lapply(statlist,

function (stat) calcStat(stat,sm(dsr)))

StudentRecord-class 53

names(dsr@stats) <- names(statlist)
stat(dsr,"Physics_EAP")
stat(dsr,"Physics_Margin")

dsr <- baselineHist(eng,dsr)

dsr@hist <- lapply(c("Physics"),
function (nd)
EABN:::uphist(sm(dsr),nd,NULL,"*Baseline*"))

names(dsr@hist) <- "Physics"
history(dsr,"Physics")

Serialization and unserialization
dsr.ser <- as.json(dsr)

dsr1 <- parseStudentRecord(fromJSON(dsr.ser))
dsr1 <- fetchSM(dsr1,Nethouse)

dsr and dsr1 should be the same.
stopifnot(
app(dsr)==app(dsr1),
uid(dsr)==uid(dsr1),
context(dsr)==context(dsr1),
all.equal(timestamp(dsr),timestamp(dsr1)),
all.equal(seqno(dsr),seqno(dsr1)),
all.equal(stats(dsr),stats(dsr1),tolerance=.0002),
all.equal(history(dsr,"Physics"),history(dsr1,"Physics")),
PnetName(sm(dsr)) == PnetName(sm(dsr))

)

StudentRecord-class Class "StudentRecord"

Description

This is a wrapper for the Bayesian network information for a particular student. It contains a local
copy of the Bayesian network.

Objects from the Class

Objects can be created by calls to the function StudentRecord, uid, context, timestamp, smser, sm, stats, hist, evidence).

Slots

_id: Object of class "character" The mongo ID of the object, empty character if it has not been
saved in the database. If Mongo is not being used, this field can be used for other kinds of IDs.

app: Object of class "character" that gives the identifier for the application this record is used
with.

54 StudentRecord-class

uid: Object of class "character" which is the unique identifier for the user (student, player).

context: Object of class "character" which identifies the scoring context (scoring window).

evidence: Object of class "character" giving the IDs of the evidence sets applied to this student
model.

timestamp: Object of class "POSIXt" giving the timestamp of the last evidence set applied to this
model.

sm: Object of class "Pnet", the actual student model (or NULL if it is not yet built).

smser: Object of class "list" the serialized student model.

seqno: Object of class "integer" a sequence number, that is the number of evidence sets applied.

stats: Object of class "list" the most recent statistics generated from this model.

hist: Object of class "list" list of history lists for the designed history variables. There is one
element for each history variable.

prev_id: Object of class "character" the Mongo ID of the previous student model.

Methods

app signature(x = "StudentRecord"): returns the application id associated with this record.

as.jlist signature(obj = "StudentRecord", ml = "list"): serialized the record as
JSON

context signature(x = "StudentRecord"): return the context (scoring window) identifier aso-
ciated with the last processed evidence set.

evidence signature(x = "StudentRecord"): returns the ids of the aborbed evidence sets.

evidence<- signature(x = "StudentRecord"): sets the ids of the aborbed evidence sets.

histNames signature(sr = "StudentRecord"): returns the names of the history variables.

history signature(sr = "StudentRecord", name = "character"): returns the
history list for the variable.

seqno signature(x = "StudentRecord"): returns the sequence number for this record.

seqno<- signature(x = "StudentRecord"): sets the sequence number for this record.

show signature(object = "StudentRecord"): prints the record.

sm signature(x = "StudentRecord"): returns the Bayes net (Pnet) associated with this record.

sm<- signature(x = "StudentRecord", value="ANY"): sets the Bayes net (Pnet) associated
with this record.

stat signature(sr = "StudentRecord", name = "character"): returns the current
value of the named statistics.

statNames signature(sr = "StudentRecord"): returns the names of the statistics.

stats signature(x = "StudentRecord"): returns all of the statistics.

timestamp signature(x = "StudentRecord"): returns the timestamp of the last absorbed evi-
dence set.

toString signature(x = "StudentRecord"): creates a printed representation.

uid signature(x = "StudentRecord"): returns the ID for the student/player.

StudentRecordSet 55

Author(s)

Russell Almond

References

Almond, R.G., Mislevy, R.J., Steinberg, L.S., Williamson, D.M. and Yan, D. (2015) Bayesian
Networks in Educational Assessment. Springer. Chapter 13.

See Also

StudentRecord, EvidenceSet, StudentRecordSet

Examples

showClass("StudentRecord")

StudentRecordSet Constructor for “StudentRecordSet” class

Description

A StudentRecordSet is a collection of collection of StudentRecord objects. It is always con-
nected to a PnetWarehouse and could be connected to a database as well.

Usage

StudentRecordSet(app = "default", warehouse = NULL,
dburi = "mongodb://localhost", dbname = "EARecords", ...)

Arguments

app A character scalar providing a guid for the application.

warehouse An object of type PnetWarehouse that contains already built student models.

dburi A character scalar giving the URI for the database, or an empty character string
if the record set is not connected to the database.

dbname A character scalar giving the name of the database where records are stored.

... Other arguments for future extensions.

56 StudentRecordSet

Details

A StudentRecordSet is a collection of student recrods. It contains a PnetWarehouse which con-
tains the student models and possibly a database containing the student records.

The StudentRecordSet operates in two modes, depending on the value of dburi. If dburi ref-
erences a MongoDB-class database, then the StudentRecordSet set will save student records (in-
cluding serialized Bayes nets) to the database and restore them on demmand. This facilitates scoring
across several sessions.

If the dburi argument is an empty string or NULL no database connection will be created. Instead,
the calls to the getSR function should pass in a serialized version of the student record function. If
no serialized record is available, a new record will be created.

Value

An object of class StudentRecordSet.

Author(s)

Russell Almond

See Also

StudentRecordSet, StudentRecord, getSR, saveSR, newSR, clearSRs

Examples

library(PNetica)

##Start with manifest
sess <- NeticaSession()
startSession(sess)

BNWarehouse is the PNetica Net Warehouse.
This provides an example network manifest.
config.dir <- file.path(library(help="Peanut")$path, "auxdata")
netman1 <- read.csv(file.path(config.dir,"Mini-PP-Nets.csv"),

row.names=1, stringsAsFactors=FALSE)
net.dir <- file.path(library(help="PNetica")$path, "testnets")
Nethouse <- BNWarehouse(manifest=netman1,session=sess,key="Name",

address=net.dir)

Setup to test without Mongo
SRS <- StudentRecordSet(app="Test",warehouse=Nethouse,

dburi="")
stopifnot(is.null(SRS$recorddb()))

Setup default SR
dsr <- StudentRecord("*DEFAULT*",app="Test",

context="*Baseline*")
sm(dsr) <- WarehouseSupply(Nethouse,"miniPP_CM")

StudentRecordSet-class 57

PnetCompile(sm(dsr))

dsr <- updateStats(eng,dsr)
statmat <- read.csv(file.path(config.dir,"Mini-PP-Statistics.csv"),

stringsAsFactors=FALSE)
rownames(statmat) <- statmat$Name
statlist <- sapply(statmat$Name,function (st)

Statistic(statmat[st,"Fun"],statmat[st,"Node"],st))
names(statlist) <- statmat$Name
dsr@stats <- lapply(statlist,

function (stat) calcStat(stat,sm(dsr)))
names(dsr@stats) <- names(statlist)

dsr@hist <- lapply(c("Physics"),
function (nd)
EABN:::uphist(sm(dsr),nd,NULL,"*Baseline*"))

names(dsr@hist) <- "Physics"

SRS$defaultSR <- dsr
saveSR(SRS, dsr)

Make a new Student Record for a student.
sr1 <- newSR(SRS,"S1")
stopifnot(uid(sr1)=="S1",app(sr1)==app(dsr),

all.equal(stats(dsr),stats(sr1),.0002))

sr1a <- getSR(SRS,"S1")

clearSRs(SRS)

StudentRecordSet-class

Class "StudentRecordSet"

Description

This class provides a collection of student records. Optionally, it can be hitched to a database so
that student can be saved and restored across scoring sessions.

Details

The StudentRecordSet exists to hold a collection of StudentRecord objects. If, when constructed,
the record set is passed information about a database, the record set is stored in the database. If not,
it is merely stored in memory. The database version, in particular, allows restoring the object from
memory. The primary key for the student record in the database is the app ID (which is a field in
the record set) and the uid which is passed through the getSR method.

58 StudentRecordSet-class

The method getSR takes different arguments based on which version is passed. In particular, the
ser argument allows a serialized (JSON) version of the data to be passed in. In particular, getSR
will do one of the following things (in order of priority):

1. If the ser argument is supplied, the student record will be restored from this.

2. If the StudentRecordSet is connected to a database, then the student record is restored from
information in the database, based on the uid argument and the app field.

3. A new student record is created for the uid.

The record set also contains a link to a PnetWarehouse which it uses to try and find the Pnet
associated with the StudentRecord. If the Pnet already exists in the warehouse, it is just connected
to the fetched record. If not, then it is restored from a serialized version either from the passed in
serialized record, or from the serialized Pnet in the database.

Extends

All reference classes extend and inherit methods from "envRefClass".

Methods

app signature(x = "StudentRecordSet"): Returns the application this record set is associated
with.

getSR signature(srs = "StudentRecordSet", uid="ANY",ser="character"):
Returns the student record for the specified ID. If ser is supplied it should be a json list object
containing the student record.

newSR signature(srs = "StudentRecordSet", uid="character"): Creates a new
Student Record for the specified ID by cloning the default student record.

saveSR signature(srs = "StudentRecordSet"): If connected to a database, the SR is saved to
the database.

clearSR signature(srs = "StudentRecordSet"): If connected to a database, the SR in the
database are cleared.

Fields

app: Object of class character which contains the application identifier

dbname: Object of class character which contains the name of the database.

dburi: Object of class character containing the URI for connecting to the database, for example
“mongodb://localhost:271017”. To create a record set not connecteded to the database, set this
value to character().

db: Object of class MongoDB a connection to the database or NULL if the object is not connected to
the database. Users should call the recorddb() function rather than access this field directly.

warehouse: Object of class PnetWarehouse which contains already loaded nets.

defaultSR: Object of class StudentRecord or NULL. This is the default student record which is
cloned to create new studnet records.

updateHist 59

Class-Based Methods

initialize(app, dbname, dburi, db, warehouse, ...): Initializes the student record set.

recorddb(): Returns the database handle (if connected to a database) or NULL if not connected to a
database. Note that this initializes the database the first time it is called, so it should be called
rather than accessing the db field directly.

clearAll(clearDefault=FALSE): Clears all records from the database and the warehouse. If
clearDefault==FALSE, then the default record is not cleared.

Author(s)

Russell Almond

See Also

StudentRecordSet for the constructor. StudentRecord for the contained objects.

PnetWarehouse and Pnet for information about the contained Bayesian networks.

BNEngine for the engine that holds it.

Examples

showClass("StudentRecordSet")

updateHist Update the node history in a student record

Description

The StudentRecord object can track the history of zero or more Pnode in the student model (sm).
The history is a data frame with columns corresponding to the states of the variables and the rows
corresponding to the EvidenceSets absorbed into the student record. The function updateHist add
a new row to each history corresponding to the evidence set. The function baselineHist creates
the initial row.

Usage

updateHist(eng, rec, evidMess, debug = 0)
baselineHist(eng, rec)

Arguments

eng The BNEngine controlling the operation.

rec The StudentRecord which will be updated.

evidMess The EvidenceSet which has just been added to the student model using updateSM.

debug An integer flag. If bigger than 1, then a call to recover will be made inside the
function call.

60 updateHist

Details

A history tracks a single node in the student model as it changes in response to the incomming
evidence sets. The history for a node is data frame with columns representing variable states and
rows representing evidence sets (evidence from different scoring windows or tasks).

The function baselineHist is called as part of setupDefaultSR. This initializes a history data
frame for each node in the histNodes field of the BNEngine. It inserts a first row, which is always
given the name “*Baseline*”. The values in the first row are the marginal distribution of those
nodes (PnodeMargin).

The function updateHist adds row to each history table. The name of the row corresponds to the
context field of the EvidenceSet. The value is the curent marginal distribution for the history
nodes.

The function history retrieves the history. The functions woeHist and woeBal in the CPTtools-package
describe possible applications for the history function.

Value

Both functions return the modified StudentRecord

Note

With the Netica implementation, the student model needs to be compiled (PnetCompile(sm(rec)))
before the baselineHist function is run.

This is probably true of updateHist as well, but updateSM recompiles the network.

Author(s)

Russell Almond

References

Madigan, Mosurski and Almond, (1997). Graphical explanation in belief networks. Journal of
Computational and Graphical Statistics, 6, 160–181.

Almond, Kim, Shute and Ventura (2013). Debugging the evidence chain. Proceeings of the 2013
UAI Application Workshops (UAI2013AW). 1–10. CEUR workshop proceedings, vol 1024. http:
//ceur-ws.org/Vol-1024/paper-01.pdf

See Also

Classes: BNEngine, EvidenceSet StudentRecord

Functions in EABN: accumulateEvidence, updateStats, updateSM, history

Peanut Functions: PnodeMargin

CPTtools Functions woeHist, woeBal

http://ceur-ws.org/Vol-1024/paper-01.pdf
http://ceur-ws.org/Vol-1024/paper-01.pdf

updateHist 61

Examples

Requires database setup, also PNetica
library(RNetica) ## Must load to setup Netica DLL
app <- "ecd://epls.coe.fsu.edu/EITest"
sess <- RNetica::NeticaSession()
RNetica::startSession(sess)

config.dir <- file.path(library(help="Peanut")$path, "auxdata")
net.dir <- file.path(library(help="PNetica")$path,"testnets")

netman <- read.csv(file.path(config.dir, "Mini-PP-Nets.csv"),
row.names=1, stringsAsFactors=FALSE)

stattab <- read.csv(file.path(config.dir, "Mini-PP-Statistics.csv"),
as.is=TRUE)

Nethouse <- PNetica::BNWarehouse(netman,session=sess,
address=net.dir)

cl <- new("CaptureListener")
listeners <- list("cl"=cl)

ls <- ListenerSet(sender= paste("EAEngine[",app,"]"),
dburi="", listeners=listeners)

eng <- BNEngineNDB(app=app,warehouse=Nethouse,
listenerSet=ls,manifest=netman,
profModel="miniPP_CM",
histNodes="Physics",
statmat=stattab,
activeTest="EAActive.txt")

Standard initialization methods.
loadManifest(eng,netman)
eng$setHistNodes(character())
configStats(eng,stattab)
setupDefaultSR(eng)

sr1 <- getRecordForUser(eng,"S1")
history(sr1,"Physics")
stopifnot(is.null(history(sr1,"Physics")))

Now set up history.
eng$setHistNodes("Physics")
PnetCompile(sm(sr1))
sr1 <- baselineHist(eng,sr1)
history(sr1,"Physics")
stopifnot(nrow(history(sr1,"Physics"))==1L)

62 updateSM

e1 <- EvidenceSet(uid="S1",app="Test",context="PPcompEM",
obs=list("CompensatoryObs"="Right"))

sr1 <- updateSM(eng,sr1,e1)
sr1 <- updateHist(eng,sr1,e1)

e2 <- EvidenceSet(uid="S1",app="Test",context="PPconjEM",
obs=list("ConjunctiveObs"="Wrong"))

sr1 <- updateSM(eng,sr1,e2)
sr1 <- updateHist(eng,sr1,e2)

history(sr1,"Physics")
stopifnot(nrow(history(sr1,"Physcis"))==3L)
woeHist(history(sr1,"Physics"),pos="High",neg=c("Medium","Low"))

updateSM Updates the Student model with additional evidence.

Description

This function is the core of the EABN algorithm. It finds and attaches the evidence model to the stu-
dent model, enters the findings from the evidence message, and then detaches the evidence model,
leaving the student model updated.

Usage

updateSM(eng, rec, evidMess, debug = 0)

Arguments

eng The BNEngine supervising the opeeration.
rec The StudentRecord for the student in question.
evidMess The EvidenceSet containing the new evidence.
debug An integer describing how much debugging to do. If set to a number greater than

1, it will issue a call to recover at various stages to aid in debugging models.

Details

The update algorithm performs the following step:

1. Finds the evidence model by name according to the context field of the EvidenceSet. See
WarehouseSupply.

2. Adjoins the sm of the student record with the evidence model and compiles the modified
network. See PnetAdjoin and PnetCompile.

3. Loops over the observables in the evidence set, if they correspond to nodes in the evidence
model, then instantiate their values using PnodeEvidence.

4. Detatch the evidence model and recompile the network. See PnetDetach.

updateSM 63

Value

The updated student record is returned.

Author(s)

Russell Almond

References

Almond, Mislevy, Steinberg, Yan and Williamson (2015). Bayesian Networks in Educational As-
sessment. Springer. Especially Chapters 5 and 13.

See Also

Classes: BNEngine, PnetWarehouse, StudentRecord, EvidenceSet, Pnet

Functions in EABN: accumulateEvidence, updateHist, updateStats, getRecordForUser

Peanut Functions: WarehouseSupply, PnetAdjoin, PnetCompile, PnetDetach, PnodeEvidence

Examples

Requires database setup, also PNetica
library(RNetica) ## Must load to setup Netica DLL
app <- "ecd://epls.coe.fsu.edu/EITest"
sess <- RNetica::NeticaSession()
RNetica::startSession(sess)

config.dir <- file.path(library(help="Peanut")$path, "auxdata")
net.dir <- file.path(library(help="PNetica")$path,"testnets")

netman <- read.csv(file.path(config.dir, "Mini-PP-Nets.csv"),
row.names=1, stringsAsFactors=FALSE)

stattab <- read.csv(file.path(config.dir, "Mini-PP-Statistics.csv"),
as.is=TRUE)

Nethouse <- PNetica::BNWarehouse(netman,session=sess,
address=net.dir)

cl <- new("CaptureListener")
listeners <- list("cl"=cl)

ls <- ListenerSet(sender= paste("EAEngine[",app,"]"),
dburi="", listeners=listeners)

eng <- BNEngineNDB(app=app,warehouse=Nethouse,
listenerSet=ls,manifest=netman,
profModel="miniPP_CM",
histNodes="Physics",
statmat=stattab,
activeTest="EAActive.txt")

64 updateStats

Standard initialization methods.
loadManifest(eng,netman)
eng$setHistNodes("Physics")
configStats(eng,stattab)
setupDefaultSR(eng)

sr1 <- getRecordForUser(eng,"S1")
PnetCompile(sm(sr1))
eap1 <- PnodeEAP(sm(sr1),PnetFindNode(sm(sr1),"Physics"))

e1 <- EvidenceSet(uid="S1",app="Test",context="PPcompEM",
obs=list("CompensatoryObs"="Right"))

sr1a <- updateSM(eng,sr1,e1)
eap1a <- PnodeEAP(sm(sr1),PnetFindNode(sm(sr1),"Physics"))
This should have changed.
stopifnot(abs(eap1-eap1a) > .001)

updateStats Recalculates statistics for changed student model.

Description

When the student model of a StudentRecord changes, because the function updateSM has been
run, the statistics need to be recalculated. The function updateStats recalculates the statistics.
The function announceStats lets the listeners know that new statistics are available for this user.

Usage

updateStats(eng, rec, debug = 0)
announceStats(eng, rec)

Arguments

eng A BNEngine controlling the operation.

rec A StudentRecord, particularly, one that has just been updated via a call to
updateSM.

debug An integer flag. If the value is greater than 1, there will be a call recover inside
of the call.

updateStats 65

Details

The BNEngine contains a number of Statistic objects. Every time the student model (sm) of the
StudentRecord changes, the stats of the record need to be updated as well.

The function updateStats simply loops through the statistic collection and calculates the new
values. The corresponding field of the student record is then updated.

The function announceStats takes the new statistic values and generates a P4Message containing
the new statistics. This is sent to all of the Listener objects in the ListenerSet attached to the
engine.

The function stats returns the latest statistics from the student record.

Value

The function updateStats returns the updates StudentRecord object.

The function announceStats is called for its side effects. Its return value should not be used.

Author(s)

Russell Almond

References

Almond, Mislevy, Steinberg, Yan and Williamson (2015). Bayesian Networks in Educational As-
sessment. Springer. Especially Chapters 5 and 13.

See Also

Classes: BNEngine, ListenerSet StudentRecord, Statistic, P4Message

Functions in EABN: accumulateEvidence, updateHist, updateSM, stats

Peanut Functions: calcStat

Proc4Functions notifyListeners

Examples

Requires database setup, also PNetica
library(RNetica) ## Must load to setup Netica DLL
app <- "ecd://epls.coe.fsu.edu/EITest"
sess <- RNetica::NeticaSession()
RNetica::startSession(sess)

config.dir <- file.path(library(help="Peanut")$path, "auxdata")
net.dir <- file.path(library(help="PNetica")$path,"testnets")

netman <- read.csv(file.path(config.dir, "Mini-PP-Nets.csv"),
row.names=1, stringsAsFactors=FALSE)

stattab <- read.csv(file.path(config.dir, "Mini-PP-Statistics.csv"),
as.is=TRUE)

66 updateStats

Nethouse <- PNetica::BNWarehouse(netman,session=sess,
address=net.dir)

cl <- new("CaptureListener")
listeners <- list("cl"=cl)

ls <- ListenerSet(sender= paste("EAEngine[",app,"]"),
dburi="", listeners=listeners)

eng <- BNEngineNDB(app=app,warehouse=Nethouse,
listenerSet=ls,manifest=netman,
profModel="miniPP_CM",
histNodes="Physics",
statmat=stattab,
activeTest="EAActive.txt")

Standard initialization methods.
loadManifest(eng,netman)
eng$setHistNodes("Physics")
configStats(eng,stattab)
setupDefaultSR(eng)

sr0 <- getRecordForUser(eng,"S1")

eap0 <- stat(sr0,"Physics_EAP")

e1 <- EvidenceSet(uid="S1",app="Test",context="PPcompEM",
obs=list("CompensatoryObs"="Right"))

sr1 <- updateRecord(sr0,e1)
sr1 <- updateSM(eng,sr1,e1)
sr1 <- updateStats(eng,sr1)
eap1 <- stat(sr1,"Physics_EAP")

This should have changed.
stopifnot(abs(eap1-eap0) > .001)

announceStats(eng,sr1)
Look at the resulting message.
cl$lastMessage()
details(cl$lastMessage())
stopifnot(uid(cl$lastMessage())=="S1",context(cl$lastMessage())=="PPcompEM")

Index

∗Topic classes
BNEngine-class, 5
BNEngineMongo-class, 10
BNEngineNDB-class, 15
EvidenceSet, 19
EvidenceSet-class, 20
StudentRecord-class, 53
StudentRecordSet-class, 57

∗Topic class
StudentRecordSet, 55

∗Topic database
getSR, 29
mainLoop, 38

∗Topic graphs
accumulateEvidence, 2
BNEngineMongo, 8
BNEngineNDB, 13
fetchSM, 23
history, 31
sm, 49
updateSM, 62

∗Topic graph
StudentRecord, 51
StudentRecord-class, 53
updateHist, 59
updateStats, 64

∗Topic interface
accumulateEvidence, 2
BNEngineMongo, 8
BNEngineNDB, 13
EvidenceSet, 19
fetchNextEvidence, 21
fetchSM, 23
getSR, 29
loadManifest, 33
parseEvidence, 41
parseStats, 43
parseStudentRecord, 44
updateStats, 64

∗Topic manip
accumulateEvidence, 2
configStats, 17
fetchNextEvidence, 21
getRecordForUser, 26
history, 31
loadManifest, 33
logEvidence, 35
mainLoop, 38
observables, 40
setupDefaultSR, 47
sm, 49
stat, 50
updateHist, 59
updateSM, 62
updateStats, 64

accumulateEvidence, 2, 6, 7, 9, 12, 14, 17,
21, 60, 63, 65

announceStats, 3, 4, 6, 7, 9, 12, 14, 17, 18,
27, 47, 48

announceStats (updateStats), 64
app,BNEngine-method (BNEngine-class), 5
app,StudentRecord-method

(StudentRecord-class), 53
app,StudentRecordSet-method

(StudentRecordSet-class), 57
as.jlist,EvidenceSet,list-method

(parseEvidence), 41
as.jlist,StudentRecord,list-method

(parseStudentRecord), 44
as.json, 21, 41, 42, 44, 45

baselineHist, 5, 7, 9, 12, 14, 17, 32, 47, 48
baselineHist (updateHist), 59
BNEngine, 2, 4, 8–10, 12–15, 17, 18, 21, 22,

26, 27, 30, 32, 34–40, 47, 48, 59, 60,
62–65

BNEngine (BNEngine-class), 5
BNEngine-class, 5

67

68 INDEX

BNEngineMongo, 4, 5, 7, 8, 8, 14, 17, 18, 22,
34–36, 38, 39

BNEngineMongo-class, 10
BNEngineNDB, 3–5, 7, 9, 12, 13, 13, 18, 22,

34–36, 38, 39
BNEngineNDB-class, 15
BuildNetManifest, 34, 35

calcStat, 65
clearSRs, 47, 48, 56
clearSRs (getSR), 29
clearSRs,StudentRecordSet-method

(StudentRecordSet-class), 57
configStats, 5, 7, 9, 12–14, 17, 17
context, 47, 60
context,StudentRecord-method

(StudentRecord-class), 53

envRefClass, 6, 10, 15, 58
evidence (logEvidence), 35
evidence,BNEngineNDB-method

(BNEngineNDB-class), 15
evidence,StudentRecord-method

(StudentRecord-class), 53
evidence<- (logEvidence), 35
evidence<-,BNEngineNDB-method

(BNEngineNDB-class), 15
evidence<-,StudentRecord-method

(StudentRecord-class), 53
EvidenceSet, 2, 4–6, 11, 13, 15, 16, 19, 19,

20–22, 31, 36–38, 40–42, 55, 59, 60,
62, 63

EvidenceSet-class, 20

fetchNextEvidence, 21, 38, 39
fetchNextEvidence,BNEngine-method

(BNEngine-class), 5
fetchSM, 23, 27, 29, 30, 45, 49
flog.logger, 3
fromJSON, 26, 29, 41–44

getManyRecs, 42, 45
getOneRec, 42, 45
getRecordForUser, 3, 4, 6, 7, 9, 12, 14, 17,

26, 63
getSR, 6, 27, 29, 56–58
getSR,StudentRecordSet-method

(StudentRecordSet-class), 57

handleEvidence, 6, 7, 9, 12, 14, 17, 21, 22,
27, 30, 32, 37–39, 41

handleEvidence (accumulateEvidence), 2
histNames (history), 31
histNames,StudentRecord-method

(StudentRecord-class), 53
history, 31, 60
history,StudentRecord,character-method

(StudentRecord-class), 53

Listener, 65
ListenerSet, 8, 9, 13, 14, 65
loadManifest, 5, 7, 9, 12, 14, 17, 33
logEvidence, 3, 4, 6, 7, 9, 12, 14, 17, 21, 35

m_id, 29, 36, 37
mainLoop, 4, 5, 7, 9, 10, 12, 14, 15, 17, 22, 38
makeDBuri, 8
markProcessed, 3, 38
markProcessed (fetchNextEvidence), 21
markProcessed,BNEngine-method

(BNEngine-class), 5
mongo, 53

newSR, 56
newSR (getSR), 29
newSR,StudentRecordSet-method

(StudentRecordSet-class), 57
notifyListeners, 65
notifyListeners,BNEngine-method

(BNEngine-class), 5

observables, 19–21, 40, 62
observables,EvidenceSet-method

(EvidenceSet-class), 20

P4Message, 19–21, 37, 40, 41, 65
parseEvidence, 20, 21, 41
ParseMessage, 44
parseStats, 43
parseStudentRecord, 44
Pnet, 24, 34, 45, 49, 51, 54, 58, 59, 63
PnetAdjoin, 62, 63
PnetCompile, 47, 48, 60, 62, 63
PnetDetach, 62, 63
PnetSerialize, 45
PnetWarehouse, 5–9, 11–14, 16, 17, 24, 34,

35, 45, 47, 48, 55, 56, 58, 59, 63
Pnode, 31, 59

INDEX 69

PnodeEvidence, 62, 63
PnodeMargin, 43, 60
processed, 38

recover, 2, 3, 59, 62, 64

saveSR, 3, 4, 47, 48, 56
saveSR (getSR), 29
saveSR,StudentRecordSet-method

(StudentRecordSet-class), 57
seqno, 19–21, 29
seqno (logEvidence), 35
seqno,EvidenceSet-method

(EvidenceSet-class), 20
seqno,StudentRecord-method

(StudentRecord-class), 53
seqno<- (logEvidence), 35
seqno<-,EvidenceSet-method

(EvidenceSet-class), 20
seqno<-,StudentRecord-method

(StudentRecord-class), 53
serializeJSON, 42, 44
setupDefaultSR, 5, 7, 9, 12, 14, 17, 26, 27,

29, 30, 47, 49, 60
show,EvidenceSet-method

(EvidenceSet-class), 20
show,StudentRecord-method

(StudentRecord-class), 53
sm, 17, 45, 47, 49, 59, 62, 65
sm,StudentRecord-method

(StudentRecord-class), 53
sm<- (sm), 49
sm<-,StudentRecord-method

(StudentRecord-class), 53
stat, 50
stat,StudentRecord,character-method

(StudentRecord-class), 53
Statistic, 6, 7, 10, 15–18, 44, 51, 65
statNames (stat), 50
statNames,StudentRecord-method

(StudentRecord-class), 53
stats, 43, 65
stats (stat), 50
stats,StudentRecord-method

(StudentRecord-class), 53
stats2json (parseStats), 43
StudentRecord, 2–4, 17, 20, 21, 24, 26, 27,

29, 30, 32, 36, 37, 41, 43–45, 47–51,
51, 52, 53, 55–60, 62–65

StudentRecord-class, 53
StudentRecordSet, 6–12, 14–17, 26, 27, 29,

30, 45, 47, 48, 55, 55, 56, 59
StudentRecordSet-class, 57

timestamp, 38
timestamp,StudentRecord-method

(StudentRecord-class), 53
toJSON, 42, 43, 45
toString,EvidenceSet-method

(EvidenceSet-class), 20
toString,StudentRecord-method

(StudentRecord-class), 53

uid, 3, 24, 29, 36
uid,StudentRecord-method

(StudentRecord-class), 53
unboxer, 43
unpackSM, 49
unpackSM (fetchSM), 23
unparseStats (parseStats), 43
updateHist, 3, 4, 6, 7, 9, 12, 14, 17, 32, 59,

63, 65
updateRecord, 3, 4, 7
updateRecord (logEvidence), 35
updateSM, 3, 4, 6, 7, 9, 12, 14, 17, 59, 60, 62,

64, 65
updateStats, 3, 4, 6, 7, 9, 12, 14, 17, 18, 47,

48, 60, 63, 64

WarehouseManifest, 34, 35
WarehouseSupply, 62, 63
WarehouseUnpack, 24, 51
withFlogging, 3
woeBal, 32, 60
woeHist, 32, 60

	accumulateEvidence
	BNEngine-class
	BNEngineMongo
	BNEngineMongo-class
	BNEngineNDB
	BNEngineNDB-class
	configStats
	EvidenceSet
	EvidenceSet-class
	fetchNextEvidence
	fetchSM
	getRecordForUser
	getSR
	history
	loadManifest
	logEvidence
	mainLoop
	observables
	parseEvidence
	parseStats
	parseStudentRecord
	setupDefaultSR
	sm
	stat
	StudentRecord
	StudentRecord-class
	StudentRecordSet
	StudentRecordSet-class
	updateHist
	updateSM
	updateStats
	Index

