
Package ‘PNetica’
March 30, 2017

Version 0.2-2

Date 2016/11/07

Title Parameterized Bayesian Networks Netica Interface

Author Russell Almond

Maintainer Russell Almond <ralmond@fsu.edu>

Depends R (>= 3.0), RNetica (>= 0.4), CPTtools (>= 0.4), Peanut (>=
0.2)

Description This package provides RNetica implementation of Peanut interface.

License Artistic-2.0

URL http://pluto.coe.fsu.edu/RNetica

R topics documented:
PNetica-package . 1
BuildTable.NeticaNode . 5
calcExpTables.NeticaBN . 6
calcPnetLLike.NeticaBN . 8
maxCPTParam.NeticaNode . 10
Pnet.NeticaBN . 12
Pnode.NeticaNode . 14
PnodeParentTvals.NeticaNode . 17

Index 20

PNetica-package Parameterized Bayesian Networks Netica Interface

Description

This package provides RNetica implementation of Peanut interface.

1

http://pluto.coe.fsu.edu/RNetica

2 PNetica-package

Details

The DESCRIPTION file: This package was not yet installed at build time.

The Peanut package provides a set of generic functions for manipulation parameterized networks,
in particular, for the abstract Pnet and Pnode classes. This package provides concrete implementa-
tions of those classes using the built in classes of RNetica. In particular, Pnet.NeticaBN extends
NeticaBN and Pnode.NeticaNode extends NeticaNode.

The properties of the Pnet and Pnode objects are stored as serialized Netica user fields (see NetworkUserObj
and NodeUserObj).

The as.Pnet (as.Pnode) method for a NeticaBN (NeticaNode) merely adds “Pnet” (“Pnode”) to
class(net) (class(node)). All of the methods in the PNetica are defined for either the NeticaBN
or NeticaNode object, so strictly speaking, adding the “Pnet” or “Pnode” class is not necessary, but
it is recommended in case this is used in the future.

PNetica Specific Implementation Details

Here are some Netica specific details which may not be apparent from the description of the generic
functions in the Peanut package.

1. The cases argument to calcPnetLLike.NeticaBN, calcExpTables.NeticaBN and GEMfit
all expect the pathname of a Netica case file (see write.CaseFile).

2. The methods calcPnetLLike.NeticaBN, calcExpTables.NeticaBN, and therefore GEMfit
when called with a Pnet.NeticaBN as the first argument, expect that there exists a node set
(see NetworkNodesInSet) called “onodes” corresponding to the observable variables in the
case file cases.

3. The function CompileNetwork needs to be called before calls to calcPnetLLike.NeticaBN,
calcExpTables.NeticaBN and GEMfit.

4. The method PnetPnodes.NeticaBN stores its value in a nodeset called “pnodes”. It is recom-
mended that the accessor function be used for modifying this field.

5. The PnetPriorWeight.NeticaBN field of the Pnet.NeticaBN object and all of the fields of
the Pnode.NeticaNode are stored in serialized user fields with somewhat obvious names (see
NetworkUserObj and NodeUserObj). These fields should not be used for other purposes.

Creating and Restoring Pnet.NeticaBN objects

As both the nodesets and and user fields are serialized when Netica serializes a network (WriteNetworks)
the fields of the Pnet.NeticaBN and Pnode.NeticaNode objects should be properly saved and re-
stored. The only thing which will not be restored is the code “Pnet” or “Pnode” class marker. These
can be restored by calling as.Pnet on the restored network and as.Pnode on each of the restored
Pnodes (see Examples).

The first time the network and nodes are created, it is recommended that Pnet.default and
Pnode.NeticaNode (or simply the generic functions Pnet and Pnode. Note that calling Pnode.NeticaNode
will calculate defaults for the PnodeLnAlphas and PnodeBetas based on the current value of
NodeParents(node), so this should be set before calling this function. (See examples).

PNetica-package 3

Index

Index: This package was not yet installed at build time.

Legal Stuff

Netica and Norsys are registered trademarks of Norsys, LLC (http://www.norsys.com/), used by
permission.

Extensive use of PNetica will require a Netica API license from Norsys. This is basically a re-
quirement of the RNetica package, and details are described more fully there. Without a license,
RNetica and PNetica will work in a student/demonstration mode which limits the size of the net-
work.

Although Norsys is generally supportive of the RNetica project, it does not officially support RNet-
ica, and all questions should be sent to the package maintainers.

Author(s)

Russell Almond

Maintainer: Russell Almond <ralmond@fsu.edu>

References

Almond, R. G. (2015) An IRT-based Parameterization for Conditional Probability Tables. Paper
presented at the 2015 Bayesian Application Workshop at the Uncertainty in Artificial Intelligence
Conference.

See Also

PNetica depends on the following other packages.

RNetica A binding of the Netica C API into R.

Peanut An the generic functions for which this package provides implementations.

CPTtools A collection of implementation independent Bayes net utilities.

Examples

Building CPTs
tNet <- CreateNetwork("TestNet")

theta1 <- NewDiscreteNode(tNet,"theta1",
c("VH","High","Mid","Low","VL"))

NodeLevels(theta1) <- effectiveThetas(NodeNumStates(theta1))
NodeProbs(theta1) <- rep(1/NodeNumStates(theta1),NodeNumStates(theta1))
theta2 <- NewDiscreteNode(tNet,"theta2",

c("VH","High","Mid","Low","VL"))
NodeLevels(theta2) <- effectiveThetas(NodeNumStates(theta2))
NodeProbs(theta2) <- rep(1/NodeNumStates(theta2),NodeNumStates(theta2))

http://www.norsys.com/

4 PNetica-package

partial3 <- NewDiscreteNode(tNet,"partial3",
c("FullCredit","PartialCredit","NoCredit"))

NodeParents(partial3) <- list(theta1,theta2)

partial3 <- Pnode(partial3,Q=TRUE, link="partialCredit")
PnodePriorWeight(partial3) <- 10
BuildTable(partial3)

Set up so that first skill only needed for first transition, second
skill for second transition; adjust alphas to match
PnodeQ(partial3) <- matrix(c(TRUE,TRUE,

TRUE,FALSE), 2,2, byrow=TRUE)
PnodeLnAlphas(partial3) <- list(FullCredit=c(-.25,.25),

PartialCredit=0)
BuildTable(partial3)
partial4 <- NewDiscreteNode(tNet,"partial4",

c("Score4","Score3","Score2","Score1"))
NodeParents(partial4) <- list(theta1,theta2)
partial4 <- Pnode(partial4, link="partialCredit")
PnodePriorWeight(partial4) <- 10

Skill 1 used for first transition, Skill 2 used for second
transition, both skills used for the 3rd.

PnodeQ(partial4) <- matrix(c(TRUE,TRUE,
FALSE,TRUE,
TRUE,FALSE), 3,2, byrow=TRUE)

PnodeLnAlphas(partial4) <- list(Score4=c(.25,.25),
Score3=0,
Score2=-.25)

BuildTable(partial4)

Fitting Model to data

irt10.base <- ReadNetworks(paste(library(help="PNetica")$path,
"testnets","IRT10.2PL.base.dne",
sep=.Platform$file.sep))

irt10.base <- as.Pnet(irt10.base) ## Flag as Pnet, fields already set.
irt10.theta <- NetworkFindNode(irt10.base,"theta")
irt10.items <- PnetPnodes(irt10.base)
Flag items as Pnodes
for (i in 1:length(irt10.items)) {

irt10.items[[i]] <- as.Pnode(irt10.items[[i]])

}

casepath <- paste(library(help="PNetica")$path,
"testdat","IRT10.2PL.200.items.cas",
sep=.Platform$file.sep)

Record which nodes in the casefile we should pay attention to
NetworkNodesInSet(irt10.base,"onodes") <-

BuildTable.NeticaNode 5

NetworkNodesInSet(irt10.base,"observables")

BuildAllTables(irt10.base)
CompileNetwork(irt10.base) ## Netica requirement

item1 <- irt10.items[[1]]
priB <- PnodeBetas(item1)
priA <- PnodeAlphas(item1)
priCPT <- NodeProbs(item1)

gemout <- GEMfit(irt10.base,casepath)

DeleteNetwork(irt10.base)
DeleteNetwork(tNet)

BuildTable.NeticaNode Builds the conditional probability table for a Pnode

Description

The function BuildTable calls calcDPCFrame to calculate the conditional probability for a Pnode
object, and sets the current conditional probability table of node to the resulting value. It also sets
the NodeExperience(node) to the current value of GetPriorWeight(node).

Usage

S3 method for class 'NeticaNode'
BuildTable(node)

Arguments

node A Pnode.NeticaNode object whose table is to be built.

Details

The fields of the Pnode object correspond to the arguments of the calcDPCTable function. The out-
put conditional probability table is then set in the node object in using the [.NeticaNode operator.

In addition to setting the CPT, the weight given to the nodes in the EM algorithm are set to
GetPriorWeight(node), which will extract the value of PnodePriorWeight(node) or if that is
null, the value of PnetPriorWeight(NodeParents(node)) and set NodeExperience(node) to
the resulting value.

Value

The node argument is returned invisibly. As a side effect the conditional probability table and
experience of node is modified.

6 calcExpTables.NeticaBN

Author(s)

Russell Almond

References

Almond, R. G. (2015) An IRT-based Parameterization for Conditional Probability Tables. Paper
presented at the 2015 Bayesian Application Workshop at the Uncertainty in Artificial Intelligence
Conference.

See Also

Pnode.NeticaNode, Pnode, PnodeQ, PnodePriorWeight, PnodeRules, PnodeLink, PnodeLnAlphas,
PnodeAlphas, PnodeBetas, PnodeLinkScale,GetPriorWeight, calcDPCTable, NodeExperience(node),
[.NeticaNode

Examples

Not run:
The method is currently defined as
function (node)
{

node[] <- calcDPCFrame(ParentStates(node), NodeStates(node),
PnodeLnAlphas(node), PnodeBetas(node), PnodeRules(node),
PnodeLink(node), PnodeLinkScale(node), PnodeQ(node),
PnodeParentTvals(node))

NodeExperience(node) <- GetPriorWeight(node)
invisible(node)

}

End(Not run)

calcExpTables.NeticaBN

Calculate expected tables for a Pnet.NeticaBN

Description

The performs the E-step of the GEM algorithm by running the Netica EM algorithm (see LearnCPTs)
using the data in cases. After this is run, the conditional probability table for each Pnode.NeticaNode
should be the mean of the Dirichlet distribution and the scale parameter should be the value of
NodeExperience(node).

Usage

S3 method for class 'NeticaBN'
calcExpTables(net, cases, Estepit = 1,

tol = sqrt(.Machine$double.eps))

calcExpTables.NeticaBN 7

Arguments

net A Pnet.NeticaBN object representing a parameterized network.

cases A character scalar giving the file name of a Netica case file (see write.CaseFile).

Estepit An integer scalar describing the number of steps the Netica should take in the
internal EM algorithm.

tol A numeric scalar giving the stopping tolerance for the internal Netica EM algo-
rithm.

Details

The key to this method is realizing that the EM algorithm built into the Netica (see LearnCPTs) can
perform the E-step of the outer GEMfit generalized EM algorithm. It does this in every iteration of
the algorithm, so one can stop after the first iteration of the internal EM algorithm.

This method expects the cases argument to be a pathname pointing to a Netica cases file contain-
ing the training or test data (see write.CaseFile). Also, it expects that there is a nodeset (see
NetworkNodesInSet) attached to the network called “onodes” which references the observable
variables in the case file.

Before calling this method, the function BuildTable needs to be called on each Pnode to both
ensure that the conditional probability table is at a value reflecting the current parameters and to
reset the value of NodeExperience(node) to the starting value of GetPriorWeight(node).

Note that Netica does allow NodeExperience(node) to have a different value for each row the the
conditional probability table. However, in this case, each node must have its own prior weight (or
exactly the same number of parents). The prior weight counts as a number of cases, and should be
scaled appropriately for the number of cases in cases.

The parameters Estepit and tol are passed LearnCPTs. Note that the outer EM algorithm assumes
that the expected table counts given the current values of the parameters, so the default value of one
is sufficient. (It is possible that a higher value will speed up convergence, the parameter is left
open for experimentation.) The tolerance is largely irrelevant as the outer EM algorithm does the
tolerance test.

Value

The net argument is returned invisibly.

As a side effect, the internal conditional probability tables in the network are updated as are the
internal weights given to each row of the conditional probability tables.

Author(s)

Russell Almond

References

Almond, R. G. (2015) An IRT-based Parameterization for Conditional Probability Tables. Paper
presented at the 2015 Bayesian Application Workshop at the Uncertainty in Artificial Intelligence
Conference.

8 calcPnetLLike.NeticaBN

See Also

Pnet, Pnet.NeticaBN, GEMfit, calcPnetLLike, maxAllTableParams, calcExpTables, NetworkNodesInSet
write.CaseFile, LearnCPTs

Examples

irt10.base <- ReadNetworks(paste(library(help="PNetica")$path,
"testnets","IRT10.2PL.base.dne",
sep=.Platform$file.sep))

irt10.base <- as.Pnet(irt10.base) ## Flag as Pnet, fields already set.
irt10.theta <- NetworkFindNode(irt10.base,"theta")
irt10.items <- PnetPnodes(irt10.base)
Flag items as Pnodes
for (i in 1:length(irt10.items)) {

irt10.items[[i]] <- as.Pnode(irt10.items[[i]])
}
CompileNetwork(irt10.base) ## Netica requirement

casepath <- paste(library(help="PNetica")$path,
"testdat","IRT10.2PL.200.items.cas",
sep=.Platform$file.sep)

Record which nodes in the casefile we should pay attention to
NetworkNodesInSet(irt10.base,"onodes") <-

NetworkNodesInSet(irt10.base,"observables")

item1 <- irt10.items[[1]]

priorcounts <- sweep(NodeProbs(item1),1,NodeExperience(item1),"*")

calcExpTables(irt10.base,casepath)

postcounts <- sweep(NodeProbs(item1),1,NodeExperience(item1),"*")

Posterior row sums should always be larger.
stopifnot(

all(apply(postcounts,1,sum) >= apply(priorcounts,1,sum))
)

DeleteNetwork(irt10.base)

calcPnetLLike.NeticaBN

Calculates the log likelihood for a set of data under a Pnet.NeticaBN
model

calcPnetLLike.NeticaBN 9

Description

The method calcPnetLLike.NeticaBN calculates the log likelihood for a set of data contained in
cases using the current conditional probability tables in a Pnet.NeticaBN. Here cases should be
the filename of a Netica case file (see write.CaseFile).

Usage

S3 method for class 'NeticaBN'
calcPnetLLike(net, cases)

Arguments

net A Pnet.NeticaBN object representing a parameterized network.

cases A character scalar giving the file name of a Netica case file (see write.CaseFile).

Details

This function provides the convergence test for the GEMfit algorithm. The Pnet.NeticaBN repre-
sents a model (with parameters set to the value used in the current iteration of the EM algorithm)
and cases a set of data. This function gives the log likelihood of the data.

This method expects the cases argument to be a pathname pointing to a Netica cases file contain-
ing the training or test data (see write.CaseFile). Also, it expects that there is a nodeset (see
NetworkNodesInSet) attached to the network called “onodes” which references the observable
variables in the case file.

As Netica does not have an API function to directly calculate the log-likelihood of a set of cases,
this method loops through the cases in the case set and calls FindingsProbability(net) for each
one. Note that if there are frequencies in the case file, each case is weighted by its frequency.

Value

A numeric scalar giving the log likelihood of the data in the case file.

Author(s)

Russell Almond

References

Almond, R. G. (2015) An IRT-based Parameterization for Conditional Probability Tables. Paper
presented at the 2015 Bayesian Application Workshop at the Uncertainty in Artificial Intelligence
Conference.

See Also

Pnet, Pnet.NeticaBN, GEMfit, calcExpTables, BuildAllTables, maxAllTableParams NetworkNodesInSet,
FindingsProbability, write.CaseFile

10 maxCPTParam.NeticaNode

Examples

irt10.base <- ReadNetworks(paste(library(help="PNetica")$path,
"testnets","IRT10.2PL.base.dne",
sep=.Platform$file.sep))

irt10.base <- as.Pnet(irt10.base) ## Flag as Pnet, fields already set.
irt10.theta <- NetworkFindNode(irt10.base,"theta")
irt10.items <- PnetPnodes(irt10.base)
Flag items as Pnodes
for (i in 1:length(irt10.items)) {

irt10.items[[i]] <- as.Pnode(irt10.items[[i]])
}
CompileNetwork(irt10.base) ## Netica requirement

casepath <- paste(library(help="PNetica")$path,
"testdat","IRT10.2PL.200.items.cas",
sep=.Platform$file.sep)

Record which nodes in the casefile we should pay attention to
NetworkNodesInSet(irt10.base,"onodes") <-

NetworkNodesInSet(irt10.base,"observables")

llike <- calcPnetLLike(irt10.base,casepath)

DeleteNetwork(irt10.base)

maxCPTParam.NeticaNode

Find optimal parameters of a Pnode.NeticaNode to match expected
tables

Description

These function assumes that an expected count contingency table can be built from the network;
i.e., that LearnCPTs has been recently called. They then try to find the set of parameters maximizes
the probability of the expected contingency table with repeated calls to mapDPC. This describes the
method for maxCPTParam when the Pnode is a NeticaNode.

Usage

S3 method for class 'NeticaNode'
maxCPTParam(node, Mstepit = 5, tol = sqrt(.Machine$double.eps))

Arguments

node A Pnode object giving the parameterized node.
Mstepit A numeric scalar giving the number of maximization steps to take. Note that the

maximization does not need to be run to convergence.
tol A numeric scalar giving the stopping tolerance for the maximizer.

maxCPTParam.NeticaNode 11

Details

This method is called on on a Pnode.NeticaNode object during the M-step of the EM algorithm
(see GEMfit and maxAllTableParams for details). Its purpose is to extract the expected contingency
table from Netica and pass it along to mapDPC.

When doing EM learning with Netica, the resulting conditional probability table (CPT) is the mean
of the Dirichlet posterior. Going from the mean to the parameter requires multiplying the CPT by
row counts for the number of virtual observations. In Netica, these are call NodeExperience. Thus,
the expected counts are calculated with this expression: sweep(node[[]], 1, NodeExperience(node), "*").

What remains is to take the table of expected counts and feed it into mapDPC and then take the output
of that routine and update the parameters.

The parameters Mstepit and tol are passed to mapDPC to control the gradient decent algorithm
used for maximization. Note that for a generalized EM algorithm, the M-step does not need to
be run to convergence, a couple of iterations are sufficient. The value of Mstepit may influence
the speed of convergence, so the optimal value may vary by application. The tolerance is largely
irrelevant (if Mstepit is small) as the outer EM algorithm does the tolerance test.

Value

The expression maxCPTParam(node) returns node invisibly. As a side effect the PnodeLnAlphas
and PnodeBetas fields of node (or all nodes in PnetPnodes(net)) are updated to better fit the
expected tables.

Author(s)

Russell Almond

References

Almond, R. G. (2015) An IRT-based Parameterization for Conditional Probability Tables. Paper
presented at the 2015 Bayesian Application Workshop at the Uncertainty in Artificial Intelligence
Conference.

See Also

Pnode, Pnode.NeticaNode, GEMfit, maxAllTableParams mapDPC

Examples

The function is currently defined as
function (node, Mstepit = 5, tol = sqrt(.Machine$double.eps))
{

counts <- sweep(node[[]], 1, NodeExperience(node), "*")
withCallingHandlers(est <- mapDPC(counts, ParentStates(node),

NodeStates(node), PnodeLnAlphas(node), PnodeBetas(node),
PnodeRules(node), PnodeLink(node), PnodeLinkScale(node),
PnodeQ(node), control = list(reltol = tol, maxit = Mstepit)),
warning = muffler)

PnodeLnAlphas(node) <- est$lnAlphas

12 Pnet.NeticaBN

PnodeBetas(node) <- est$betas
PnodeLinkScale(node) <- est$linkScale
invisible(node)

}

Pnet.NeticaBN RNetica implementation of the Pnet class

Description

This documentation file describes the use of a NeticaBN object as a Pnet. See details for descrip-
tions of the methods.

Usage

S3 method for class 'NeticaBN'
as.Pnet(x)
S3 method for class 'NeticaBN'
PnetPriorWeight(net)
S3 replacement method for class 'NeticaBN'
PnetPriorWeight(net) <- value
S3 method for class 'NeticaBN'
PnetPnodes(net)
S3 replacement method for class 'NeticaBN'
PnetPnodes(net) <- value

Arguments

x A NeticaBN object to be converted to a Pnet object.

net A NeticaBN object to be manipulated (should also be a Pnet, but this is not
checked.

value In the case of PnetPriorWeight(net) a numeric scalar giving the default weight
for the prior. In the case of PnetPnodes(net) a list of NeticaNode objects be-
longing to net.

Details

The Pnet object model is added to the NeticaNode class using two approaches. First, the PnetPriorWeight
method uses the NetworkUserObj to serialize the prior weights and store them in one of the net-
work’s user fields (“priorWeight”). Second the PnetPnodes method uses node sets (NetworkNodesInSet)
to mark the Pnodes in the graph (the node set is called “pnodes”).

In addition to the “pnodes” node set, the PNetica implementation of Pnet requires an additional
node set called “onodes”. These correspond to the nodes present in the cases argument to GEMfit
and related methods.

The as.Pnet.NeticaBN method merely adds “Pnet” to class(net). The default method of Pnet
calls as.Pnet and also sets default values for the prior weight and pnodes fields. This is the recom-
mended approach for creating new Pnet objects.

Pnet.NeticaBN 13

The user fields and node sets are saved and restored when a Netica network is saved to a file. (This
is true for the user fields in the Pnode objects as well.) Calling as.Pnet on the newly restored
network should correct the class field without overwriting the restored fields. (Generally, as.Pnode
should be called on all of the Pnodes as well.)

Value

The method as.Pnet.NeticaBN returns an object of class c("Pnet", "NeticaBN"). The descrip-
tions of the returns for the other methods can be found in the description of their generic functions.

Author(s)

Russell Almond

References

Almond, R. G. (2015) An IRT-based Parameterization for Conditional Probability Tables. Paper
presented at the 2015 Bayesian Application Workshop at the Uncertainty in Artificial Intelligence
Conference.

See Also

Pnet, NeticaBN, Pnode, Pnode.NeticaNode, PnetPriorWeight, PnetPnodes, NetworkUserObj,
NetworkNodesInSet

Examples

###
Create network structure using RNetica calls
IRT10.2PL <- CreateNetwork("IRT10_2PL")

theta <- NewDiscreteNode(IRT10.2PL,"theta",
c("VH","High","Mid","Low","VL"))

NodeLevels(theta) <- effectiveThetas(NodeNumStates(theta))
NodeProbs(theta) <- rep(1/NodeNumStates(theta),NodeNumStates(theta))

J <- 10 ## Number of items
items <- NewDiscreteNode(IRT10.2PL,paste("item",1:J,sep=""),

c("Correct","Incorrect"))
for (j in 1:J) {

NodeParents(items[[j]]) <- list(theta)
NodeLevels(items[[j]]) <- c(1,0)
NodeSets(items[[j]]) <- c("observables")

}

Convert into a Pnet
IRT10.2PL <- Pnet(IRT10.2PL,priorWeight=10,pnodes=items)

Convert nodes to Pnodes
for (j in 1:J) {

items[[j]] <- Pnode(items[[j]])
}

14 Pnode.NeticaNode

DeleteNetwork(IRT10.2PL)

####################################
Restore a network from a file.
irt10.base <- ReadNetworks(paste(library(help="PNetica")$path,

"testnets","IRT10.2PL.base.dne",
sep=.Platform$file.sep))

irt10.base <- as.Pnet(irt10.base) ## Flag as Pnet, fields already set.
irt10.theta <- NetworkFindNode(irt10.base,"theta")
irt10.items <- PnetPnodes(irt10.base)
Flag items as Pnodes
for (i in 1:length(irt10.items)) {

irt10.items[[i]] <- as.Pnode(irt10.items[[i]])
}

Need to set onodes field by hand, using RNetica functions
casepath <- paste(library(help="PNetica")$path,

"testdat","IRT10.2PL.200.items.cas",
sep=.Platform$file.sep)

Record which nodes in the casefile we should pay attention to
NetworkNodesInSet(irt10.base,"onodes") <-

NetworkNodesInSet(irt10.base,"observables")

DeleteNetwork(irt10.base)

Pnode.NeticaNode RNetica implementation of the Pnode class

Description

This documentation file describes the use of a NeticaNode object as a Pnode. See details for
descriptions of the methods.

Usage

S3 method for class 'NeticaNode'
Pnode(node, lnAlphas, betas, rules="Compensatory",

link="partialCredit", Q=TRUE, linkScale=NULL,
priorWeight=NULL)

S3 method for class 'NeticaNode'
as.Pnode(x)
S3 method for class 'NeticaNode'
PnodeNet(node)
S3 method for class 'NeticaNode'

Pnode.NeticaNode 15

PnodePriorWeight(node)
S3 method for class 'NeticaNode'
PnodeQ(node)
S3 method for class 'NeticaNode'
PnodeRules(node)
S3 method for class 'NeticaNode'
PnodeLink(node)
S3 method for class 'NeticaNode'
PnodeLnAlphas(node)
S3 method for class 'NeticaNode'
PnodeBetas(node)
S3 method for class 'NeticaNode'
PnodeLinkScale(node)

Arguments

x A NeticaNode object to be converted to a Pnode object.

node A NeticaNode object to be manipulated (should also be a Pnode, but this is not
checked.

lnAlphas A numeric vector of list of numeric vectors giving the log slope parameters. See
PnodeLnAlphas for a description of this parameter. If missing, the constructor
will try to create a pattern of zero values appropriate to the rules argument and
the number of parent variables.

betas A numeric vector of list of numeric vectors giving the intercept parameters. See
PnodeBetas for a description of this parameter. If missing, the constructor will
try to create a pattern of zero values appropriate to the rules argument and the
number of parent variables.

rules The combination rule or a list of combination rules. These should either be
names of functions or function objects. See PnodeRules for a description of
this argument.

link The name of the link function or the link function itself. See PnodeLink for a
description of the link function.

Q A logical matrix or the constant TRUE (indicating that the Q-matrix should be a
matrix of TRUEs). See PnodeQ for a description of this parameter.

linkScale A numeric vector of link scale parameters or NULL if scale parameters are not
needed for the chosen link function. See PnodeLinkScale for a description of
this parameter.

priorWeight A numeric vector of weights given to the prior parameter values for each row
of the conditional probability table when learning from data (or a scalar if all
rows have equal prior weight). See PnodePriorWeight for a description of this
parameter.

Details

The Pnode object model is added to the NeticaNode class using the NodeUserObj method to se-
rialize the value and store them in one of the node’s user fields. Note that most of the functions

16 Pnode.NeticaNode

described above have setter as well as getter methods defined (see under the corresponding argu-
ments for descriptions).

The as.Pnode.NeticaNode method merely adds “Pnode” to class(net). The NeticaNode method
of Pnode calls as.Pnode and also sets default values for various Pnode fields. This is the recom-
mended approach for creating new Pnode objects. Note that calling Pnode.NeticaNode will calcu-
late defaults for the PnodeLnAlphas and PnodeBetas based on the current value of NodeParents(node),
so this should be set before calling this function. (See examples).

The user fields are saved and restored when a Netica network is saved to a file. (This is true for the
user fields in the Pnet objects as well.) Calling as.Pnode on the appropriate nodes of the newly
restored network should correct the class field without overwriting the restored fields. (Generally,
as.Pnet should be called on the Pnet as well.)

Note that the PnodeParentTvals.NeticaNode method assumes that the parent variables have had
numeric values assigned to their states using the NodeLevels function.

Value

The method as.Pnode.NeticaNode returns an object of class c("Pnode", "NeticaNode"). The
descriptions of the returns for the other methods can be found in the description of their generic
functions.

Author(s)

Russell Almond

References

Almond, R. G. (2015) An IRT-based Parameterization for Conditional Probability Tables. Paper
presented at the 2015 Bayesian Application Workshop at the Uncertainty in Artificial Intelligence
Conference.

See Also

Pnode, NeticaNode, Pnet, Pnet.NeticaBN, PnodePriorWeight, PnodeNet, PnodeQ, PnodeRules,
PnodeLink, PnodeLnAlphas, PnodeBetas, PnodeLinkScale, PnodeParentTvals.NeticaNode,
NetworkUserObj,

Examples

###
Create network structure using RNetica calls
IRT10.2PL <- CreateNetwork("IRT10_2PL")

theta <- NewDiscreteNode(IRT10.2PL,"theta",
c("VH","High","Mid","Low","VL"))

NodeLevels(theta) <- effectiveThetas(NodeNumStates(theta))
NodeProbs(theta) <- rep(1/NodeNumStates(theta),NodeNumStates(theta))

J <- 10 ## Number of items
items <- NewDiscreteNode(IRT10.2PL,paste("item",1:J,sep=""),

c("Correct","Incorrect"))

PnodeParentTvals.NeticaNode 17

for (j in 1:J) {
NodeParents(items[[j]]) <- list(theta)
NodeLevels(items[[j]]) <- c(1,0)
NodeSets(items[[j]]) <- c("observables")

}

Convert into a Pnode
IRT10.2PL <- Pnet(IRT10.2PL,priorWeight=10,pnodes=items)

Convert nodes to Pnodes
for (j in 1:J) {

items[[j]] <- Pnode(items[[j]])
}

DeleteNetwork(IRT10.2PL)

####################################
Restore a network from a file.
irt10.base <- ReadNetworks(paste(library(help="PNetica")$path,

"testnets","IRT10.2PL.base.dne",
sep=.Platform$file.sep))

irt10.base <- as.Pnet(irt10.base) ## Flag as Pnet, fields already set.
irt10.theta <- NetworkFindNode(irt10.base,"theta")
irt10.items <- PnetPnodes(irt10.base)
Flag items as Pnodes
for (i in 1:length(irt10.items)) {

irt10.items[[i]] <- as.Pnode(irt10.items[[i]])
}

DeleteNetwork(irt10.base)

PnodeParentTvals.NeticaNode

Fetches a list of numeric variables corresponding to parent states

Description

In constructing a conditional probability table using the discrete partial credit framework (see
calcDPCTable), each state of each parent variable is mapped onto a real value called the effective
theta. The PnodeParentTvals method for Netica nodes returns the result of applying NodeLevels
to each of the nodes in NodeParents(node).

Usage

S3 method for class 'NeticaNode'
PnodeParentTvals(node)

18 PnodeParentTvals.NeticaNode

Arguments

node A Pnode which is also a NeticaNode.

Details

While the best practices for assigning values to the states of the parent nodes is probably to assign
equal spaced values (using the function effectiveThetas for this purpose), this method needs to
retain some flexibility for other possibilities. However, in general, the best choice should depend
on the meaning of the parent variable, and the same values should be used everywhere the parent
variable occurs.

Netica already provides the NodeLevels function which allows the states of a NeticaNode to be
associated with numeric values. This method merely gathers them together. The method assumes
that all of the parent variables have had their NodeLevels set and will generate an error if that is not
true.

Value

PnodeParentTvals(node) should return a list corresponding to the parents of node, and each
element should be a numeric vector corresponding to the states of the appropriate parent variable.
If there are no parent variables, this will be a list of no elements.

Note

The implementation is merely: lapply(NodeParents(node), NodeLevels).

Author(s)

Russell Almond

References

Almond, R. G. (2015) An IRT-based Parameterization for Conditional Probability Tables. Paper
presented at the 2015 Bayesian Application Workshop at the Uncertainty in Artificial Intelligence
Conference.

Almond, R.G., Mislevy, R.J., Steinberg, L.S., Williamson, D.M. and Yan, D. (2015) Bayesian
Networks in Educational Assessment. Springer. Chapter 8.

See Also

Pnode.NeticaNode, Pnode, effectiveThetas, BuildTable.NeticaNode, maxCPTParam.NeticaNode

Examples

tNet <- CreateNetwork("TestNet")

theta1 <- NewDiscreteNode(tNet,"theta1",
c("VH","High","Mid","Low","VL"))

This next function sets the effective thetas for theta1
NodeLevels(theta1) <- effectiveThetas(NodeNumStates(theta1))

PnodeParentTvals.NeticaNode 19

NodeProbs(theta1) <- rep(1/NodeNumStates(theta1),NodeNumStates(theta1))
theta2 <- NewDiscreteNode(tNet,"theta2",

c("High","Mid","Low"))
This next function sets the effective thetas for theta2
NodeLevels(theta2) <- effectiveThetas(NodeNumStates(theta2))
NodeProbs(theta2) <- rep(1/NodeNumStates(theta2),NodeNumStates(theta2))

partial3 <- NewDiscreteNode(tNet,"partial3",
c("FullCredit","PartialCredit","NoCredit"))

NodeParents(partial3) <- list(theta1,theta2)

Usual way to set rules is in constructor
partial3 <- Pnode(partial3,rules="Compensatory", link="partialCredit")

PnodeParentTvals(partial3)
do.call("expand.grid",PnodeParentTvals(partial3))

DeleteNetwork(tNet)

Index

∗Topic attrib
PnodeParentTvals.NeticaNode, 17

∗Topic distribution
BuildTable.NeticaNode, 5

∗Topic graphs
calcPnetLLike.NeticaBN, 8
Pnet.NeticaBN, 12
PNetica-package, 1
Pnode.NeticaNode, 14

∗Topic manip
calcExpTables.NeticaBN, 6
maxCPTParam.NeticaNode, 10
Pnet.NeticaBN, 12
Pnode.NeticaNode, 14

∗Topic package
PNetica-package, 1

[.NeticaNode, 5, 6

as.Pnet, 2, 16
as.Pnet.NeticaBN (Pnet.NeticaBN), 12
as.Pnode, 2, 13
as.Pnode.NeticaNode (Pnode.NeticaNode),

14

BuildAllTables, 9
BuildTable, 7
BuildTable.NeticaNode, 5, 18

calcDPCFrame, 5
calcDPCTable, 5, 6, 17
calcExpTables, 8, 9
calcExpTables.NeticaBN, 2, 6
calcPnetLLike, 8
calcPnetLLike.NeticaBN, 2, 8
CompileNetwork, 2
CPTtools, 3

effectiveThetas, 18

FindingsProbability, 9

GEMfit, 2, 7–9, 11, 12
GetPriorWeight, 5–7

LearnCPTs, 6–8, 10

mapDPC, 10, 11
maxAllTableParams, 8, 9, 11
maxCPTParam, 10
maxCPTParam.NeticaNode, 10, 18

NeticaBN, 2, 12, 13
NeticaNode, 2, 10, 12, 14–16, 18
NetworkNodesInSet, 2, 7–9, 12, 13
NetworkUserObj, 2, 12, 13, 16
NodeExperience, 5–7, 11
NodeLevels, 16–18
NodeParents, 2, 5, 16, 17
NodeUserObj, 2, 15

Peanut, 2, 3
Pnet, 2, 8, 9, 12, 13, 16
Pnet.default, 2
Pnet.NeticaBN, 2, 7–9, 12, 16
PNetica (PNetica-package), 1
PNetica-package, 1
PnetPnodes, 11–13
PnetPnodes.NeticaBN, 2
PnetPnodes.NeticaBN (Pnet.NeticaBN), 12
PnetPnodes<-.NeticaBN (Pnet.NeticaBN),

12
PnetPriorWeight, 5, 12, 13
PnetPriorWeight.NeticaBN, 2
PnetPriorWeight.NeticaBN

(Pnet.NeticaBN), 12
PnetPriorWeight<-.NeticaBN

(Pnet.NeticaBN), 12
Pnode, 2, 5, 6, 10–16, 18
Pnode.NeticaNode, 2, 5, 6, 11, 13, 14, 18
PnodeAlphas, 6
PnodeBetas, 2, 6, 11, 15, 16

20

INDEX 21

PnodeBetas.NeticaNode
(Pnode.NeticaNode), 14

PnodeLink, 6, 15, 16
PnodeLink.NeticaNode

(Pnode.NeticaNode), 14
PnodeLinkScale, 6, 15, 16
PnodeLinkScale.NeticaNode

(Pnode.NeticaNode), 14
PnodeLnAlphas, 2, 6, 11, 15, 16
PnodeLnAlphas.NeticaNode

(Pnode.NeticaNode), 14
PnodeNet, 16
PnodeNet.NeticaNode (Pnode.NeticaNode),

14
PnodeParentTvals.NeticaNode, 16, 17
PnodePriorWeight, 5, 6, 15, 16
PnodePriorWeight.NeticaNode

(Pnode.NeticaNode), 14
PnodeQ, 6, 15, 16
PnodeQ.NeticaNode (Pnode.NeticaNode), 14
PnodeRules, 6, 15, 16
PnodeRules.NeticaNode

(Pnode.NeticaNode), 14

RNetica, 2, 3

write.CaseFile, 2, 7–9
WriteNetworks, 2

	PNetica-package
	BuildTable.NeticaNode
	calcExpTables.NeticaBN
	calcPnetLLike.NeticaBN
	maxCPTParam.NeticaNode
	Pnet.NeticaBN
	Pnode.NeticaNode
	PnodeParentTvals.NeticaNode
	Index

