\name{drawPMParam} \alias{drawPMParam} \alias{lpriorPMParam} \title{Draws a value of the parameter set for a ProficiencyModel } \description{ Each \code{\link{ProficiencyModel}} object should contain a prior distribtion for its parameter object. The \code{drawPMParam} function draws a random set of values for the parameter object from that distribution. The \code{lpriorPMParam} function calculates the log of the prior probability of a given parameter. } \usage{ drawPMParam(pm, background = NA) lpriorPMParam(pm, param=parameters(pm), background = NA) } \arguments{ \item{pm}{ An object of class \code{\link{ProficiencyModel}}. } \item{param}{ A set of parameters whose prior distribution is to be evaluated. } \item{background}{ An optional set of background (demographic) variables. Some proficiency model types ignore background variables. } } \value{ The function \code{drawPMParam} returns parameter object of a class appropriate for use with the \code{pm} argument. The function \code{lpriorPMParam} returns a scalar giving the log of the prior probability of the argument. } \references{ %% ~put references to the literature/web site here ~ } \author{Russell Almond} \seealso{ \code{\link{ProficiencyModel}} } \examples{ pm1 <- TimelessNormalPM(muMean=c(Mechanics=2,Fluency=2), varWeight=3, precScale=solve(matrix(c(.7,.3,.3,.7),2,2)), Sdf=3) pm1.p1 <- drawPMParam(pm1) lpriorPMParam(pm1,pm1.p1) } \keyword{ distribution } \keyword{ random }