Bayesian Networks in Educational Assessment

Estimating Parameters with MCMC

Roy Levy Arizona State University Roy.Levy@asu.edu

© 2017 Roy Levy

MCMC 1

Bayesian Inference: Expanding Our Context

MCMC 2

Posterior Distribution

Posterior distribution for unknowns given knowns is

 $p(unknowns | knowns) \propto p(knowns | unknowns) p(unknowns)$

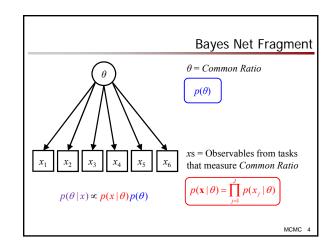
Inference about examinee latent variables (θ) given observables (\mathbf{x})

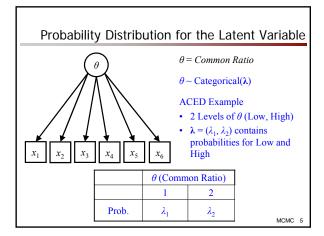
$$p(\theta \mid \mathbf{x}) \propto p(\mathbf{x} \mid \theta) p(\theta)$$

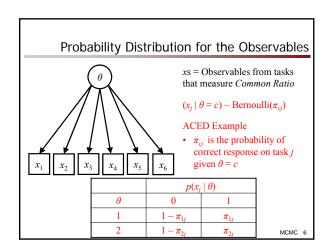
Example: ACED Bayes Net Fragment for Common Ratio

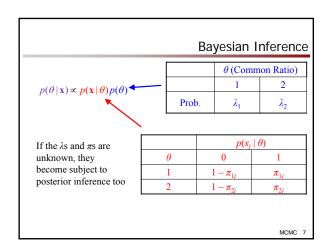
- $\theta = Common\ Ratio$
- **x** = Observables from tasks that measure *Common Ratio*

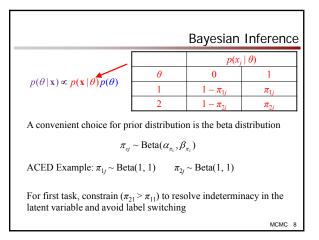
мсмс з

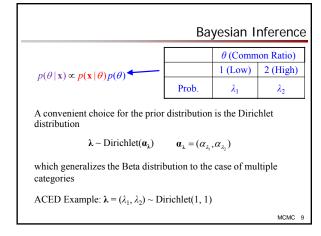


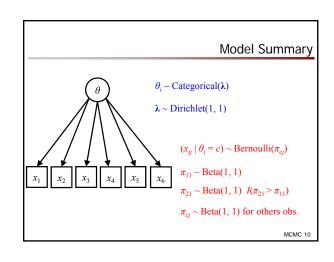




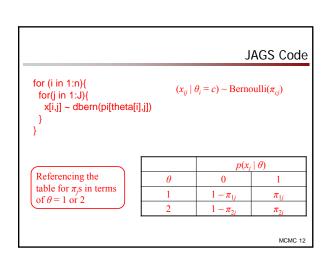








JAGS Code



```
\label{eq:JAGS Code} \begin{tabular}{ll} & JAGS Code \\ \hline for (i in 1:n) \{ & \theta_i \sim Categorical(\lambda) \\ & theta[i] \sim dcat(lambda[]) \\ & \} \\ \\ & lambda[1:C] \sim ddirch(alpha\_lambda[]) & \lambda \sim Dirichlet(1,1) \\ & for(c in 1:C) \{ \\ & alpha\_lambda[c] <-1 \\ & \} \\ \\ & \\ & MCMC 14 \\ \\ \end{tabular}
```

Markov Chain Monte Carlo

MCMC 15

Estimation in Bayesian Modeling

- · Our "answer" is a posterior distribution
 - All parameters treated as random, not fixed
- · Contrasts with frequentist approaches to inference, estimation
 - Parameters are fixed, so estimation comes to finding the single best value
 - "Best" here in terms of a criterion (ML, LS, etc.)
- Peak of a mountain vs. mapping the entire terrain of peaks, valleys, and plateaus (of a landscape)

MCMC 16

What's In a Name?

Markov chain Monte Carlo

- Construct a sampling algorithm to *simulate* or *draw from* the
- Collect many such draws, which serve to empirically approximate the posterior distribution, and can be used to empirical approximate summary statistics.

Monte Carlo Principle:

Anything we want to know about a random variable θ can be learned by sampling many times from $f(\theta)$, the density of θ .

-- Jackman (2009)

MCMC 17

What's In a Name?

Markov chain Monte Carlo

- · Values really generated as a sequence or chain
- t denotes the step in the chain
- $\theta^{(0)}$, $\theta^{(1)}$, $\theta^{(2)}$,..., $\theta^{(t)}$,..., $\theta^{(T)}$
- Also thought of as a time indicator

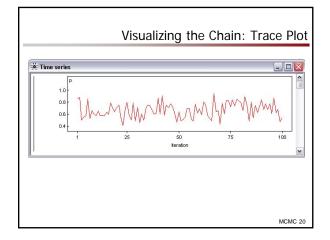
Markov chain Monte Carlo

· Follows the Markov property...

The Markov Property

- · Current state depends on previous position
 - Examples: weather, checkers, baseball counts & scoring
- · Next state conditionally independent of past, given the present
 - Akin to a full mediation model
- $p(\theta^{(t+1)} | \theta^{(t)}, \theta^{(t-1)}, \theta^{(t-2)}, ...) = p(\theta^{(t+1)} | \theta^{(t)})$

MCMC 19



Markov Chain Monte Carlo

- Markov chains are sequences of numbers that have the Markov property
 - Draws in cycle t+1 depend on values from cycle t, but given those not on previous cycles (Markov property)
- Under certain assumptions Markov chains reach stationarity
- The collection of values converges to a distribution, referred to as a stationary distribution
 - Memoryless: It will "forget" where it starts
 - Start anywhere, will reach stationarity if regularity conditions hold
 - For Bayes, set it up so that this is the posterior distribution
- Upon convergence, samples from the chain approximate the stationary (posterior) distribution

MCMC 21

Assessing Convergence

MCMC 22

Diagnosing Convergence

- With MCMC, convergence to a distribution, not a point
- ML:
 - Convergence is when we've reached the highest point in the likelihood.
 - The highest peak of the mountain
- MCMC:
 - Convergence when we're sampling values from the correct distribution,
 - We are mapping the entire terrain accurately

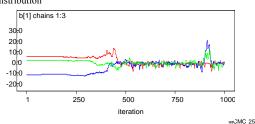
MCMC 23

Diagnosing Convergence

- A properly constructed Markov chain is guaranteed to converge to the stationary (posterior) distribution...eventually
- Upon convergence, it will sample over the full support of the stationary (posterior) distribution...over an ∞ number of draws
- In a finite chain, no guarantee that the chain has converged or is sampling through the full support of the stationary (posterior) distribution
- · Many ways to diagnose convergence
- Whole software packages dedicated to just assessing convergence of chains (e.g., R packages 'coda' and 'boa')

Gelman & Rubin's (1992) Potential Scale Reduction Factor (PSRF)

- Run multiple chains from dispersed starting points
- · Suggest convergence when the chains come together
- If they all go to the same place, it's probably the stationary distribution

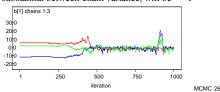


Gelman & Rubin's (1992) Potential Scale Reduction Factor (PSRF)

- · An analysis of variance type argument
- PSRF or R =

Total Variance
Within Chain Variance = Between Chain Variance + Within Chain Variance
Within Chain Variance

• If there is substantial between-chain variance, will be >> 1



Gelman & Rubin's (1992) Potential Scale Reduction Factor (PSRF)

- Run multiple chains from dispersed starting points
- · Suggest convergence when the chains come together
- · Operationalized in terms of partitioning variability
- Run multiple chains for 2T iterations, discard first half
- · Examine between and within chain variability
- · Various versions, modifications suggested over time

MCMC 27

Potential Scale Reduction Factor (PSRF)

• For any θ , for any chain c the within-chain variance is

$$W_{c} = \frac{1}{T - 1} \sum_{t=1}^{T} (\theta_{(c)}^{(t)} - \overline{\theta}_{(c)})^{2}$$

• For all chains, the pooled within-chain variance is

$$W = \frac{1}{C} \sum_{c=1}^{C} W_c = \frac{1}{C(T-1)} \sum_{c=1}^{C} \sum_{t=1}^{T} (\theta_{(c)}^{(t)} - \overline{\theta}_{(c)})^2$$

MCMC 28

Potential Scale Reduction Factor (PSRF)

· The between-chain variance is

$$B = \frac{T}{C-1} \sum_{c=1}^{C} (\overline{\theta}_{(c)} - \overline{\theta})^2$$

· The estimated variance is

$$\hat{V}ar(\theta) = (T - 1/T)W + (1/T)B$$

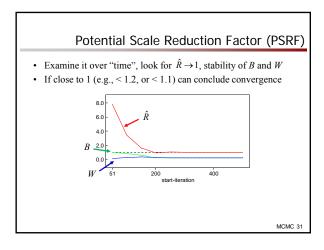
MCMC 29

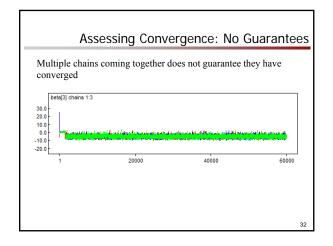
Potential Scale Reduction Factor (PSRF)

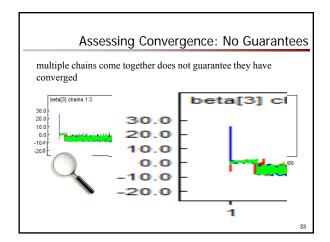
• The potential scale reduction factor is

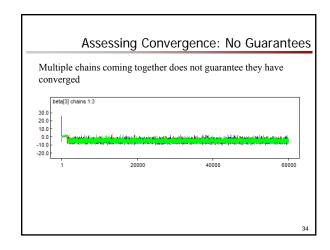
$$\hat{R} = \sqrt{\frac{\hat{V}ar(\theta)}{W}}$$

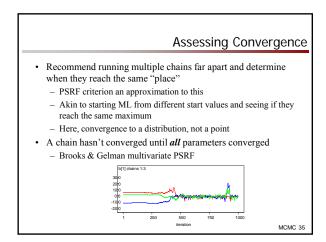
 If close to 1 (e.g., < 1.1) for all parameters, can conclude convergence

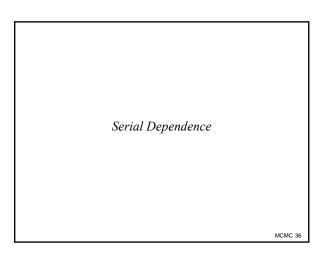










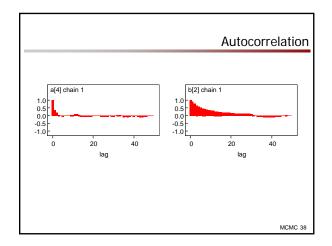


Serial Dependence

- Serial dependence between draws due to the dependent nature of the draws (i.e., the Markov structure)
- $p(\theta^{(t+1)} | \theta^{(t)}, \theta^{(t-1)}, \theta^{(t-2)}, ...) = p(\theta^{(t+1)} | \theta^{(t)})$

- However there is a *marginal* dependence across multiple lags
- · Can examine the autocorrelation across different lags

MCMC 37



Thinning

• Can "thin" the chain by dropping certain iterations

Thin = $1 \rightarrow$ keep every iteration

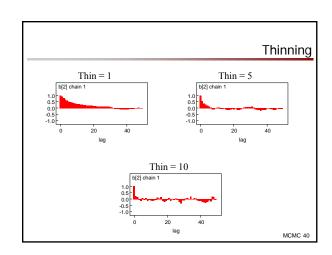
Thin = $2 \rightarrow$ keep every other iteration (1, 3, 5,...)

Thin = 5 \rightarrow keep every 5th iteration (1, 6, 11,...)

Thin = $10 \rightarrow$ keep every 10^{th} iteration (1, 11, 21,...)

Thin = $100 \rightarrow$ keep every 100^{th} iteration (1, 101, 201,...)

MCMC 39



Thinning

• Can "thin" the chain by dropping certain iterations

Thin = $1 \rightarrow$ keep every iteration

Thin = $2 \rightarrow$ keep every other iteration (1, 3, 5,...)

Thin = 5 \rightarrow keep every 5th iteration (1, 6, 11,...)

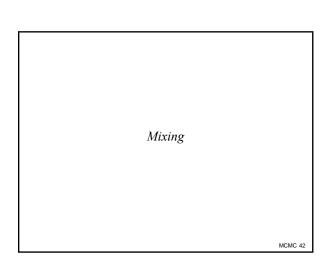
Thin = $10 \rightarrow \text{keep every } 10^{\text{th}} \text{ iteration } (1, 11, 21,...)$

Thin = $100 \rightarrow$ keep every 100^{th} iteration (1, 101, 201,...)

- Thinning does not provide a better portrait of the posterior
 - A loss of information

independent iterations

- May want to keep, and account for time-series dependence
- Useful when data storage, other computations an issue
 I want 1000 iterations, rather have 1000 approximately
- Dependence within chains, but none between chains

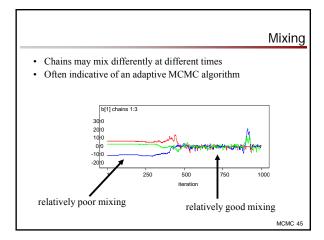


We don't want the sampler to get "stuck" in some region of the posterior , or ignore a certain area of the posterior Mixing refers to the chain "moving" throughout the support of the distribution in a reasonable way relatively good mixing relatively poor mixing

Mixing

- Mixing \(\neq \) convergence, but better mixing usually leads to faster convergence
- Mixing ≠ autocorrelation, but better mixing usually goes with lower autocorrelation (and cross-correlations between parameters)
- With better mixing, then for a given number of MCMC iterations, get more information about the posterior
 - Ideal scenario is independent draws from the posterior
- With worse mixing, need more iterations to (a) achieve convergence and (b) achieve a desired level of precision for the summary statistics of the posterior

MCMC 44



Mixing

- Slow mixing can also be caused by high dependence between parameters
 - Example: multicollinearity
- · Reparameterizing the model can improve mixing
 - Example: centering predictors in regression

MCMC 46

Stopping the Chain(s)

MCMC 47

MCMC 43

When to Stop The Chain(s)

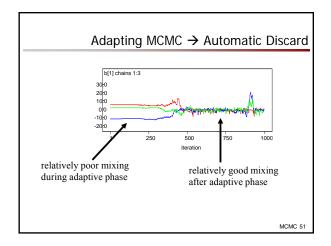
- Discard the iterations prior to convergence as burn-in
- · How many more iterations to run?
 - As many as you want ©
 - As many as time provides
- Autocorrelaion complicates things
- Software may provide the "MC error"
- Estimate of the sampling variability of the sample mean
- Sample here is the sample of iterations
- Accounts for the dependence between iterations
- Guideline is to go at least until MC error is less than 5% of the posterior standard deviation
- · Effective sample size
 - Approximation of how many independent samples we have

Steps in MCMC in Practice

Steps in MCMC (1)

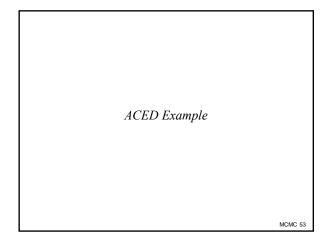
- Setup MCMC using any of a number of algorithms
 - Program yourself (have fun ☺)
 - Use existing software (BUGS, JAGS)
- · Diagnose convergence
 - Monitor trace plots, PSRF criteria
- · Discard iterations prior to convergence as burn-in
 - Software may indicate a minimum number of iterations needed
 - A lower bound

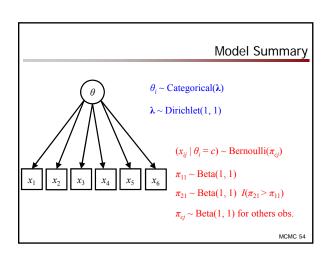
MCMC 50



Steps in MCMC (2)

- · Run the chain for a desired number of iterations
 - Understanding serial dependence/autocorrelation
 - Understanding mixing
- · Summarize results
 - Monte Carlo principle
 - Densities
 - Summary statistics

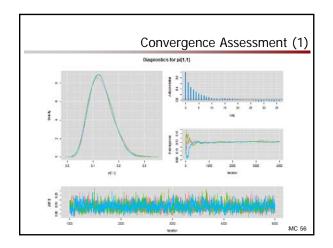


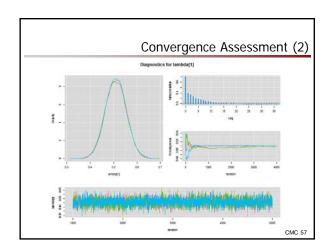


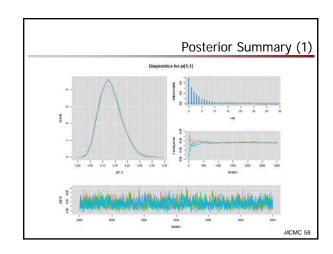
ACED Example

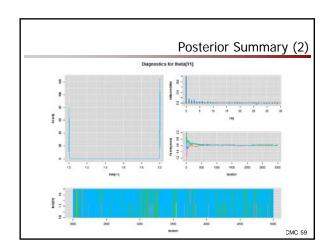
See 'ACED Analysis.R' for Running the analysis in R

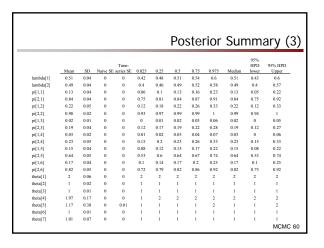
See Following Slides for Select Results











Summary and Conclusion

MCMC 61

Summary

- Dependence on initial values is "forgotten" after a sufficiently long run of the chain (memoryless)
- Convergence to a distribution
 - Recommend monitoring multiple chains
 - PSRF as approximation
- · Let the chain "burn-in"
 - Discard draws prior to convergence
 - Retain the remaining draws as draws from the posterior
- · Dependence across draws induce autocorrelations
 - Can thin if desired
- Dependence across draws within and between parameters can slow mixing
 - Reparameterizing may help

MCMC 62

Wise Words of Caution

Beware: MCMC sampling can be dangerous!

-- Spiegelhalter, Thomas, Best, & Lunn (2007) (WinBUGS User Manual)