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Cognitive Basis 
• Multiple cognitive processes involved in 

writing 
• Different processes take different 

amounts of time 
– Transcription should be fast 
– Planning should be long 

• Certain event types should be more 
common than others 
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Multi-Process Model of Writing 

AERA 2011 3 

Deane (2009) Model of writing. 



Mixture Models 
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Random Data 
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Within-Word Pauses 
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Mixture of Lognormals 
• Log Pause Time Yij = log(Xij) 

– Student (Level-2 unit) i=1,…,I 
– Pause (Level-1 unit) j=1,…,Ji 

• Zij ~ cat(πi1,…,πiK) is an indicator for 
which of K components the jth pause for 
the ith student is in 

• Yij | Zij= k ~ N(µik,τik) 
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Mixture Model 
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Mixture Model Problems 
• If πik is small for some k, then category 

disappears 
• If τik is small for some k, then category 

becomes degenerate 
• If µik=µik’ and τik=τik’ then really only 

have K-1 categories 
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Labeling Components 
• If we swap the labels on component k and k’, the 

likelihood is identical 
• Likelihood is multimodal 
• Often put a restriction on the components: 

µi1 < µi2  < … < µiK 
• Früthwirth-Schattner (2001) notes that when 

doing MCMC, better to let the chains run freely 
across the modes and sort out post-hoc 

• Sorting needs to be done before normal MCMC 
convergence tests, or parameter estimation 
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Key Question 
• How many components? 
• Theory: each component corresponds to 

a different combination of cognitive 
processes 

• Rare components might not be 
identifiable from data 

Hierarchical models which allow partial 
pooling across Level-2 (students) might 
help answer these questions 
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Hierarchical Mixture Model 
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Problems with hierarchical 
models 

• If γ0k, β0k  0 we get complete pooling 
• If γ0k, β0k  ∞ we get no pooling 
• Something similar happens with  
• Need prior distributions that bound us 

away from those values. 
• log(τ0k), log(β0k), log(γ0k) ~ N(0,1) 
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Two MCMC packages 
JAGS 
• Random Walk 

Metropolis, or Gibbs 
sampling 

• Has a special proposal 
for normal mixtures 

• Can extend a run if 
insufficient length 

• Can select which 
parameters to monitor 

Stan 
• Hamiltonian Monte 

Carlo 
– Cycles take longer 
– Less autocorrelation 

• Cannot extend runs 
• Must monitor all 

paramters 

BMAW 2014 15 



Add redundant parameters to 
make MCMC faster 

• µik = µ0k + θiβ0k 
– θi ~ N(0,1) 

• log(τik) = log(τ0k) + ηiγ0k 
– ηi ~ N(0,1) 

• αk = α0kαN 
– α0 ~ Dirichlet(α0m) 
– αN ~ χ2(2I) 

BMAW 2014 16 



Initial Values 
1. Run EM on each student’s data set to get 

student-level (Level 1) parameters 
– If EM does not converge, set parameters to NA 

2. Calculate cross-student (Level 2) as 
summary statistics of Level 1 parameters 

3. Impute means for missing Level 1 
parameters 

Repeat with subsets of the data for variety in 
multiple chains 
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Simulated Data Experiment 
• Run initial value routine on real data for 

K=2,3,4 
• Generate data from the model using 

these parameters 
• Fit models with K’=2,3,4 to the data 

from true K=2,3,4 distributions in both 
JAGS (RWM) and Stan (HMC) 

• Results shown for K=2, K’=2 
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Results (Mostly K=2, K’=2) 
• All results (http://pluto.coe.fsu.edu/mcmc-

hierMM) 
• Deviance/Log Posterior—Good Mixing 
• µ01  (average mean of first component)—

Slow mixing in JAGS 
• α01 (average probability of first 

component)—Poor convergence, switching 
in Stan 

• γ01 (s.d. of log precisions for first 
component)—Poor convergence, multiple 
modes? 
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Other Results 
• Convergence is still an issue 

– MCMC finds multiple modes, where EM 
(without restarts) typically finds only one 

• JAGS (RWM) was about 3 times faster 
than Stan (HMC) 
– Monte Carlo se in Stan about 5 times smaller 

(25 time larger effective sample size) 
• JAGS is still easier to use than Stan 
• Could not use WAIC statistic to recover K 

– Was the same for K’=2,3,4 
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Implication for Student Essays 
• Does not seem to recover “rare 

components” 
• Does not offer big advantage over 

simpler no pooling non-hierarchical 
model 

• Ignores serial dependence in data 
– Hidden Markov model might be better than 

straight mixture 
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Try it yourself 
• http://pluto.coe.fsu.edu/mcmc-hierMM/  

– Complete source code (R, Stan, JAGS) 
including data generation 

– Sample data sets 
– Output from all of my test runs, including 

trace plots for all parameters 
– Slides from this talk. 
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