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Bayesian Inference: Expanding Our Context
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MCMC

Posterior distribution for unknowns given knowns is

Inference about examinee latent variables (θ) given observables (x)

Example: ACED Bayes Net Fragment for Common Ratio

• θ = Common Ratio 

• x = Observables from tasks that measure Common Ratio 
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Posterior Distribution
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MCMC

θ = Common Ratio 

xs = Observables from tasks 
that measure Common Ratio 
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Bayes Net Fragment

x1 x2 x3 x4 x5 x6

θ

p(θ)

1

( | ) ( | )
J

j
j

p p x 


x
(( )| () | )p xp px  

MCMC

θ = Common Ratio 

θ ~ Categorical(λ)

ACED Example

• 2 Levels of θ (Low, High)

• λ = (λ1, λ2) contains 
probabilities for Low and 
High 
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Probability Distribution for the Latent Variable

x1 x2 x3 x4 x5 x6

θ

θ (Common Ratio)

1 2

Prob. λ1 λ2
MCMC

xs = Observables from tasks 
that measure Common Ratio 

(xj | θ = c) ~ Bernoulli(πcj)

ACED Example

• πcj is the probability of 
correct response on task j
given θ = c
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Probability Distribution for the Observables
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Bayesian Inference
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θ (Common Ratio)

1 2

Prob. λ1 λ2

p(xj | θ)

θ 0 1

1 1 – π1j π1j

2 1 – π2j π2j

If the λs and πs are 
unknown, they 
become subject to 
posterior inference too
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Bayesian Inference

(( (| )) | )p pp   xx

p(xj | θ)

θ 0 1

1 1 – π1j π1j

2 1 – π2j π2j

A convenient choice for prior distribution is the beta distribution

ACED Example: π1j ~ Beta(1, 1) π2j ~ Beta(1, 1)

For first task, constrain (π21 > π11) to resolve indeterminacy in the 
latent variable and avoid label switching

~ Beta( , )
c ccj    
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Bayesian Inference
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θ (Common Ratio)

1 (Low) 2 (High)

Prob. λ1 λ2

A convenient choice for the prior distribution is the Dirichlet
distribution

which generalizes the Beta distribution to the case of multiple 
categories

ACED Example: λ = (λ1, λ2) ~ Dirichlet(1, 1)

λ ~ Dirichlet(αλ) 1 2
( , )  λα
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Model Summary

θi ~ Categorical(λ)

λ ~ Dirichlet(1, 1) 

(xij | θi = c) ~ Bernoulli(πcj)

π11 ~ Beta(1, 1)

π21 ~ Beta(1, 1)  I(π21 > π11)

πcj ~ Beta(1, 1) for others obs.

x1 x2 x3 x4 x5 x6

θ

MCMC

JAGS Code
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JAGS Code

for (i in 1:n){
for(j in 1:J){
x[i,j] ~ dbern(pi[theta[i],j]) 

}
}

Referencing the 
table for πjs in terms 
of θ = 1 or 2

(xij | θi = c) ~ Bernoulli(πcj)

p(xj | θ)

θ 0 1

1 1 – π1j π1j

2 1 – π2j π2j
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JAGS Code

pi[1,1] ~ dbeta(1,1) 

pi[2,1] ~ dbeta(1,1) T(pi[1,1], )

for(c in 1:C){
for(j in 2:J){
pi[c,j] ~ dbeta(1,1)

}
}

π11 ~ Beta(1, 1)

π21 ~ Beta(1, 1)  I(π21 > π11)

πcj ~ Beta(1, 1) for remaining observables
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JAGS Code

for (i in 1:n){
theta[i] ~ dcat(lambda[])

}

θi ~ Categorical(λ)

lambda[1:C] ~ ddirch(alpha_lambda[])
for(c in 1:C){
alpha_lambda[c] <- 1

}

λ ~ Dirichlet(1, 1) 

MCMC

Markov Chain Monte Carlo
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Estimation in Bayesian Modeling

• Our “answer” is a posterior distribution
– All parameters treated as random, not fixed

• Contrasts with frequentist approaches to inference, estimation
– Parameters are fixed, so estimation comes to finding the single 

best value

– “Best” here in terms of a criterion (ML, LS, etc.)

• Peak of a mountain vs. mapping the entire terrain of peaks, 
valleys, and plateaus (of a landscape)

MCMC

Markov chain Monte Carlo

• Construct a sampling algorithm to simulate or draw from the 
posterior. 

• Collect many such draws, which serve to empirically 
approximate the posterior distribution, and can be used to 
empirical approximate summary statistics.

Monte Carlo Principle: 

Anything we want to know about a random variable θ can be 
learned by sampling many times from f(θ), the density of θ.

-- Jackman (2009)
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What’s In a Name?

MCMC

Markov chain Monte Carlo

• Values really generated as a sequence or chain

• t denotes the step in the chain

• θ(0), θ(1), θ(2),…, θ(t),…, θ(T)

• Also thought of as a time indicator 

Markov chain Monte Carlo

• Follows the Markov property…

18

What’s In a Name?
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The Markov Property

• Current state depends on previous position
– Examples: weather, checkers, baseball counts & scoring

• Next state conditionally independent of past, given the present
– Akin to a full mediation model 

• p(θ(t+1) | θ(t), θ(t-1), θ(t-2) ,…) = p(θ(t+1) | θ(t))

θ(0) θ(1) θ(2) θ(3)

MCMC 20

Visualizing the Chain: Trace Plot

MCMC

• Markov chains are sequences of numbers that have the 
Markov property
– Draws in cycle t+1 depend on values from cycle t, but given 

those not on previous cycles (Markov property)

• Under certain assumptions Markov chains reach stationarity
• The collection of values converges to a distribution, referred to 

as a stationary distribution
– Memoryless: It will “forget” where it starts
– Start anywhere, will reach stationarity if regularity conditions 

hold
– For Bayes, set it up so that this is the posterior distribution

• Upon convergence, samples from the chain approximate the 
stationary (posterior) distribution
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Markov Chain Monte Carlo

MCMC

Assessing Convergence
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MCMC

• With MCMC, convergence to a distribution, not a point

• ML: 
– Convergence is when we’ve reached the highest point in the 

likelihood, 

– The highest peak of the mountain

• MCMC: 
– Convergence when we’re sampling values from the correct 

distribution, 

– We are mapping the entire terrain accurately
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Diagnosing Convergence

MCMC

• A properly constructed Markov chain is guaranteed to 
converge to the stationary (posterior) distribution…eventually

• Upon convergence, it will sample over the full support of the 
stationary (posterior) distribution…over an ∞ number of draws

• In a finite chain, no guarantee that the chain has converged or 
is sampling through the full support of the stationary 
(posterior) distribution 

• Many ways to diagnose convergence 

• Whole software packages dedicated to just assessing 
convergence of chains (e.g., R packages ‘coda’ and ‘boa’)

24

Diagnosing Convergence
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• Run multiple chains from dispersed starting points

• Suggest convergence when the chains come together

• If they all go to the same place, it’s probably the stationary 
distribution
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Gelman & Rubin’s (1992) 
Potential Scale Reduction Factor (PSRF)

b[1] chains 1:3

iteration
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   20.0

   30.0

MCMC

• An analysis of variance type argument

• PSRF or R =

• If there is substantial between-chain variance, will be >> 1
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Gelman & Rubin’s (1992) 
Potential Scale Reduction Factor (PSRF)

VarianceChain Within 

VarianceChain  Within  VarianceChain Between 

VarianceChain Within 

Variance Total 


b[1] chains 1:3

iteration
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MCMC

• Run multiple chains from dispersed starting points

• Suggest convergence when the chains come together

• Operationalized in terms of partitioning variability

• Run multiple chains for 2T iterations, discard first half

• Examine between and within chain variability 

• Various versions, modifications suggested over time
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Gelman & Rubin’s (1992) 
Potential Scale Reduction Factor (PSRF)

MCMC

• For any θ, for any chain c the within-chain variance is 

• For all chains, the pooled within-chain variance is 
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Potential Scale Reduction Factor (PSRF)
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MCMC

• The between-chain variance is 

• The estimated variance is
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Potential Scale Reduction Factor (PSRF)
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MCMC

• The potential scale reduction factor is 

• If close to 1 (e.g., < 1.1) for all parameters, can conclude 
convergence
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Potential Scale Reduction Factor (PSRF)

ˆ ( )ˆ Var
R

W






6
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• Examine it over “time”, look for           , stability of B and W

• If close to 1 (e.g., < 1.2, or < 1.1) can conclude convergence
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Potential Scale Reduction Factor (PSRF)
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MCMC

Multiple chains coming together does not guarantee they have 
converged
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Assessing Convergence: No Guarantees

MCMC

multiple chains come together does not guarantee they have 
converged
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Assessing Convergence: No Guarantees

MCMC

Multiple chains coming together does not guarantee they have 
converged
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Assessing Convergence: No Guarantees

MCMC

• Recommend running multiple chains far apart and determine 
when they reach the same “place”
– PSRF criterion an approximation to this

– Akin to starting ML from different start values and seeing if they 
reach the same maximum

– Here, convergence to a distribution, not a point

• A chain hasn’t converged until all parameters converged
– Brooks & Gelman multivariate PSRF
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Assessing Convergence
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MCMC

Serial Dependence

36
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• Serial dependence between draws due to the dependent nature 
of the draws (i.e., the Markov structure)

• p(θ(t+1) | θ(t), θ(t-1), θ(t-2) ,…) = p(θ(t+1) | θ(t))

• However there is a marginal dependence across multiple lags
• Can examine the autocorrelation across different lags
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Serial Dependence

θ(0) θ(1) θ(2) θ(3)

MCMC 38

Autocorrelation
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MCMC

• Can “thin” the chain by dropping certain iterations
Thin = 1  keep every iteration
Thin = 2  keep every other iteration (1, 3, 5,…)
Thin = 5  keep every 5th iteration (1, 6, 11,…)
Thin = 10  keep every 10th iteration (1, 11, 21,…)
Thin = 100  keep every 100th iteration (1, 101, 201,…)
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Thinning

MCMC 40

Thinning
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MCMC

• Can “thin” the chain by dropping certain iterations
Thin = 1  keep every iteration
Thin = 2  keep every other iteration (1, 3, 5,…)
Thin = 5  keep every 5th iteration (1, 6, 11,…)
Thin = 10  keep every 10th iteration (1, 11, 21,…)
Thin = 100  keep every 100th iteration (1, 101, 201,…)

• Thinning does not provide a better portrait of the posterior
– A loss of information

• May want to keep, and account for time-series dependence 
• Useful when data storage, other computations an issue

– I want 1000 iterations, rather have 1000 approximately 
independent iterations

• Dependence within chains, but none between chains
41

Thinning

MCMC

Mixing

42
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• We don’t want the sampler to get “stuck” in some region of 
the posterior , or ignore a certain area of the posterior

• Mixing refers to the chain “moving” throughout the support of 
the distribution in a reasonable way
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Mixing

relatively good mixing relatively poor mixing

MCMC

• Mixing ≠ convergence, but better mixing usually leads to 
faster convergence

• Mixing ≠ autocorrelation, but better mixing usually goes with 
lower autocorrelation (and cross-correlations between 
parameters)

• With better mixing, then for a given number of MCMC 
iterations, get more information about the posterior
– Ideal scenario is independent draws from the posterior

• With worse mixing, need more iterations to (a) achieve 
convergence and (b) achieve a desired level of precision for 
the summary statistics of the posterior
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Mixing

MCMC

• Chains may mix differently at different times
• Often indicative of an adaptive MCMC algorithm
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Mixing

b[1] chains 1:3

iteration
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MCMC

• Slow mixing can also be caused by high dependence between 
parameters
– Example: multicollinearity

• Reparameterizing the model can improve mixing
– Example: centering predictors in regression
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Mixing

MCMC

Stopping the Chain(s)

47 MCMC

• Discard the iterations prior to convergence as burn-in
• How many more iterations to run?

– As many as you want 
– As many as time provides

• Autocorrelaion complicates things
• Software may provide the “MC error”

– Estimate of the sampling variability of the sample mean
– Sample here is the sample of iterations
– Accounts for the dependence between iterations
– Guideline is to go at least until MC error is less than 5% of the 

posterior standard deviation

• Effective sample size 
– Approximation of how many independent samples we have

48

When to Stop The Chain(s)
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Steps in MCMC in Practice

49 MCMC

• Setup MCMC using any of a number of algorithms
– Program yourself (have fun )

– Use existing software (BUGS, JAGS)

• Diagnose convergence
– Monitor trace plots, PSRF criteria

• Discard iterations prior to convergence as burn-in
– Software may indicate a minimum number of iterations needed

– A lower bound
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Steps in MCMC (1)
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Adapting MCMC  Automatic Discard

b[1] chains 1:3

iteration
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relatively poor mixing 
during adaptive phase 

relatively good mixing 
after adaptive phase

MCMC

• Run the chain for a desired number of iterations
– Understanding serial dependence/autocorrelation

– Understanding mixing

• Summarize results
– Monte Carlo principle

– Densities

– Summary statistics
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Steps in MCMC (2)

MCMC

ACED Example

53 MCMC 54

Model Summary

θi ~ Categorical(λ)

λ ~ Dirichlet(1, 1) 

(xij | θi = c) ~ Bernoulli(πcj)

π11 ~ Beta(1, 1)

π21 ~ Beta(1, 1)  I(π21 > π11)

πcj ~ Beta(1, 1) for others obs.

x1 x2 x3 x4 x5 x6

θ
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ACED Example

See ‘ACED Analysis.R’ for Running the analysis in R

See Following Slides for Select Results
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Convergence Assessment (1)

MCMC 57

Convergence Assessment (2)

MCMC 58

Posterior Summary (1)

MCMC 59

Posterior Summary (2)
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Posterior Summary (3)

Mean SD Naive SE
Time-

series SE 0.025 0.25 0.5 0.75 0.975 Median

95% 
HPD 
lower

95% HPD 
Upper

lambda[1] 0.51 0.04 0 0 0.42 0.48 0.51 0.54 0.6 0.51 0.43 0.6

lambda[2] 0.49 0.04 0 0 0.4 0.46 0.49 0.52 0.58 0.49 0.4 0.57

pi[1,1] 0.13 0.04 0 0 0.06 0.1 0.13 0.16 0.23 0.13 0.05 0.22

pi[2,1] 0.84 0.04 0 0 0.75 0.81 0.84 0.87 0.91 0.84 0.75 0.92

pi[1,2] 0.22 0.05 0 0 0.12 0.18 0.22 0.26 0.33 0.22 0.12 0.33

pi[2,2] 0.98 0.02 0 0 0.93 0.97 0.99 0.99 1 0.99 0.94 1

pi[1,3] 0.02 0.01 0 0 0 0.01 0.02 0.03 0.06 0.02 0 0.05

pi[2,3] 0.19 0.04 0 0 0.12 0.17 0.19 0.22 0.28 0.19 0.12 0.27

pi[1,4] 0.03 0.02 0 0 0.01 0.02 0.03 0.04 0.07 0.03 0 0.06

pi[2,4] 0.23 0.05 0 0 0.15 0.2 0.23 0.26 0.33 0.23 0.15 0.33

pi[1,5] 0.15 0.04 0 0 0.08 0.12 0.15 0.17 0.22 0.15 0.08 0.22

pi[2,5] 0.64 0.05 0 0 0.53 0.6 0.64 0.67 0.74 0.64 0.53 0.74

pi[1,6] 0.17 0.04 0 0 0.1 0.14 0.17 0.2 0.25 0.17 0.1 0.25

pi[2,6] 0.82 0.05 0 0 0.72 0.79 0.82 0.86 0.92 0.82 0.73 0.92

theta[1] 2 0.06 0 0 2 2 2 2 2 2 2 2

theta[2] 1 0.02 0 0 1 1 1 1 1 1 1 1

theta[3] 1 0.01 0 0 1 1 1 1 1 1 1 1

theta[4] 1.97 0.17 0 0 1 2 2 2 2 2 2 2

theta[5] 1.17 0.38 0 0.01 1 1 1 1 2 1 1 2

theta[6] 1 0.01 0 0 1 1 1 1 1 1 1 1

theta[7] 1.01 0.07 0 0 1 1 1 1 1 1 1 1
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Summary and Conclusion

61 MCMC

• Dependence on initial values is “forgotten” after a sufficiently 
long run of the chain (memoryless) 

• Convergence to a distribution
– Recommend monitoring multiple chains

– PSRF as approximation

• Let the chain “burn-in”
– Discard draws prior to convergence

– Retain the remaining draws as draws from the posterior

• Dependence across draws induce autocorrelations 
– Can thin if desired

• Dependence across draws within and between parameters can 
slow mixing
– Reparameterizing may help 62

Summary

MCMC 63

Wise Words of Caution

Beware: MCMC sampling can be 
dangerous!

-- Spiegelhalter, Thomas, Best, & Lunn (2007)

(WinBUGS User Manual)


