An IRT-based Parameterization for Conditional Probability Tables

Russell Almond
Florida State University
Educational Testing Models

- Usually some collection of latent variables representing target of assessment: \textit{proficiency model, } \theta_i
 - Usually positively correlated
- Each item (task) presented to examinee has one or more observable outcome variables \(X_{ij}\)
- \textit{Evidence model for Task } j \textit{ is } Pr(X_{ij} | \theta_i)
Monotonic and Parametric CPTs

• Both parent (proficiency) and child (observable) variables are ordered categorical

• Want CPTs to be monotonically increasing: i.e., higher values of proficiency imply higher probability of better outcomes

• Because proficiency variables are correlated, may only be a few observations for some rows of CPTs
Discrete IRT (2PL) model

• Imagine a case with a single parent and a binary (correct/incorrect) child.

• Map states of parent variable onto a continuous scale: effective theta, \(\tilde{\theta}_m \)

• Plug into IRT equation to get conditional probability of “correct”

\[
\Pr(Y_j = 1|X = m) = \logit^{-1}
\left[
1.7 a_j (\tilde{\theta}_m - b_j)
\right]
\]

• \(a_j \) – discrimination parameter
• \(b_j \) – difficulty parameter
• 1.7 – Scaling constant (makes logistic curve look like normal ogive)
Multivariate Models: Combination Rules

• For Multiple Parents, assign each parent j an effective theta at each level k, $\theta_{j,k}$

• Combine Using a Combination Rule (Structure Function)

$$s\left(\tilde{\theta}_{1,k_1}, \ldots, \tilde{\theta}_{J,k_J}\right)$$

• Possible Structure Functions:
 • Compensatory = average
 • Conjunctive = min
 • Disjunctive = max
 • Inhibitor: e.g. level k^* on : $\theta_1 \begin{cases}
 s(\tilde{\theta}_{1,k_1}, \ldots, \tilde{\theta}_{J,k_J}) & \text{if } k_1 > k^* \\
 \tilde{\theta}_0 & \text{if } k_1 \leq k^*
 \end{cases}$

 where θ_0 is some low value.
DiBello--Samejima Models

• Single parent version
• Map each level of parent state to “effective theta” on IRT (N(0,1)) scale, $\tilde{\theta}_k$
• Now plug into Samejima graded response model to get probability of outcome
• Uses standard IRT parameters, “difficulty” and “discrimination”
• DiBello--Normal model uses regression model rather than graded response
Samejima’s Graded Response Model

Samejima’s (1969) psychometric model for graded responses:

\[
\Pr(X_{i,j} \geq k \mid \theta_i) = \logit^{-1}(a_j \theta_i + b_{j,k})
\]

\[
\Pr(X_{i,j} = k \mid \theta_i) = \Pr(X_{i,j} \geq k \mid \theta_i) - \Pr(X_{i,j} \geq k - 1 \mid \theta_i)
\]
The “Effective θ” Method (2): Conditional Probabilities for Three θ’s

<table>
<thead>
<tr>
<th>θ</th>
<th>$X=1$ (Poor)</th>
<th>$X=2$ (Okay)</th>
<th>$X=3$ (Good)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low= -1.8</td>
<td>.70</td>
<td>.25</td>
<td>.05</td>
</tr>
<tr>
<td>Med= -.4</td>
<td>.35</td>
<td>.40</td>
<td>.25</td>
</tr>
<tr>
<td>High= 1.0</td>
<td>.10</td>
<td>.40</td>
<td>.50</td>
</tr>
</tbody>
</table>
Example (Biomass)

DKMendel is the student-model variable that determines probabilities of response to the several observable variables in the Mode of Inheritance chart.

Context is a parent that induces conditional dependence among these observations, for reasons other than the DKMendel (e.g., did not understand what was required in task).
Effective Thetas for Compensatory Relationship

\[\tilde{\theta}_{j,k} \] equally spaced normal quantiles

\[a_{S_1} = 1 \quad a_{\text{Context}} = .75 \quad b_j = -1 \]

<table>
<thead>
<tr>
<th>S1</th>
<th>Context</th>
<th>S1.theta</th>
<th>Context.theta</th>
<th>Effective.theta</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Familiar</td>
<td>0.97</td>
<td>0.67</td>
<td>2.04</td>
</tr>
<tr>
<td>Medium</td>
<td>Familiar</td>
<td>0.00</td>
<td>0.67</td>
<td>1.36</td>
</tr>
<tr>
<td>Low</td>
<td>Familiar</td>
<td>-0.97</td>
<td>0.67</td>
<td>0.67</td>
</tr>
<tr>
<td>High</td>
<td>Unfamiliar</td>
<td>0.97</td>
<td>-0.67</td>
<td>1.33</td>
</tr>
<tr>
<td>Medium</td>
<td>Unfamiliar</td>
<td>0.00</td>
<td>-0.67</td>
<td>0.64</td>
</tr>
<tr>
<td>Low</td>
<td>Unfamiliar</td>
<td>-0.97</td>
<td>-0.67</td>
<td>-0.04</td>
</tr>
</tbody>
</table>
Effective Theta to CPT

Introduce new parameter d_{inc} as spread between difficulties in Samejima model

$$b_{i,Full} = b_j + d_{inc}/2 \quad \quad b_{j,Partial} = b_j - d_{inc}/2$$

Conditional probability table for $d_{inc} = 1$ is then...

<table>
<thead>
<tr>
<th>S1</th>
<th>Context</th>
<th>Effective.theta</th>
<th>Full</th>
<th>Partial</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Familiar</td>
<td>2.04</td>
<td>0.73</td>
<td>0.15</td>
<td>0.12</td>
</tr>
<tr>
<td>Medium</td>
<td>Familiar</td>
<td>1.36</td>
<td>0.62</td>
<td>0.20</td>
<td>0.18</td>
</tr>
<tr>
<td>Low</td>
<td>Familiar</td>
<td>0.67</td>
<td>0.39</td>
<td>0.24</td>
<td>0.37</td>
</tr>
<tr>
<td>High</td>
<td>Unfamiliar</td>
<td>1.33</td>
<td>0.50</td>
<td>0.23</td>
<td>0.27</td>
</tr>
<tr>
<td>Medium</td>
<td>Unfamiliar</td>
<td>0.64</td>
<td>0.50</td>
<td>0.23</td>
<td>0.27</td>
</tr>
<tr>
<td>Low</td>
<td>Unfamiliar</td>
<td>−0.04</td>
<td>0.39</td>
<td>0.24</td>
<td>0.37</td>
</tr>
</tbody>
</table>
Limitation of Graded Response

• Samejima's graded response model requires curves to be parallel.
• Slope parameters must be the same (intercepts increasing)
• Combination functions must be the same
Generalized Partial Credit Model

- Muraki (1992)
- Focuses on state transitions
 \[\Pr(X \geq m + 1 | X \geq m) \]
- Can use different slopes, sets of parents and combination rules for different state transitions
- Graded Response, and Partial Credit are examples of link functions that go from linear predictor to probabilities
CPTtools framework

Building a CPT requires three steps:

1. Map each parent state into a *effective theta* for that parent

2. Combine the parent effective thetas to an effective theta for each row of the CPT using one (or more) *combination rules*
 - Combination rules generally take one or more (often one for each parent variable) *discrimination parameters* which weight the parent variable contributions (log alphas)
 - Combination rules generally take one or more *difficulty parameters* (often one for each state of the child variable) which shift the average probability of a correct response (betas)

3. Map the effect theta for each row into a conditional probability of seeing each state using a *link function*
 - Link functions can take a scaling parameter. (link scale)
Parent level effective thetas

- Effective theta scale is a logit scale corresponds to mean 0 SD 1 in a “standard” population.
- Want the effective theta values to be equally spaced on this scale
- Want the marginal distribution implied by the effective thetas to be uniform (unit of the combination operator)
- What the effective theta transformation to be effectively invertible (this is reason to add the 1.7 to the IRT equation).
Equally spaced quantiles of the normal distribution

• Suppose variable has M states: $0, \ldots, M-1$
• Want the midpoint of the interval going from probability m/M to $(m+1)/M$.
• Solution is to map state m onto $\Phi^{-1} \left(\frac{m + 1/2}{M} \right)$

• R code: `qnorm((1:M) - .5)/M)`
Combination Rules

• Compensatory – more of one skill compensates for lack of another
• Conjunctive – weakest skill dominates relationship
• Disjunctive – strongest skill dominates relationship
• Inhibitor – minimum threshold of Skill 1 needed, then Skill 2 takes over (special case of conjunctive)
• Offset Conjunctive – like conjunctive model, but with separate b’s for each parent instead of separate a’s
• Offset Disjunctive – like disjunctive rule, but with separate b’s for each parent instead of separate a’s.
Compensatory Rule

• Weighted average of inputs
• Weights are (as we often want the weights to be positive we often use as the parameter).

\[\tilde{\theta} = \frac{1}{\sqrt{K}} \sum \alpha_{k,s} \theta_{km_k} - \beta_{js} \]

• \(s\) is state of child variable
• Factor \(1/\sqrt{K}\) is a variance stabilization term (makes variance stay the same as number of parents changes)
Conjunctive and Disjunctive rules

• Same setup, except replace sum with max and variance stabilization term is no longer needed:
 • Conjunctive: \(\tilde{\theta} = \min \alpha_{ks} \theta_{km_k} - \beta_{js} \)
 • Disjunctive: \(\tilde{\theta} = \max \alpha_{ks} \theta_{km_k} - \beta_{js} \)
 • Inhibitor:

\[
\tilde{\theta} = \begin{cases}
\alpha_{2s} \theta_{2m_2} - \beta_{js}, & m_1 > m^*_1 \\
\alpha_{2s} \theta_{2,0} - \beta_{js}, & \text{otherwise}
\end{cases}
\]
Offset Conjunctive and Disjunctive

• Separate slopes doesn’t really make sense for conjunctive and disjunctive models
• Separate intercepts, i.e., a different difficulty for each parent variable, does.
• Multiple betas, one alpha
• Conjunctive: \[\tilde{\theta} = \alpha_{js} \min(\theta_{km_k} - \beta_{ks}) \]
• Disjunctive: \[\tilde{\theta} = \alpha_{js} \max(\theta_{km_k} - \beta_{ks}) \]
Link functions

• Graded Response model
 • Models for each value of s
 • In order to keep the curves from crossing, discrimination parameters must be the same for all s

• Normal (Regression) model
 • Effective theta is mean predictor
 • Add a residual variance (link scale parameter)
 • Calculate probabilities that value falls into certain regions

• Generalized partial credit model
 • Models state transitions
 • Does not need the discrimination parameters to be the same
 • Does not even need the combination rules to be the same
Normal Link function

• As with effective theta transformation, start by dividing theta region up into intervals
 • Equally spaced
 • Spaced to achieve a certain marginal distribution for Y
• Calculate offset curve:
 • mean is effective theta
 • SD, σ, is link scale parameter
• Conditional probabilities:
 • area under curve between cut points
Conjunctive-Normal model

• This is essentially a regression

\[R^2 = \frac{\sum_{k=1}^{K} \alpha_k^2 / K}{\sigma^2 + \sum_{k=1}^{K} \alpha_k^2 / K} \]

• Note: If child value is a proficiency variable, this is a latent variable regression. Correlation should be higher than you think.
Generalized Partial Credit Link

• Set up a series of conditional probabilities:
 \[P_{js|s-1}(\tilde{\theta}_i) = \Pr(Y_{ij} \geq s|Y_{ij} \geq s-1, \tilde{\theta}_i) = \logit^{-1}(1.7Z_{js}(\tilde{\theta}_i)) \]

• Probability of \(Y \) being in State \(s \) is:
 \[
 \Pr(V_{ij} = s|\tilde{\theta}_i) = \frac{\prod_{r=0}^{s} P_{jr|r-1}(\tilde{\theta}_i)}{C},
 \]
 where \(C \) is a normalization constant.

• Can convert the products to sums:
 \[
 \Pr(V_{ij} = s|\tilde{\theta}_i) = \frac{\exp(1.7 \sum_{r=0}^{s} Z_{jr}(\tilde{\theta}_i))}{\sum_{r=0}^{S_j} \exp(1.7 \sum_{r=0}^{R} Z_{jr}(\tilde{\theta}_i))}.
 \]
Discrete Partial Credit Model (DPC)

- $Z()$ is the combination rule (structure function)
- $Z_{jr}()$ describes how skills combine to make transition between state $r-1$ and r.
- $Z_{j0}() = 0$
- Although functional form is commonly taken as the same for all states, it does not need to be!
- This allows us to model different cognitive processes at different steps
Example: Math Word Problem

• Based on unpublished analysis by Cocke and Guo (personal communication 2011-07-11)

• Next Generation Sunshine State Standards Benchmark, MA.6.A.5.1, “Use equivalent forms of fractions, decimals, and percents to solve problems” (NGSSSS, 2013)

• Sample problem:
 John scored 75% on a test and Mary has 8 out of 12 correct on the same test. Each test item is worth the same amount of points. Who has the better score?
Scoring Rubric

<table>
<thead>
<tr>
<th>Score Point</th>
<th>Description</th>
<th>Skills Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Null response or off track</td>
<td>None</td>
</tr>
<tr>
<td>1</td>
<td>Recognizes 75% and 8/12 as key elements</td>
<td>Mathematical Language</td>
</tr>
<tr>
<td>2</td>
<td>Converts two fractions to a common form</td>
<td>Convert Fractions</td>
</tr>
<tr>
<td>3</td>
<td>Makes the correct comparison</td>
<td>Compare Fraction & Mathematical Language</td>
</tr>
</tbody>
</table>
Model Refinement

• Collapse categories 2 and 3 as very few 2’s observed in practice

• Combine *Convert fractions* and *Compare fractions* into *Fraction manipulation*

• Need two combination rules:
 • 0 → 1: Only one skill relevant. Can use any rule, choose compensatory because it is easiest to work with. Do selection by setting discrimination for *fraction manipulation* to 0.
 • 1 → 2: Both skills necessary, but inhibitor model: only a minimal level of mathematical language is necessary.
Effective Thetas and Z’s

<table>
<thead>
<tr>
<th>Mathematical Language</th>
<th>$\theta_{i'1}$</th>
<th>Manipulate Fractions</th>
<th>$\theta_{i'2}$</th>
<th>$Z_{j0}(\theta_{i'})$</th>
<th>$Z_{j1}(\theta_{i'})$</th>
<th>$Z_{j2}(\theta_{i'})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>high</td>
<td>+0.97</td>
<td>high</td>
<td>+0.97</td>
<td>0</td>
<td>+1.47</td>
<td>+0.70</td>
</tr>
<tr>
<td>high</td>
<td>+0.97</td>
<td>medium</td>
<td>0.00</td>
<td>0</td>
<td>+1.47</td>
<td>-0.25</td>
</tr>
<tr>
<td>high</td>
<td>+0.97</td>
<td>low</td>
<td>-0.97</td>
<td>0</td>
<td>+1.47</td>
<td>-1.22</td>
</tr>
<tr>
<td>medium</td>
<td>0.00</td>
<td>high</td>
<td>+0.97</td>
<td>0</td>
<td>+0.50</td>
<td>+0.77</td>
</tr>
<tr>
<td>medium</td>
<td>0.00</td>
<td>medium</td>
<td>0.00</td>
<td>0</td>
<td>+0.50</td>
<td>-0.25</td>
</tr>
<tr>
<td>medium</td>
<td>0.00</td>
<td>low</td>
<td>-0.97</td>
<td>0</td>
<td>+0.50</td>
<td>-1.22</td>
</tr>
<tr>
<td>low</td>
<td>-0.97</td>
<td>high</td>
<td>+0.97</td>
<td>0</td>
<td>-0.47</td>
<td>-1.22</td>
</tr>
<tr>
<td>low</td>
<td>-0.97</td>
<td>medium</td>
<td>0.00</td>
<td>0</td>
<td>-0.47</td>
<td>-1.22</td>
</tr>
<tr>
<td>low</td>
<td>-0.97</td>
<td>low</td>
<td>-0.97</td>
<td>0</td>
<td>-0.47</td>
<td>-1.22</td>
</tr>
</tbody>
</table>
Conditional Probability Table

| Mathematical Language | Manipulate Fractions | $Pr(X_{ij} = 0|pa(X_{ij})$ | $Pr(X_{ij} = 1|pa(X_{ij})$ | $Pr(X_{ij} = 2|pa(X_{ij})$ |
|-----------------------|----------------------|-----------------------------|-----------------------------|-----------------------------|
| high | high | 0.019 | 0.229 | 0.752 |
| high | medium | 0.047 | 0.576 | 0.377 |
| high | low | 0.068 | 0.828 | 0.104 |
| medium | high | 0.083 | 0.195 | 0.722 |
| medium | medium | 0.205 | 0.480 | 0.314 |
| medium | low | 0.275 | 0.644 | 0.081 |
| low | high | 0.664 | 0.299 | 0.038 |
| low | medium | 0.664 | 0.299 | 0.038 |
| low | low | 0.664 | 0.299 | 0.038 |
Local Q-matrix

- In GPC models transitions can use a subset of variables.
- Q is a logical matrix with rows corresponding to state transitions, and columns to parent variables
 - True if parent is relevant for that transition
- Takes advantage of R logical subscripts
- Q=TRUE is shorthand for all variables relevant for all transitions
Open Implementation Protocols in \textit{R}

- R is a functional language, so functions (or list of functions) can be passed as arguments and stored as fields in objects.
 - CPTtools implementation allows link and combination rules to be passed in as functions
- R has an object oriented layer, so generic functions can be specialized for implementations
- Use rather loose S3 class system, which allows building new object oriented classes on top of existing RNetica implementation
Object Model

Parameterized Network
- prior weight: numeric
- GEMfit(cases: table)
- Build All Tables()
- calc log likelihood(cases: table): numeric
- calc expected tables(cases: table)
- max all table params()

Parameterized Node
- prior weight: numeric
- Q: numeric
- log alphas: numeric
- betas: numeric
- rules: function
- link: function
- link scale: numeric
- prior: function
- alphas(): numeric
- parent tvals()
- build table()
- max CPT params()
Lists and Vectors of Parameters

- R supports vectors (same type) and lists (any type)
- *Vectors* are used to indicate replication based on number of parameters (slope or intercept)
- *Lists* are used to indicate replication based on state transition (intercepts and slope and combination rules under GPC link)
Generalized EM algorithm

• E-step – Calculate expected value of sufficient statistics
 − Sufficient statistics in this case are the tables of counts of parent variable and child
 − Many BN packages (e.g., Netica) provide built-in EM algorithm supporting hyper-Dirichlet (unparameterized) model
 − Expected value of sufficient statistic is CPT output from this algorithm, weighted by row counts (Netica calls this Node experience)
 − Don’t need to run internal EM algorithm to conclusion, one step should be fine.

• M-step find parameter values that maximize sufficient statistic
 − Can do this node by node
 − Don’t need to run to convergence (generalized EM algorithm).
GEMfit

1) calcExpTables – calls internal EM algorithm (with case data) to perform E-step
2) maxAllTableParams – finds new parameters for each Pnode
3) BuildAllTables – Rebuilds the tables, and sets the weight to priorWeight
4) calcPnetLLike – Calculated the log-likelihood of data

 Algorithm ends when change in log-likelihood is less than tolerance

 All these functions are generic, so can be customized for different BN packages
Tuning parameters

- priorWeight given to Pnet CPTs in E-step
- Number of iterations taken in E-step (1 should be sufficient)
- Number of iterations taken in M-step (5 seems good)
- Convergence Tolerance
Parameter Recovery

• Depends on number of cases

• Depends on how well latent variables are identified in those cases (amount of evidence for the latent variables): test length
Package Structure: Minimizing dependence on Netica

- CPTtools – Basic calculation routines, BN implementation independent
- Peanut – OO layer for Pnet/Pnode classes
- RNetica – A specific BN implementation (Netica bound in R)
- PNetica – Peanut implementation in RNetica
Availability

- http://pluto.coe.fsu.edu/RNetica
- RNetica requires Netica API license (for non-trivial examples)
- Other Bayes net package would need to support:
 - an EM learning function for hyper-Dirichlet models
 - specifying hyper-Dirichlet priors for each CPT
 - recovering the hyper-Dirichlet posteriors after running the internal EM algorithm.