\name{ProficiencyModel} \alias{ProficiencyModel} \title{An abstract class representing of the proficiency space for a group of examinees } \description{ This is an abstract class that contains information about how proficiency is represented at the initial time point for a group of examinees. It provides information about the number of latent variables, and mechanisms for drawing latent variables and evaluating the prior (population) probability of a given configuration. } \usage{ ProficiencyModel(...) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{\dots}{ Initial values for the object: these are usually population parameters and vary with the implementation. } } \details{ This is a proficiency model in the Evidence Centered Design framework. It contains population information about the space of possible proficiencies. The assumption is that proficiency is represented with a vector valued latent variable. The generic funciton \code{\link{nlatent}} returns the size of this vector. It is a subclass of \code{\link{AbstractModel}} which supplies the \code{param} slot and the \code{\link{parameters}} method for accessing it. Generally speaking there will be a population parameter associated with this model. Often the goal of a calibration exercise is to estimate this parameter. The generic function \code{\link{drawPMParam}} samples a value of this parameter. Given the parameter it is possible to calculate the prior probability of a given proficiency profile (value of the latent variable) or draw a random profile. The functions \code{\link{drawInitialLatent}} and \code{\link{lpriorLatent}} perform those operations. } \value{ This is an abstract class, and must be extended by other classes. It is an extension of \code{\link{AbstractModel}} which supplies the \code{param} and \code{paramType} slots. } \references{ %% ~put references to the literature/web site here ~ } \author{Russell Almond } \seealso{ Methods: \code{\link{nlatent}}, \code{\link{drawPMParam}}, \code{\link{drawInitialLatent}}, \code{\link{lpriorLatent}} Superclasses: \code{\link{AbstractModel}} Subclasses: \code{\link{TimelessNormalPM}} Extensions: \code{\link{ProficiencyGrowthModel}} } \examples{ ## Must be extended to be used. See TimelessNormalPM.R for example. } \keyword{ distribution } \keyword{ class }