
Rule of Evidence for Parsing Event Logs

Russell G. Almond
Florida State University

October 16, 2018

Abstract

A common need in game- and simulation-based assessments is to parse
a log made up of many event records either as the assessment is running
or afterwards to score this process. The end result of this processing is
define a collection of observable outcome variables which are then used
for summary scoring, task based feedback or other analytics. In evidence-
centered assessment design (ECD) these observable are defined by rules
of evidence. This manual describes the specification for a language, called
EI-Event (evidence identification from events) which specifies rules of ev-
idence in a JavaScript query format, similar to that used by the Mongo
database.

Key words: Event Logs, JSON, Evidence Identification, Test Scoring

1 Introduction

? (?) defined a generalized model for assessment that consists of four pro-
cesses:

Presentation Process (PP) Presents stimulus material to examinee and cap-
tures work product.

Evidence Identification (EIP) Extracts evidence in the form of observed
outcome variables from the raw work product.

Evidence Accumulation (EAP) Combines observable outcomes from sev-
eral tasks to produce statistics about examinee competencies.

Activity Selection (ASP) Assigns the next task based on current compe-
tency estimates and previous observations.

This paper focuses on the second of these, the evidence identification process. In
many cases, evidence identification is almost trivially simple. For multiple choice
tests it simply matches the work product (the selected answer) to the key. Many

1



short answer question types also have simple pattern matching keys. However,
complex work products, particularly event logs from simulators, require much
more complex EIP.

? (?) defined an evidence model with two parts: the statistical model or
weights of evidence—which correspond to the EAP,—and the rules of evidence—
which corresponds to the EIP. Although the term rules of evidence is a pun on
the legal term, literal rules of evidence were used in HyDRIVE (?, ?), one of
the exemplars used in building the original evidence-centered design framework.
HyDRIVE was a simulation of maintaining the hydraulics system of the F-15
aircraft. The evidence identification system for HyDRIVE was written in Prolog,
and consisted of “rules” that would fire if certain conditions were met.

For game and simulation based assessments, this rule-based approach to
defining the evidence identification process works fairly well. Conceptually a
rule looks something like:

WHEN context IF condition THEN observable = value .

Here context is the context in which the evidence is gathered; in simple systems
this is the task. In simulator systems the context can be an emergent property
of the simulator, with several contexts present within a single task. Section ??
explores this in more detail. The condition often involves querying the state
of the system, this in turn requires that the state of the system be monitored.
Section ?? describes the use of a state machine to track the state of the simulator.

This paper defines the EI-Event protocol for handling evidence identification.
It processes a collection of events in a log files by running a collection of rules. In
particular, it assumes that the game or simulator is logging to a learning record
store (essentially a database) event descriptions that look something like:

Example 1 Generic Event Record, JSON format.

1 {
2 app:"ecd://coe.fsu.edu/EPLS/AssessmentName",

3 uid:"Student/User ID",

4 timestamp:"Time at which event occurred",

5 verb:"Action Keyword",

6 object:"Object Keyword",

7 data:{
8 field1:"Value",

9 field2:["list","of","values"],

10 field3:{part1:"complex",part2:"object"}
11 }
12 }

The format of Example ?? is JSON (java script object notation). This
is list of key–value pairs with the key and value separated by a colon (:). The
values can be numeric values, strings, date-time objects, arrays (using the square

2



brackets, []), or objects (using curly braces, {}). This event format is a simplified
version of the xAPI1 format used by Learning Locker (?, ?). The first five header
fields are common to every event while the format of the data field is completely
open and can contain arbitrarily complex status data.

The assumption is that the the work product the EIP receives from the PP
is an ordered sequence of these event records. (This could either be directly
sent from the PP to the EIP or the EIP could retrieve them on demand from
a learning record store.) The EIP processes these one at a time, updating the
state of the system. In the end, the EIP must send one (or more) message to the
EAP stating providing values for the observables seen in a particular context.
This is what the EAP uses to update the student model.

2 Tasks and Contexts

? (?) deliberately used the term task instead of the more familiar item to
encourage test designers to think beyond the common multiple-choice and short-
answer task types. In 2003, it was obvious that assessments using more complex
simulation tasks would be an important part of the future of assessment.

? (?) had a more operational definition for task : a task was the grain size
at which information was passed between the four processes. The PP would
present a task to a student and send the work product for that task to the EIP.
The EIP would process the work product and send the observable for that task
to the EAP. The EAP would signal to the ASP that the task was complete, and
it would select the next task to present and send that information to the PP.
Depending on the application, a task could be a single item, a group of items
with a common stimulus, or a more complex constructed response or simulation
task.

? (?) (also ?, ?) noted that in simulation and game-based assessments, tasks
do not necessarily come in clean units as in more traditional assessments. Often
a task will be a subsequence of events that happen in the course of a larger
simulation or game. In this case, the term task is no longer quite appropriate
because several measurement contexts might occur in the course of the player
completing a single game task.

2.1 Three Examples

To address the more complex situations, in this paper, the unit of movement
around the four process architecture is termed a context. The exact definition
of a context depends on the assessment application. This section provides three
examples of increasing complexity.

1The simplification is mainly replacing the verb and object values with strings where xAPI
uses more complex objects. In particular, xAPI uses a full URL to uniquely define the verb
and object, as the same word could have different meanings in the context of the application.
In the simplified version, the vocabulary is defined by the application, allowing the message
itself to be simpler.

3



Computer Adaptive Test. Consider first a computer adaptive test similar to
ETS’s Graduate Record Exam (GRE R©) as it operated around 2003. In this
assessment, the context or task is equivalent to an item. The ASP selects
a single item, which the PP displays, the EIP scores and the EAP updates
the estimate of student ability. The ASP then tries to select a new item that
maximizes information about the examinee while balancing content constraints
and minimizing item exposures.

Item sets, such as a reading passage followed by several items, presented a
problem for the item-as-task design. If one item was chosen from a set, then
the next couple of items were constrained to also be chosen from the same set.
These items could be sub-optimal for satisfying information targets or content
and exposures control constraints. A better solution would be to make the task
for such set-based items the item set, so an optimal item set could be chosen.

It is interesting to note that more recent version of the GRE have gone from
using a single item as the task to using a testlet containing 10 items or so as
the task. With this kind of task, it is easier to balance information properties,
content constraint and exposure control as well as to better control context
effects of items.

In this example, as in most classical assessment, the context is the same as
the task—both are engineered by the test designers.
Physics Playground. The game Physics Playground (?, ?, ?) is a game for teach-
ing knowledge of Newtonian physics with an embedded stealth assessment. The
game is level-based: each game level is a puzzle where players must maneuver
a ball to reach a target balloon. In sketching levels, players draw objects which
can be used to apply forces to the ball. In manipulation levels, the players
manipulate the forces on the ball through the use of sliders. As in the com-
puter adaptive assessment, the Physics Playground task is engineered by the
designers. In this case it is the game level.

Even in a level-based game, the task boundary is not clear. Is a task a single
attempt at a game level or all attempts at a game level in a playing session?
How are the boundaries of an attempt defined? What if a player restarts the
level? Leaves the level and then returns? The right answer to these questions
will depend on the purpose of the assessment, but unlike the computer adaptive
test, there is no submit answer button to define the context boundary.

Note that in Physics Playground, there are multiple observed outcomes per
task. The game records not only whether the level was successfully completed,
but also if the player used a particular tool to solve a level. This information
must be extracted from the game logs by the EIP.

The Physics Playground PP logs events to a Learning Locker learning store
(?, ?). These events are recorded as JSON objects similar to the one shown in
Example ??. Note that this format does not have a field for task or context. It
must be inferred from the events. In particular, certain events in the sequence
mark the start and the end of the level. So the EIP must infer the context from
the information stream and must internally keep track of where the context is.
Flight Simulator. Consider a person training to be a pilot using a flight sim-
ulator. The task in this situation might consist of flying the plane from an

4



origin airport to a destination airport. There might be several contexts that
emerge within this single task. For example, the takeoff is one task while flying
the plane after it reaches cruising altitude is another. If a thunderstorm occurs
along the route that might change the context to handling the weather event,
after which the simulator returns to the cruising context. Finally, the approach
and the landing might also be contexts.

This example makes clear the need for moving from task to context as the
unit that goes around the four process loop. Here many variables about the
state of the system may be related to the definition of the context.

2.2 Context as an Emerging Status

One way to detect a context change is to keep track of the state of the
simulator. When the state changes in such a way as to define a new context,
then the context changes. In a complete system, the EIP needs two kinds of
rules to support this. First, it needs a collection of context rules which defines
when a context changes. Second, it needs trigger rules to indicate when it should
send the observables for a given context to the EAP (or other listeners). At this
point, these are rules in the loose sense of ? (?): requirements for the EIP.
Section ?? will introduce a notation for operationally specifying those rules.

In addition to taking the role of task in the four process architecture, con-
texts play another roll in the EIP. In particular, each context has an associated
set of specific evidence rules. For example, evidence rules appropriate for a
manipulation level in Physics Playground are not necessarily appropriate for
a sketching level. Tagging rules by the contexts in which they are applicable
allows the EIP to filter the rule set to just those which are interesting and ap-
propriate in the current context. Note that there is also a need here for context
sets, as the list of contexts for which a particular rule is needed may change as
tasks are added and removed from the assessment.

The second and third examples have a certain similarity in the work product.
In both cases, the game or simulator log consists of a series of events. (Section ??
describes a proposed structure for those event records.) To process these events,
often it is necessary to recreate information about the state of the system in the
EIP. Section ?? describes a state machine architecture.

3 State Machine

The identification of evidence often requires fairly detailed information about
what is happening in the game. Often, the best evidence is when the player per-
forms an action which changes the state of the system. To assess such evidence,
the EIP often needs to at least partially recreate the state of the system. The
architecture for the EI-Event protocol, therefore starts with the idea that the
EIP is a finite state machine. Each user (player or student) has an associated
state object. These state objects have collections of observables, timers and

5



flags which change in response to events. These are described in more detail
below.

Note that the state machine approach to EIP is useful even in contexts
which are not simulations or games. In particular, ? (?) used a finite state
machine to analyze keystroke timing data. It was necessary to parse the stream
of characters recorded by the logger to associate pause events with individual
words or with between word or sentence spaces. This is potentially a robust
approach.

3.1 Observables

Consider the game-based assessment Physics Playground. As described
above, the context for this application is a game level. In each game level
the player attempts to move a ball to the target (balloon). The player may
draw objects on the screen (sketching levels) to reach the target or manipulate
physics parameters or the strength of blowers producing force (manipulation lev-
els). For each game level, the game engine determines whether or not the game
level has been passed (solved) and whether a gold or silver coin was awarded for
the solution. (Efficient solutions earn gold coins, and inefficient solutions earn
silver coins.)

Here are several observables identified in version 2 of Physics Playground :

Obs1 What is the maximum value coin (gold, silver or none) that the player
has earned for this level?

Obs2 Did the player manipulate the gravity slider?

Obs3 How many objects did the player draw?

Obs4 How much time (excluding time spent on learning supports) did the
player spend on the level?

Obs5 Did the player attempt to draw a springboard?

The first two are fairly simple. The state machine needs an observable vari-
able which keeps track of the coin reward (Obs1) or the use of the gravity slider
(Obs2). The when an appropriate event comes through the log, an evidence
rule will update the appropriate variable. Obs3 is similar; in this case, the ob-
servable is a counter and it is incremented each time an event comes through
indicating that an object was drawn.

The timing observable (Obs4) need a bit more work. The timer must be
started when the level starts and paused every time the player starts using a
learning support, resuming when the player returns from the learning support.
The next section describes timers in more detail.

Detecting springboards is actually quite tricky. Obs5 requires determining
if each object that the player has drawn is a springboard or not. A spring-
board has several elements (the springboard, the anchor holding one end fixed,
and usually a weight which gives it elastic potential energy); identifying these

6



springboard components requires details of the object stored in the underlying
physics engine. In this case, the PP of Physics Playground contains code to
identify agents of force and motion. The PP then sends an event saying that
the agent identification system identified the creation of a springboard (or other
agent), which the EIP can use to build up observables.

Although generally evidence rules are placed in the EIP, in some cases it
may make sense to place them in other processes. In the example above, it was
easier to implement the agent identification system in the PP as it had access to
the details of the screen layout, and object placement and movement. Similarly
in the case of a multiple choice test, it is is probably best to have the PP send
a message containing which option was selected as the event, rather than the
lower level event of where the student clicked on the screen. The latter requires
details of how the item is laid out in the screen that are needed in the PP but
not the EIP.

There may also be cases where the EAP can handle the evidence rule. For
example, consider Obs3 (which is a count) and Obs4 (which is a time). If these
are to be used in a model with discrete observables (e.g., a Bayesian network)
then the continuous or count variable might need to be cut into categories (e.g.,
low, medium, high). This might be easier to do in the EAP, especially if the
Bayes net software can associate ranges of numeric values with states.

3.2 Flags and Timers

Not all potential observables need to be reported out of the EIP. In general,
an observable is reported for one of three reasons:

1. It will be used by the EAP to accumulate a score for the student.

2. It will be used to customize feedback presented to the students.

3. It will be logged to a data base for future analysis (for scientific research
or to improve the performance of the assessment).

Observables taking on one or more of these roles are final observables, as
opposed to intermediate observables whose role is to aid in the computation of
final observable values. ETS’s e-rater R© system (?, ?) is a good example. The
system has low level code that identifies likely grammar, usage, mechanics or
style errors. (These low level observables are sometimes used to give students
feedback on their writing.) These low-level errors are accumulated into count
variables providing the number of grammar, usage, mechanics and style errors
the writer made. These count variables (after suitable normalization), along
with other variables related to vocabulary and discourse, are fed into a regression
model to produce the final score. Note that there are observables a number
of different levels in this system: any of which could be intermediate or final
depending on the requirements of the assessment.

Because EIP designers may want to separate out the intermediate and final
observables, the model design has two collections of observables: the observables

7



collection for storing final observables and the flags collection for storing inter-
mediate observables. However, this distinction is not strictly enforced: variables
in both the flags and observable collections may play the role of intermediate
observables.

Timing variable are special. Looking at the definition of Obs4, it is clear
that the timer must be started at the beginning of the level, paused when
the player enters the learning support and resumed when the player leaves the
learning support. In order to do this, the timer object must support the following
operations:

resume Continue accumulating time.

pause Stop accumulating time.

reset Set the accumulated time to zero.

(re)start Combination of reset and resume. This will also create a timer if
none has been created.

value Return the time accumulated so far.

These operations can be triggered by rules. Also, the current value of a timer
can be copied into an observable or flag variable. Finally, the current value of
a timer can be queried in the condition part of the rule.

Thus, a state object contains:

uid An identifier for the user (student, player)

context An identifier for the current context.

oldContext An identifier for the previous context; in the event that the context
has changed.

observables A collection of observable variables.

timers A collection of timers.

flags A collection of other (intermediate observable) variables.

timestamp The timestamp of the last event processed by the state.

3.3 Events

Look once more at the format of the event record in Example ?? (reproduced
in Example ??). There are five fields in the header—app, uid, timestamp, verb,
and object—and a data container that can contain an arbitrary number of
fields. The data field allows the PP to pass arbitrary information to the EIP.

The verb and object fields should be keywords appropriate to the applica-
tion. These fields are taken from the xAPI (?, ?) data structure. The verb
and object together should define what is happening. Some example pairs

8



Example 2 Generic Event Record, JSON format.

1 {
2 app:"ecd://coe.fsu.edu/EPLS/AssessmentName",

3 uid:"Student/User ID",

4 timestamp:"Time at which event occurred",

5 verb:"Action Keyword",

6 object:"Object Keyword",

7 data:{
8 field1:"Value",

9 field2:["list","of","values"],

10 field3:{part1:"complex",part2:"object"}
11 }
12 }

from Physics Playground include {("snapshot", "ball"), ("exited", "level"),
("exited", "learning support"), ("identified", "game object")}. Note that
in some cases, the object is necessary to distinguish what the verb is operating
on (“exited learning support” versus “exited level”). In all cases, the extra data
provides additional information (the position of the ball for a snapshot event,
the learning support or level exited, what the object was identified as).

The PP and the EIP need to agree on what are the valid values for the
verb and object fields. This is the role of the app (short for application) field.
Note that this is a long URL-like structure giving the name of both the specific
vocabulary set and the organization that defined the vocabulary. (This is a
simplification from the xAPI format, where both the verb and object values
were more complex objects which provide information about the vocabulary
used. In most cases, the application defines the verbs, objects and the expected
data components for each verb object pair, so longer identifiers for verbs and
objects are not needed.)

The remaining two header fields are straightforward. The uid field is matched
with the state object, so that the system can track many users at the same time.
The timestamp is just the time at which the event occurred.

3.4 Dot notation

In general, rules need to be able to reference both the state object and
the event object. In particular, they need to reference specific fields in those
objects. The JavaScript dot notation provides a simple mechanism for doing
this. The dots define subcomponents of objects. Starting with the state and
event objects, the legal fields are:

state.context The current context that the state object is in.

state.oldContext The the context of the state at the end of the previous
event. In particular, this can be compared to the context to check if the

9



context has changed as a result of the event.

state.observables.name The value of the observable named name.

state.timers.name The current elapsed time of the timer named name.

state.flags.name The value of the observable named name.

event.verb The verb associated with the current event.

event.object The object associated with the current event.

event.timestamp The time at which the event occurred.

event.data.name The value of the extra data field named name.

Note that there potentially can be further dots after the name of the value.
In particular, if the value of the observable, flag or extra data element is itself a
compound object, the the dot notation can be used to refer to its fields. Also,
in the predicate of rules, the dot notation applied to timers allows access to the
pause, resume and reset operations.

4 Rules

Conceptually a rule has the following format: WHEN context, verb, object

IF condition THEN predicate . The condition is logical expression involving
the fields of the state and the current event. If this is true, then the predicate is
executed. The context, verb and object are really part of the condition. Sepa-
rating them into separate components allows the rule set to be indexed by those
fields, which should improve the speed of execution. Example ?? shows a rule
set in JSON format.

Example 3 Generic Rule, JSON format.

1 {
2 ruleName:"Human readable identifier",

3 doc:"Human language description",

4 context:"Context Keyword, Context Group

Keyword or ALL",

5 verb:"Action Keyword" or ALL,

6 object:"Object Keyword or ALL",

7 ruleType:"Type Keyword",

8 priority:"Numeric Value",

9 condition:{...},
10 predicate:{...}
11 }

10



The condition (Section ??) and predicate (Section ??) are also JSON objects.
They are adapted from the query language used by the Mongo database (?, ?).
The type and priority fields are used to determine the sequence in which rules
are run. Sections ?? and ?? describe managing rule sets in more detail.

4.1 Types and Timing

For the most part, the predicates of the rules change the state object or have
other side effects. This means that the sequence in which the rules are executed
may have an effect on the final state of the system. When constructing a rule
set for a given application, the designer needs to be able to provide a partial
ordering on the rules: forcing the order when sequence is important.

The EI-Event protocol provides two mechanisms for sequencing rules: type
and priority. The type mechanism ensures that rules that affect the state of the
system are run before rules that report on the state. The priority mechanism
controls sequencing within a type.

There are five types of rules, which are run in the following sequence:

1. State Rules. These rules should have predicates which set flag variables
and manipulate timers. These rules are run first.

2. Observable Rules. These rules should have predicates that set observable
values, they are run immediately after the state rules.

3. Context Rules. These rules return a new value for the context field, if this
needs to be changed. These are run until either the set of context rules
is exhausted or one of the rules returns a value other than the current
context. Note that the priority is potentially important for determining
which of several rules govern the new context.

4. Trigger Rules. These rules have a special predicate which sends a message
to a process listening to the EIP. These rules are given both the old and
new context values as often they will trigger when the context changes.

5. Reset Rules. These rules run only if the context changes. They are used
to reset values of various timers and flags that should be reset for the new
context.

As mentioned above, the context, verb, and object for an implicit part of
the condition of the rule. These can take either a specific value, as defined by
the application vocabulary, or the special keyword All indicating that this rule
should be run no matter what the value of the corresponding field in the event
or state. The context keyword can also be a context group defining a set of
contexts to which this rule applies. Thus, for each event the EIP checks five
collections of rules, each collection corresponding to the current context, verb
and object as well as the type representing the phase of the event processing.

11



There is still a potential for sequence issues within each of these collections.2

This is where the priority mechanism comes into play. The priority should be
a positive integer. The rules are run in order of priority, lowest numbers going
first. Ties are broken arbitrarily (and possibly in an implementation dependent
way). By adjusting the priorities, the designer should be able to avoid potential
conflicts and race conditions.

4.2 Conditions

The condition notation is adapted from the query documents used by the
Mongo database (?, ?). The basic form is shown in Example ??. The field
should be either a field of the state or the event, using the notation described in
Section ??. The simplest form has the value as a simple value. The condition
is satisfied if all of the fields have the indicated values, and not satisfied if one
of them does not. Fields of the event or state which are not mentioned in the
query document are ignored.

Example 4 Basic Condition Query Document

1 condition:{
2 <field1>:<value1>,

3 <field2>:<value2>,

4 ...

5 }

Instead of a simple value, the value part of the query document can be a more
complex JSON object (enclosed in curly braces). The simplest version has the
format: { field1 :{ ?op :value1 }, ... }. The simple operators are: ?eq

(equality, usually omitted), ?ne (not equals), ?gt (greater than), ?gte (greater
than or equals), ?lt (less than), and ?lte. Note that these can be combined.
For example { state.flag.objCount: { ?gt:5, ?lt:10}} returns true when
the objCount flag is between 5 and 10.

A slightly more complex version uses the form { field1 :{ ?op :[value1a,

value1b,...] }, ... }. Here ?op should be either ?in or ?nin (not in).
These conditions are satisfied if the value of the field is (not) in the list. A short-
cut is available for the ?in operator: the expression { field1 : [value1a,

value1b,...], ... } is equivalent to more complicated version using ?in.
Three special operators—?exists, ?isnull, and ?isna—test the state of

the field. The first tests if the field exists, the second tests for a null value for
the field and the third tests for a not-applicable or not-a-number value. In each
case, the value should be either true or false. If true, the condition is satisfied
if the field has the appropriate state, and if false, then if the field does not have
that state.

2My recollection from trying to program in Prolog is that these sequencing issues were
often the hardest part of a program to debug.

12



The ?any and ?all operators are used when the value being tested is an
array. The argument for these operators should be a query with a single query.
The ?any test is satisfied if any of the elements of the array satisfy the test and
the ?all test is satisfied only if all of the elements of the array satisfy the test.

The ?not, ?and, and ?or operators can be used to build more complex
queries. The value for ?not should be another query involving the target field;
the not query is satisfied if the inner query is not satisfied. The ?and and ?or

operators take an array (enclosed in []) of queries about the current field. These
are satisfied if all (or any) of the query documents in the array are satisfied. Note
that unlike the Mongo database queries, the ?not, ?and, and ?or operators
apply only to a single field.

The ?regex does regular expression matching: the argument should be a
regular expression and the field should normally contain a string value. This is
implementation dependent because different implementations will likely use the
host regular expression engine, many of which have slight variations. (Simple
regular expressions will likely work well in most implementations, but Perl or
other extensions may or may not be supported.)

The final operator is ?where, which actually appears as a field and not a
value in the query document. The value should be a string giving the name
of a function (with arguments state and event) which evaluates the state and
event and returns true or false. This allows the handling of cases which cannot
be easily handled by the query language (at the cost of being implementation
dependent). It is strongly recommended that these query functions have not
side effects (except for logging used when debugging).

4.3 Predicates

The predicate takes the generic form shown in Example ??. The big dif-
ference is update operators, which control how the fields are modified. Fields
should reference fields of the state object (dot notation beginning with state),
although values can reference fields of the events.

Example 5 Basic Predicate Update Document

1 predicate:{
2 <update operator1>:{ <field1>:<value1>, ... },
3 <update operator2>:{ <field2>:<value2>, ... },
4 ...

5 }

The simplest update operator is the !set operator. In this case the field
is set to the value (or if the value references an event or flag variable, to the
value of that field). If the state object does not have a flag or observable of that
name, it will be created.

The !unset operator is an inverse. For this the value should be one of
"NULL", "NA", or "Delete". The first two set the values to NULL and NA

13



(not applicable) respectively. The rules for these values are implementation
dependent. The third removes the flag or observable from the state object.

The !incr, !decr, !mult, !div, !min, and !max operators modify the ex-
isting field (which should be numeric) based on the operator and the argument
value. The first four add, subtract, multiply or divide the value of the field by
the argument value and set the field to the result. The !min and !max operators
set the field to the largest or smallest of the current value and the argument
argument value.

The !addToSet and !pullFromSet operate on fields which are arrays. In the
first case, the argument value is added to the set (if it is not already present),
and in the second case it is removed from the set.

The !push and !pop operators also operate on array fields; however, they
treat the arrays like stacks and not sets. The !push operator adds the argument
value to the front of the list, and the !pop operator removes the first element,
or if the value is a positive integer, it removes the that many elements from the
front of the stack.

Timers are treated specially by the !set operator. In particular, there are
two fields of the timer object which can be set, state.timers.name.value and
state.timers.name.running. The latter value can be set to true or false

which causes it to resume or pause respectively. The .value field of the timer
sets the current time; this is assumed if the field is omitted. This can be treated
like a numeric value with the time in seconds, or it can be set as an object of the
form {time:number, units:unit }, where unit is one of "sec", "min", "hr",
"day" and so forth. Example ?? gives a few examples:

Example 6 Setting Timers

1 predicate:{
2 //Set pause learning support timer

3 !set:{ state.timers.learnSup.running: false },
4 // Resume level timer

5 !set:{ state.timers.level.running:true},
6 // Restart last play timer

7 !set:{ state.timers.lastPlay.value: 0,

8 state.timers.lastPlay.running: true},
9 //Add 1 minute to the penalized time timer.

10 !incr:{ state.timers.penTime : {time:1,
11 units:"min"}},
12 ...

13 }

Finally, the !setCall operator provides an implementation dependent ex-
tension mechanism. The value should be a string giving the name of a function
with three arguments: the name of the field being set, the state object and the
event object. The named field will be set to the value returned by this function.

14



4.4 Special Predicates for Context and Trigger Rules

The context and trigger rules need special treatment. Context rules, if they
fire return a string value naming the context. Consequently, the predicate

component of Example ?? is replaced by a new context component. This should
have a single value. It can be one of three things: (1) a string value for the new
context, (2) the name of a field which provides the value for the new context,
or (3) an expression of the form {!call:funname } which calls a program of
the given name in the implementation language. This function should have two
arguments, the state and the event, and return a string providing the name of
the new context.

The role of the trigger rule is to send a message. The basic output message
format looks like Example ??. These are called Proc4 messages because the
basic format came from an early implementation of the four process architecture
(?, ?). When the message is sent, the app and uid values are set from the state
object. The timestamp field is also set from the current time. The context field
is often the value of state.oldContext, although that might be overridden.

Example 7 Proc4 Message Format

1 {
2 app:<appid >,

3 uid:<uid >,

4 context:<contextVariable >,

5 message:<message >,

6 timestamp:<date -time >,

7 data:{<field1>:<value1>, <field2>:<value2>,

...}
8 }

Consequently, the predicate component of a trigger rule is replaced with
the send component, which specifies parts of the message. Example ?? provides
the basic layout. The message field is required and should be a string. If the
context field is omitted, it will default to the current value of state.oldContext.
If the data field is omitted, it will default to all of the observables.

Example 8 Special Send Predicate for Trigger Rules

1 send:{
2 message:<message >,

3 listeners:<nameOrList >,

4 context:<contextVariable >,

5 data:{<field1>:<value1>, <field2>:<value2>,

...}
6 }

15



The listeners field requires more explanation. A number of other processes
can register as listeners to messages send from the EIP. Normally, the EAP is
a registered listener, but there might be other processes involved in logging,
feedback generation and reporting, or event the ASP which want to listen to
the messages. If this field is omitted, then the message is sent to all listeners. If
a name of a specific listener or an array of listener names is supplied, then the
message will be sent only two those listeners. This might be useful for error or
debugging messages.

4.5 Rule Set Maintenance

Queries, adding rules to set. Removing rules from sets.
Defining context groups.

5 Examples

Please help me make some examples.

6 Software

The SVN repository for the current (very incomplete) implementation in R
is available at https://pluto.coe.fsu.edu/svn/common/EIEvent/.

16


