EIEvent: A quick start guide to processing events with the EI
process
Russell G Almond

ralmond@fsu.edu

1 Installation

1.1 Prerequisites

The following piece of software need to be installed on your system. Follow local instructions.

Programming Environment You will need some basic command line programming tools.
MacOS X users, download Xcode from the app store and install the command line op-
tions. Windows users there is a low memory path and a high memory path. Low mem-
ory: install the RTools package from (http://cloud.r-project.org/bin/windows/
Rtools/). High memory, with more tools install Cygwin (https://www.cygwin.com/).
Cygwin has most of the GNU command line tools (e.g., grep and sed) which are very
useful managing text files.

Subversion (svn) You will need a subversion command line client to be able to download
the development version ElIEvent from the server. MacOS X, this is included in the
Xcode command line tools. Windows, I like Tortoise SVN (https://tortoisesvn
.net), but you need to do a custom install to request the command line tools.

ownCloud Get a username (usually first letter of your first name and your last name) and
password from Russell. Next point your browser at https://pluto.coe.fsu.edu/
ownclould. You should now be able to use the web browser interface. The Physics
Playground project should be in the folder Shared/NSFCyberlearning. You can down-
load a client from https://owncloud.org/download/. This will make ownCloud
operate like Dropbox. When it asks you for a repository name, put in https://
pluto.coe.fsu.edu/ownclould.

Mongo Database Follow the instructions at https://www.mongodb.com/download-center/
to download and install MongoDB. Note that you want to install both the mongo
database server and command line client (mongo), but also the mongoimport and
mongoexport tools.

jq This is a json manipulation program which is used for filtering. You can get it from
https://stedolan.github.io/jq/downlaod.

R Download and install R from https://cloud.r-project.org/.

R Studio Download and install R Studio from https://www.rstudio.com/.

R packages Download and install the following R packages: jsonlite, mongolite, futile.logger
and R.utils. To do this from R Studio, select Tools > Install Packages ... then
enter the packages names.

1.2 ElIEvent Code

There are two local R packages necessary for running EIEvent. The first is called Proc4, and
it provides some basic support services (support for writing JSON messages to the database
and reading them back). The second is called EIEvent.

You can load these packages two ways: You can grab the latest tarballs' from Pluto, or
you can download the working copy using Subversion.

[Pluto, by the way, is https://pluto.coe.fsu.edu (“coe” is College of Education). If
you memorize this address, a lot of the URLs in this document simplify. For example,
the ownCloud repository is at https://pluto.coe.fsu.edu/ + owncloud. Bugzilla is at
https://pluto.coe.fsu.edu/ + bugzilla, &c.|

The simpler solution is to go to https://pluto.coe.fsu.edu/Proc4/ and look for the
latest versions of the Proc4 and EIEvent packages. Download these to your local machine.
You can do this through R Studio, by going to Tools > Install Packages ... and then
select install from local file. You will be prompted to select one of the files you saved in the
previous steps. You can also install these files from the command line using the command R
CMD INSTALL EIEvent.tar.gz. (Replace the last with the full pathname if you are not in
the correct directory. Windows users may need Rcmd instead of R CMD).

A more robust, and only slightly more difficult to implement, solution is to download
the code from the Subversion (svn) repository https://pluto.coe.fsu.edu/svn/commonn/.
(BTW, you can browse that location with a web browser to see the latest files, but its better
to use to use svn to check the files out to make sure everything works together.) Subversion
is a source code control system (similar to git). It works as follows: a programmer, or a
user, “checks out” a copy of the latest version from the server, making a local copy. Unlike
Dropbox, the local version does not automatically sync with the server, that needs to be done
manually. When a programmer finishes making changes (and testing them), they “commit”
the changes to the server. Then anybody who needs the fixed version can “update” their
local copy to get the changes from the server. There are other features, related to merging
changes from multiple programmers, and going back to previous versions, but for basic use,
“check out”, “commit” and “update” are all you need to know.

IThe .tar extension is used by convention with “tape archive” files, which are used by Linux systems to
bundle files together. The .gz extension means the archive has been compressed with gnuzip (sometimes
other compression algorithms are used). These are called “tarballs”.

An R package actually lives in a directory with a given structure. The name is the name
of the package. There are some required files, DESCRIPTION and NAMESPACE which describe
the package; a collection of source files in the directory R, manual pages in the directory
man, and possibly other files and directories. In particular, things in the directory inst (for
“Install”) get installed along with the library. I use that directory for test files, and for
configuration scripts (in the conf) folder.

When you check out a project from svn, it makes a local copy on your computer. The
easiest way to do this is to create an R project using R Studio. In R Studio, go to “New
Project”, then select from “Source Code Control” and the “Subversion” options. (If the
subversion option is not active on your machine, this is because R Studio cannot find the
command line subversion tool. Make sure that you installed the command line tools for
subversion.) This will open a dialog box. Type in:

Repository Path https://pluto.coe.fsu.edu/svn/common/Proc4/trunk. (The first part
is the URL of the repository, Proc4 indicates that you want the Proc4 project, and
trunk means that you want the most recent version.)

Username You can leave this blank. (You only need the username for committing changes
in this repository.) If you want to make changes to the code, talk to Russell about
getting an SVN username and password.

Project Name Proc4

Local Directory Whatever you like. I use /home/ralmond/Projects, a directory called
“Projects” under my home directory.

If all goes well, you should see a dialog box talking about downloading files from the server
(don’t worry, there aren’t a lot here) and when that finishes, you should see DESCRIPTION and
other files in the File window tab in R Studio. Look for a window tab marked Build (this
is by default in the upper left.) There should be a button marked “Compile and Reload”
(or maybe “Build and Load”, it seems to be marked different things in different versions).
Press on that button. You should then see a bunch of messages and finally, the package
should successfully load. (You may see a message about timestamp begin hidden by a new
function; this is normal.)

Congratulations! You have successfully installed Proc4, it should now load every time
you type library(Proc4) just like a normal R package.

Now, do the same thing for the EIEvent package. You will create a new project for this
in R Studio. The only things you will change are the repository pathname, https://pluto
.coe.fsu.edu/svn/common/EIEvent/trunk and the name of the project EIEvent (make
sure you have the funky capitalization correct). Compile and load this package as well.

We are almost done. We need to note what to do when somebody finds a bug. First,
the person who found the bug needs to go do Bugzilla and enter the bug. Bugrzilla is at

https://pluto.coe.fsu.edu/bugzilla. It requires a username and password, but any-
body with a fsu.edu or my.fsu.edu can automatically enroll. Select the “Physics Play-
ground” project and the “EI” component. Make sure there is enough information there so
that the programmer can recreate the bug. Include (a) what you were trying to do, (b) what
you expected to happen, (¢) what actually happened, (d) steps to recreate, and (e) attach
any special test files (e.g., new rules, or event sets).

When the bug is fixed and the fix is tested, the programmer will check in the changes to
the svn repository, and send word around to update the code. To do this open the project
which was affected (Proc4 or ElEvent; if both, you need to do this one at a time) in R
Studio. Then look for a window tab called “SVN” (by default this is in the upper right).
Look for the gear icon (and the word “More”) and select the “Update” option. The changes
should download. Then do the “Compile and Restart” option again. If both packages are
affected, you need to do them in either order.

1.3 Physics Playground Specific Data

The R packages have the generic EIEvent system. We also need PhysicsPlayground specific
rules and other configuration data. This is located on the ownCloud server?. You can either
use the desktop client, or download through the web. (The latter might be a better option
if you are tight on disk space on your computer, as there is a lot of stuff in there, including
everything that is in the Physics Playground Dropbox.)

For most people, the Physics Playground folder is at Shared/NSFCyberlearning. There
are 3 subfolders in their of interest.

EvidencelID This contains both the configuration files and test data for the Evidence Iden-
tification (EIEvent) process.

EvidenceAc This contains both the configuration files and test data for the Evidence Ac-
cumulation (EABN) process.

FSUSSp2019Data This directory contains the downloaded data from the May 2019 FSUS
field trial, as well as the configuration files used for that.

2 Configuring EIEvent

When EIEvent is running as a server process, the configuration files should be placed in a
directory /usr/local/share/Proc4. (On *nix, including MacOS, this will need to be cre-
ated by a super-user using sudo mkdir /usr/local/share/Proc4, but then can be assigned
write permissions to the regular account using sudo chown <username> /usr/local/share/Proc4.)

2https://pluto.coe.fsu.edu/owncloud/

© 00 N O Ut s W N

= = =
N o= O

Listing 1: Copy the script files from the library to the configuration directory

Edit the next line reflect how you want to set things up.

P4local <- "/Users/ralmond/Projects/PhysicsPlayground/EvidenceID"

EIHome <- library(help="EIEvent")$path

file.copy(file.path(EIHome,"conf","EIini.R"),
file.path(P4local ,"EIini.R")

file.copy(file.path(EIHome,"conf","EILoader.R"),
file.path(P4local,"EILoader.R"

file.copy(file.path(EIHome,"conf","EIEvent.R"),
file.path(P4local ,"EIEvent.R")

Optional: Uniz users only

file.copy(file.path(EIHome,"conf","EIEvent"),
file.path(P4local ,"EIEvent")

Alternatively, if you are not running as a server (which is most of you), you can put that con-
figuration directory anywhere. Choose a location that makes sense to you, and write down
the pathname. You will need to modify the configuration files to point to that directory.

2.1 Copy the R script files to your working directory.

There are three R files needed to setup and run the EI process: EIini.R—common ini-
tialization code,—EILoader.R—loads the rules and other configuration information,—and
EIEvent.R—script for running the engine. (There is also a file called EIEvent in the same
place which is a bash shell script for running the EIEvent as a server, but most people won’t
need that.) These are supplied in the EIEvent, but copy them into the local configuration
directory for ready access.

The R commands in Listing 1 will do the copying for you. Set the variable P4local
to the directory you picked. (Windows users, the backslash character ("\’) has a special
meaning in R: it indicates that the next character in a string has a special interpretation.
You need to either double the backslashes (‘\\’) or use a Unix-style forward slash (’/’) in
the pathnames.)

2.2 Download default configuration files from ownCloud

There are three kinds of data files in which the rules and other necessary configuration
for EIEvent reside. The easiest way to get started is to copy the files from Physics
Playground to use as templates. You can copy these out of the EvidenceID or the the
FSUSSp2019Data/Sp2019Rules folder (if going from the latter folder, be sure not to change

those files, as they are archival copies). The three types of files are as follows, with more
information about the formats below:

Context Tables These are spreadsheets (csv files) which map between the Unity and in-
ternal names for the levels, as well as describe which context sets the levels belong in.
The current files are ContextSketching.csv and ContextManipulation.csv.

Rule Files These are JSON files which list the rules in JSON format. For no particularly
important reason, these live in the Rules subfolder of EvidenceID. The current rule
files are CombinedRules. json (all of the scoring rules), CorrectDuration. json (the
reduced set of scoring rules used during run time) and TrophyHallRules. json (special
rules for passing the bank balance and solved level information back to the game).

Default Student Records The EIEvent process starts a new student by copying a default
student record, so one is needed for each application supported. The file defaultSR. json
has default student records for the four basic app.

2.3 Application IDs

Part of the EIEvent system (and indeed all of the processes in the four process framework) is
the application ID (the app field of most objects) which defines what application it goes with.
The syntax is a url-like structure that defines exactly who owns the design for the assessment.
Consider the example, ecd://epls.coe.fsu.edu/PhysicsPlayground/Sp2019/1linear. The
ecd: indicates that this assessment was designed with evidence-centered assessment design.
The string epls.coe.fsu.edu defines the organization (the Educational Psychology and
Learning Systems department of the College of Education at Florida State University) that
holds the designs. The string PhysicsPlayground/Sp2019/1linear defines the assessment
and particular version.

The Proc4 package defines the special application ID, ecd://epls.coe.fsu.edu/Pdtest
to use for testing. The Physics Playground project defined the following application IDs.

e ecd://epls.coe.fsu.edu/PhysicsPlayground/Sp2019/1linear—The linear sequenc-
ing condition.

e ecd://epls.coe.fsu.edu/PhysicsPlayground/Sp2019/adaptive—The adaptive se-
quencing condition.

e ecd://epls.coe.fsu.edu/PhysicsPlayground/Sp2019/1linear—The user controlled
sequencing condition.

These should be used for analysis of operational data, and the testing one for testing.
The EIEvent process maintains separate collections of rules, contexts, student records
(including the context) and event queues for each application ID. (Actually, these are the

same collections in the database, but the process filters the collection so that it only looks
at the ones with the appropriate application ID.) In particular, that means that the config-
uration information needs to be loaded once for each application ID being used.

There is nothing sacred about this list, and in fact the application ID is mostly a simple
string in the code, so any application ID could be used for testing. However, the loader
scripts would need to be modified to use the new application ID.

2.4 The Loader Script

The script EILoader.R loads the configuration information into the Mongo database. The
EIEvent process keeps both its configuration information (the rules, contexts and default
student record) and its data (the events, student records and messages) in the same database.
The loader script reads this configuration information from a file and stores it in the database.
It (or part of it) needs to be revisited when the rules, contexts or default student record is
updated.

Listing 2 shows a portion of that script, with some extra annotation.

The input files are explained in detail below. A few notes about this script:

e The “CaptureListener” is explained in the next section.
e The config.dir needs to be customized depending on your local configuration.
e Any application ID is acceptable.

e All of the steps start with a command to clear the initial values from the database,
that can be omitted, and it will just add stuff.

e There can be any number of context tables, but the *INITIAL* one is required.

e The rules code assume that the rules are in a subdirectory called Rules. That may
need adjustment.

e The way the code is written, the CorrectDuration rules replace the CombinedRules
before they are loaded. Adjust as needed.

e The defaultSR. json file has records for all four applications; this likely requires edit-
ing.

e The last line assumes that mongoimport is available on the search path (command
line).

When the EILoader.R script is adjusted to your satisfaction, you can run it from the
command line: R --slave <EILoader.R. You can also run it from R Studio by running the
entire script.

© 00 N O Ut s W N

BW W W W W W W W W W NNN NN NNN N 2R == e e
O © 00 N O Ut ks WD O O 00Ut e W RO © 0NN OOt WD = O

Listing 2: ElLoader script (with just one application)

Initial Setup

library (EIEvent)
flog.threshold (INFO)

cl <- new("CapturelListener")

Point this at your configuration directory
config.dir <- ".../NSFCyberlearning/EvidenceID"

Create an EIEngine object to communicate with database
engTest <- EIEngine (app="ecd://epls.coe.fsu.edu/P4test",
listeners=1list (capture=cl))

Read in context tables

sketchCon <- read.csv(file.path(config.dir,"ContextSketching.csv"))
manipCon <- read.csv(file.path(config.dir,"ContextManipulation.csv"))
initCon <- data.frame(CID="*INITIALx*",6 Name="*INITIALx*",6 Number=0)

Clear old context tables and load mew ones.
engTest$clearContexts ()

engTest$addContexts (initCon)
engTest$addContexts (sketchCon)
engTest$addContexts (manipCon)

Read 1in rules
sRules <- lapply(fromJSON(file.path(config.dir, "Rules",
"CombinedRules. json"),FALSE),
parseRule)
tRules <- lapply(fromJSON(file.path(config.dir, "Rules",
"TrophyHallRules. json"),FALSE),
parseRule)
Clear old rules and load
engTest$rules$clearAll ()
engTest$loadRules (sRules)
engTest$loadRules (tRules)

Load default student records.
engTest$userRecords$clearAll (TRUE) #Clear default records
system2 ("mongoimport",
args="-d EIRecords ,-c, States ,--jsonArray",
stdin=file.path(config.dir,"defaultSR. json")))

2.5 Context Descriptions

The context field of a rule object determines which game levels a are applicable for a given
rule. This can be one of three things. A name of a specific game level (rule is applicable to
only one level), a name of a set of levels (e.g., Sketching, rule is applicable to all levels in
that set), or the special keyword ALL (rule is applicable to all levels). The middle category
requires information about which rules belong in which level set. This is the role of the
context tables.

Table 1 shows an excerpt from the file ContextSketching. There are three required
columns: CID, Number and Name. For game levels, the Name and Number columns should be
exactly as they are in the game engine. Any discrepancy in the name reported by the game
and in the context table will result in an “unknown level” warning. Only ALL rules will be
processed for that level. There are also some levels with negative numbers; these are context
sets. The CID (context id) is a compressed version of the name which corresponds to variable
naming conventions (e.g., no spaces or other special characters).

Table 1: Selected rows and columns from the ContextSketching table.

CID Number Name Sketching RampLevels
Sketching -100 Sketching Levels 0 0
RampLevels -105 Ramp Levels 1 0
LeverLevels -110 Lever Levels 1 0
CloudyDay 89 Cloudy Day 1 0
ClownChallenge 18 Clown Challenge 1 1
Cornfield 119 Cornfield 1 1
CosmicCave 112 Cosmic Cave 1 0
CrazySeesaw 95 Crazy Seesaw 1 0

There should be a column in the spreadsheet corresponding to each of the level sets. The
name of the column should be the CID of the corresponding level set. The contents of the
column should be 0 or 1; 1 if the level in the row belongs to the set in the column and 0
otherwise. Additional columns can be placed in the spreadsheet for documentation purposes.

There is a special context *INITIAL* which is used for events before the player starts a
level in the game. This has number 0, and is required. The context table can be broken into a
number of pieces for easier use. In particular, the current Physics Playground configuration
has different context tables for the sketching and manipulation levels as there are different
level sets that are applicable.

The command eng$clearContexts() clears out the previous context tables before load-
ing the new ones. It is not necessary, but suppresses a lot of warning messages about
overwriting existing contexts. Additional tables loaded later are added to the set. (Note
that the function engTest$addContexts() takes a data frame as an argument, so these can

© 00 N O Ut s W N

= = =
N o= O

13
14
15
16
17
18
19

10

Listing 3: Count Air Resistance Manipulations Rule

L
{
"app": "ecd://epls.coe.fsu.edu/PPTest"
"name": "Count Air Resistance Manipulations',
"doc": "Increment counter if slider changed.",
"verb": "Manipulate',
"object": "Slider",
"context": "Manipulation",
"ruleType": "Observable",
"priority": 5,
"conditions": {
"event .data.gameObjectType" :"
AirResistanceValueManipulator",
"event.data.oldValue":{"?ne":"event.data.newValue"}
}
"predicate": {
"lincr":{"state.observables.airManip":1}
}}
]

be constructed in R as well as being read from a file.

[For future consideration: Matching the names was one of the points of failure for the
system. We need a system for keeping the context tables in sync between EI, EA, and the
game engine. |

2.6 Rules of Evidence

The rules of evidence file is a collection of EIEvent::Rule objects in JSON format. The
format is documented elsewhere, so only some notes related to loading the files are given
here. Listing 3 shows an example. Note that the JSON file should contain a list of rules; the
lists should be surrounded by square brackets (’[',’]’), and be separated by commas.

A few things to note when preparing the rules files.

e R seems to insists that all strings (including keywords) are enclosed in quotes, while
Mongo and jq are more relaxed about this. It is best practice to make sure that the
names are in quotes.

11

e The name is used as a key in the database, so the names should be unique.
e The doc field is optional (for humans only) but highly recommended.

e The app field is ignored when the rules are read in through the engTest$loadRules()
command. The command will adjust this field so it matches app(eng). On the other
hand, it is necessary if reading the rules into the database directly using mongoimport.

e The context field must be an exact string match for one of the context IDs (values of
the CID) column, or the special keyword "ALL".

e [t is recommended to use priority 5 for normal priority rules, and lower numbers for
rules that must be run early and higher numbers for rules that must be run late.

The function eng$rules$clearAll () removes the existing rules (recommended to avoid
name duplication errors) and engTest$loadRules() loads a list of Rule objects into the
database, setting the app field to match app(eng) in the process. The function parseRule
takes the output of fromJSON and coverts it into a rule object. Thus, the recommended way
to parse a rule file is lapply (fromJSON(filename, FALSE), parseRule).

2.7 Default Student Records

Observable variables which represent a count, an elapsed time, or a set, may need initializa-
tion. If these observables are specific to a level, this should happen with a Reset Rule for
that variable. On the other hand, if the rules are to operate with the entire playing session,
their initial values may need to be included in the default student record. For example, the
default student record sets the initial bank balance of each player to $0. Listing 4 gives the
default student record for the test application.

The uid should always be "*DEFAULT*". The observables can be set as needed. The
default record is loaded into the States collection in the EIRecords database, using a
simple mongoimport. The function eng$userRecords$clearAll (TRUE) clears all the records
including the default record (if TRUE is omitted, the default record is not cleared). The shell
command mongoimport -d EIRecords -c States --jsonArray defaultSR.json is used
to load the records (the system2 command invokes the mongoimport function).

The complete defaultSR. json file has default records for all four applications. It may
need to be edited depending on the goals.

3 Running EIEvent

The EIEvent process is run as a server or as a standalone application in basically the same
way, using the script EIEvent.R. The script file has a number of if (interactive()) calls

© 00 N O Ut s W N

e e
N =)

15

12

Listing 4: Default Student Record (test application only)

"app": "ecd://epls.coe.fsu.edu/P4test",
"uid": "*DEFAULTx*",
"context": "xINITIAL=x",
"oldContext": "*INITIALx*",
"timers": null,
"flags": null,
"timestamp": "2019-05-01 00:00:00 EDT",
"observables": {
"trophyHall": [],
"bankBalance": 0

that make it behave slightly differently in the two modes. In particular, the configuration is
set up to facilitate debugging in interactive mode, and to run quietly in server mode. Also,
if an event file is supplied, then the EIEvent will score all of the events and then stop; if not,
it will continue running accepting new events as they come into the database.

3.1 Configuring the initialization file

The file EIini.R contains a number of initialization details for the processes. The default
location for this (running as a server process) is /usr/local/share/Proc4/, but this can
be changed by editing the EIEvent.R file. Listing 5 contains the first part of the file, and
Listing 6 contains the second part.

There are two lines in this file which need modification. If database security is turned
on, then the username and password need to be set. However, by default, Mongo security
is turned off, so delete the username and password options from the EIeng.common details.
Second, adjust the logfile location to be something that makes sense on your system.

The rest of the file really doesn’t need customization. It has to do with setting up
listeners. When the EIEvent process issues a message because of a trigger rule, it is sent
to the Listener. Currently, there are three kinds of listeners (these are set up in the Proc4
package):

InjectionListener This simply saves the message in a field in the database. This is used
to save the observables for the EA process.

13

Listing 5: Elini.R, first part

These are application generic parameters
EIeng.common <- list(host="localhost",username="EI",6 password="secret",
dbname="EIRecords" ,P4dbname="Proc4" ,waittime=.25)

appstem <- basename (app)
These are for application spectific parameters
7 Eleng.params <- list(app=app)

S Tt s W N

9 logfile <- file.path("/usr/local/share/Proc4/logs",
10 paste("EI_",appstem,"0O.log",sep=""))

UpdateListener This updates a record for the uid and app in a collection, overwriting the
contents of the data (or other designated) field. This is used to update the Player
field in the Proc4 database, to update the bank balance and levels solved. Note that
there is a jsonEncoder function that controls how the data are saved.

CaptureListener This is a dummy listener that is used for testing. It just builds a list of all
messages created. These can be accessed using cl1$lastMessage() and cl$messages.

The Physics Playground configuration requires the listeners in the EIini.R file, test
configurations can get away with fewer. Note that running in interactive mode by default
adds a CaptureListener to the listener set. Also note that the EI.listenerSpecs must be
a named list. The example shown in Listing 6 should work for most purposes.

3.2 Running in manual model

The easiest way to run the EIEvent process is to open the file EIEvent.R in R Studio and
run it line by line (or in chunks). The following goes over the major parts of the script noting
opportunities for customization.

Listing 7 is the start; the first block gives the command arguments: these are set from
the command line in server mode mode and are set in the file in interactive mode. Note that
the R.utils package is only used for processing the command line arguments. Most of the
customization is needed in this part of the file.

The arguments are as follows (the value in the parens is the name from the command
line):

app (app) The application ID to run. This argument is required.

© 00 N O Ut AR W N

e e e e e e e
N O O A W N R O

© 00 N O Ut ks W N =

e e e e e
N O Ot W N = O

14

Listing 6: Elini.R, second part

JSON converter for the trophyHall wvariables.
trophy2json <- function(dat) {

paste(’{’, ’"trophyHall"’, ’:’,’[’,
paste (
paste (’{"’ ,names (dat$trophyHall),’":"’,dat$trophyHall ,’ "},
sep=""), collapse=",,"), 1,7,
>"bankBalance"’, ’:’, dat$bankBalance, ’}’)

EI.listenerSpecs <-
list("InjectionListener"=1ist(sender=paste("EI",6 appstem,sep="_"),
dbname="EARecords" ,dburi="mongodb://localhost",
colname="EvidenceSets" ,messSet="New_ 0Observables"),
"UpdateListener"=1ist (dbname="Proc4" ,dburi="mongodb://localhost",
colname="Players",targetField="data",
messSet=c("Money Earned", "Money, Spent"),
jsonEncoder="trophy2json"))

Listing 7: ElEvent.R, first part

library(R.utils)
library (EIEvent)
if (interactive (D)) {
Edit these for the local application
app <- "ecd://epls.coe.fsu.edu/P4test"
loglevel <- "DEBUG"
cleanFirst <- TRUE
eventFile <- "/home/ralmond/Projects/EvidenceID/c081c3.core. json"
} else {
app <- cmdArg("app",NULL)
if (is.null(app) || !grepl("~ecd://",app))
stop("Noyappuspecified, juse,’--args app=ecd://...’")

loglevel <- cmdArg("level","INFO")
cleanFirst <- as.logical(cmdArg("clean",FALSE))
eventFile <- cmdArg("events",NULL)

15

Listing 8: EIEvent.R, second part

Adjust the path here as mecessary
source ("/usr/local/share/Proc4/EIini .R")

if (interactive()) A

flog.appender (appender.tee(logfile))
} else {

flog.appender (appender.file(logfile))
}
flog.threshold(loglevel)

logLevel (level) How much logging should be done by the system. The legal values are (in
order of increasing verbosity): ERROR, WARN, INFO, DEBUG, TRACE. The default is DEBUG
for interactive mode and INFO for server mode.

cleanFirst (clean) If this is true, then various collections are cleaned before starting. If
false, then processing continues from where it left off before. Be careful with this one
as cleanFirst=TRUE will destroy data.

eventFile (events) This can be either a file name or NULL. If it is a file name, those events
will be loaded in the database and the EIEvent process will be configured to stop when
all events are processed. Otherwise, EIEvent will run until it both stops and and the
AuthorizedApps flag is set to false.

Once the app variable has been set, the EIini.R script can be loaded to setup the local
configuration. Listing 8 shows the relevant part of the EIEvent.R script. Note that the
pathname of the EIini.R file needs to be adjusted. It also shows setting up the log file.
By default, messages are “tee”d (sent to both console and file) in interactive mode and sent
only to the log file in server mode.

The next step is to setup the EIEvent engine and its listeners. This is shown in Listing 9.
The only real bit of customization here is related to the use of a CaptureListener, c1. By
default, this is set up in interactive mode, but not in server mode.

The next step is to clean old stuff out of the database (if the cleanFirst option was
set). Be careful! This destroys data, so make sure everything is backed up. Listing 10 shows
this part of the code. The collections cleaned are the events, the user records (except for
the default), the message collection (all messages are logged here) and the specific message
collections associated with UpdateListner and InjectionListener objects.

A common mode to run in testing is to input a set of event records associated with a
particular player and level. In this case, the default behavior is to process all of the records

© 00 N O Ut ks W N =

—
= o

© 00 N O Ut s W N =

16

Listing 9: ElEvent.R, third part

Setup Listeners
listeners <- lapply(names(EI.listenerSpecs),
function (11) do.call(ll,EI.listenerSpecs[[11]]))

names (listeners) <- names(EI.listenerSpecs)
if (interactive()) {

cl <- new("Capturelistener")

listeners <- c(listeners,cl=cl)
}
Make the EIEngine
eng <- do.call(EIEngine,c(EIeng.params,list(listeners=1listeners),

Eleng.common))

Listing 10: EIEvent.R, fourth part

if (cleanFirst) {
eng$eventdb () $remove (buildJQuery (app=app (eng)))
eng$userRecords$clearAll (FALSE) #Don’t clear default
eng$listenerSet$messdb () $remove (buildJQuery (app=app (eng)))
for (lis in eng$listenerSet$listeners) {
if (is(lis,"UpdatelListener") || is(lis,"InjectionListener"))
lis$messdb () $remove (buildJQuery (app=app (eng)))

17

Listing 11: ElEvent.R, fifth part

Process Event file 1f supplied
if (!is.null(eventFile)) {
system2 ("mongoimport",
sprintf (’-d %su-c,Events, ,—--jsonArray’, eng$dbname),
stdin=eventFile)
Count the number of unprocessed events

NN <- eng$eventdb () $count (buildJQuery (app=app(eng),processed=FALSE))

b

if (!is.null(eventFile)) {
This can be set to a different number to process only
a subset of events.
eng$processN <- NN

}

and stop. Listing 11 shows the code for setting this up. Note that this is mostly again a call
to mongoimport -d EIRecords -c Events --jsonArray ftle. json, so it could be done
from the command line, too.

The line eng$processN <- NN deserves special mention. The processN field of the engine
tells the engine to process N events and then stop. It decrements the counter each time
through, so to run for another NV events, reset the counter and run mainLoop (eng) as well.
If processN is set to Inf, the engine will run in infinite loop mode, not stopping until it
detects the stop signal from the AuthorizedApps collection.

The next step is to run the main loop. Listing 12 shows two ways of doing this, all at
once (the first two lines of code), and one event at a time (inside the if) statement. The
mainLoop function will run until processN events are processed (or forever if processN is
infinite). The other three statements must be run once for each event.

Stripped of its logging and checks for shutdown, the main event loop basically executes the
last three commands over and over again. The first command fetches the oldest unprocessed
event out of the database. (This event is bound to the variable eve). Next the event is
“handled” (the student record is extracted from the database and the applicable rules are
run and finally the updated state is saved to the database). If the event is handled without
error, then out will be the updated state (which can then be inspected). If an error occurs,
the out will be an error object. Finally, the event is marked as processed in the database.

By cleverly using processN and the manual event loop statements, it is possible to rapidly
scan through the first few events, and then step more slowly through the events closer to
the place where there is an issue. The debugging level may be changed at any time by
calling flog.threshold again, so it can be kept at the INFO level early on and turned up

© 00 N O Ut s W N

—_
o

S Tt s W N =

18

Listing 12: ElIEvent.R, sixth part

Activate engine (if mot already activated.)
eng$activate ()
mainLoop (eng)

This 1s for running the loop by hand.
if (interactive () && FALSE) {
eve <- eng$fetchNextEvent ()
out <- handleEvent (eng,eve)
eng$setProcessed (eve)

}

Listing 13: EIEvent.R, last part

This shows the detatils of the last message.

If the test script s

set up properly, this should be the obserwvables.

if (interactive () && TRUE) {
details(cl$lastMessage ())

}

to DEBUG or TRACE only close to the problem.

The last line of the file checks the last message posted (by the last trigger rule) and prints
it out. Listing 13 shows this line. Note that c1$lastMessage() shows the last message and
cl$messages shows all of the messages. The function details shows only the message data,
for “New Observables” messages, the observables.

3.3 Running in server mode

As mentioned in the previous section, exactly the same script is used to run the process in
server mode. The major difference is that the arguments, particularly the app name which
is required, are taken from the command line. (The names are in parentheses.) The file
EIEvent is a bash shell script for running the process. [I'm assuming that server mode will
mostly will be run on *nix systems, so most of this section will only give instructions for
Linux.] An example command is:

The nohup command coupled with the & directive (run the package in the background)
causes EIEvent to run as a server. If an events file is supplied, it will process all of the events
and then stop; if not it will continue until shut down. Once again, be careful with the clean

w N

19

Listing 14: Launching EIEvent

#!/bin/bash

P4=/usr/local/share/Proc4d

nohup $P4/bin/EIEvent "app=ecd://epls.coe.fsu.edu/P4test
level=INFO_,clean=TRUE" >& $P4/logs/EI_userControl3.Rout &

Listing 15: mongo

use Proc4;
db.AuthorizedApps .update ({app:{$regex:"Pdtest"}},
{"$set":{active:falsel}});

flag, as this will wipe out data.

There is a way to shut down the server gracefully after it has finished processing all
events. There is a collection called AuthorizedApps in the Proc4 database. In that there is
a record whose app field matches app(eng) and which has a logical active field. When the
event loop runs out of events to process, it checks the value of that field, and if it is false, it
shuts down. If not, it sleeps for a little while (the value of the waittime set in EIinit.R)
and then checks again for events or the active flag to be cleared. The code eng$active()
called in the script sets the active flag for the application.

The active flag can be cleared from the mongo shell using commands show in Listing 15.

[Note for future versions. There is probably a need for an emergency shutdown without
continuing to process the queue events. Need to add this to a future version.]

4 Notes on Workflow

Yes, there is a fair amount to set up. Partially, this is because the code is still in development,
but it hopefully should settle into a fairly straightforward workflow.

1. If there are bug fixes on Proc4 or EIEvent, update and recompile those packages.

2. Modify rule files (or possibly context tables) to fix problems or add new features. Note
that JSON files can be edited in any text editor, and R Studio seems to provide some
support (e.g., checking for matching parenthesis and missing, stray commas).

3. If necessary build a test set consisting of events related to the problem or new feature.
The test sets on ownCloud in the directory EvidenceID/c081c3Tests are a good place
to start.

20

4. Run EILoader.R to load the updated rules and other configuration information.
5. Run EIEvent.R to process the events in the test set, and look at the output.

6. Lather, Rinse, Repeat.

It is quite possible that this testing will uncover bugs in EIEvent. These should be re-
ported on https://pluto.coe.fsu.edu/bugzilla. Remember that each bug report should
include:

e What you expected to happen and what actually happened.
e The version of the Rules you were using, if not the current Physics Playground rules.

e The test script you were running (or other details such as user ID and context ID if
these are from the master event files.

Be patient, please. There is only one of me.

5 Acknowledgements

Work on the Proc4, EIEvent and EABN packages has been supported by the National Science
foundation grants DIP: Game-based Assessment and Support of STEM-related Competencies
(#1628937, Val Shute, PI) and Mathematical Learning via Architectual Design and Modeling
Using E-Rebuild. (#1720533, Fengfeng Ke, PI).

The ElEvent package developement was led by Russell Almond (Co-PI).

