Samejima's (1969) psychometric model for graded responses
\[\Pr(X_{i,j} \ge k|\theta_i) = {\rm logit}^{-1}(1.7(a_j\theta_i - b_{j,k}))\]
\[\Pr(X_{i,j}=k|\theta_i) = \Pr(X_{i,j} \ge k|\theta_i) - \Pr(X_{i,j} \ge k+1|\theta_i)\]
a <- 1
b <- c(-1,+1)
thetas <- seq(-4,4,.025)
P1 <- invlogit(a*thetas-b[1])
P2 <- invlogit(a*thetas-b[2])
layout(matrix(1:2),2,1)
plot(thetas,P1,ylab="Probability",col="firebrick",type="l")
lines(thetas,P2,col="steelblue")
p0 = 1 - P1
p1 = P1 - P2
p2 = P2
plot(thetas,p0,ylab="Probability",col="firebrick",type="l")
lines(thetas,p1,col="steelblue")
lines(thetas,p2,col="seagreen")
## Continuous -> Discrete
Evaluate Samejima's graded response model at the effective theta values.
a <- 1
b <- c(-1,+1)
thetas <- seq(-4,4,.025)
P1 <- invlogit(a*thetas-b[1])
P2 <- invlogit(a*thetas-b[2])
p0 = 1 - P1
p1 = P1 - P2
p2 = P2
plot(thetas,p0,ylab="Probability",col="firebrick",type="l")
lines(thetas,p1,col="steelblue")
lines(thetas,p2,col="seagreen")
ethetas <- c(Low=-1.8, Med=-.4, High=1)
P1e <- invlogit(a*ethetas-b[1])
P2e <- invlogit(a*ethetas-b[2])
p0e = 1 - P1e
p1e = P1e - P2e
p2e = P2e
abline(v=ethetas)
points(ethetas,p0e,col="firebrick")
points(ethetas,p1e,col="steelblue")
points(ethetas,p2e,col="seagreen")

data.frame(Theta=ethetas,
State2=round(p2e,3),State1=round(p1e,3),
State0=round(p0e,3))
## Theta State2 State1 State0
## Low -1.8 0.057 0.253 0.690
## Med -0.4 0.198 0.448 0.354
## High 1.0 0.500 0.381 0.119