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Bayesian Inference: Expanding Our Context

MCMC 2

Posterior Distribution

Posterior distribution for unknowns given knowns is

p(unknowns | knowns) oc p(knowns |unknowns) p(unknowns)

Inference about examinee latent variables () given observables (x)

pO]x) e p(x]0)p(0)

Example: ACED Bayes Net Fragment for Common Ratio
* 6= Common Ratio

* x = Observables from tasks that measure Common Ratio
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Bayes Net Fragment

6= Common Ratio

xs = Observables from tasks
that measure Common Ratio

p(0]2) p(x|0)p(0) P10 =]Tp(x,10)
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Probability Distribution for the Latent Variable

0= Common Ratio
6 ~ Categorical())

ACED Example

* 2 Levels of ¢ (Low, High)

* L= (4, 4,) contains
probabilities for Low and
High

6 (Common Ratio)
1 2

Prob. A 2y
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Probability Distribution for the Observables

xs = Observables from tasks
that measure Common Ratio

(x;| 0= c) ~ Bernoulli(z,,)

ACED Example

* 7, is the probability of
correct response on task j
given 0 =c¢

px;10)
0 0 1

1 1 —m; T

2 l-m, T, McMC 6




Bayesian Inference
6 (Common Ratio)
«— 1 2
p(O@]x)c p(x|0)p(0)
\ Prob. A A
If the As and s are pe;10)
unknown, they 6 0 1
become subject to 1 1-m, Ty
posterior inference too
2 l-m, Ty
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Bayesian Inference

6 (Common Ratio)
1 (Low) | 2 (High)
Prob. A Ay

p(O]x) o p(x|O)p(O)

A convenient choice for the prior distribution is the Dirichlet
distribution

) ~ Dirichlet(a,) o, =(a,,a,)
which generalizes the Beta distribution to the case of multiple

categories

ACED Example: A = (4,, 4,) ~ Dirichlet(1, 1)
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Bayesian Inference

;| 0)
0 0 1
p(0]x) < p(x]6)p(0) I I
—Ty; )
2 1—-m,, L

A convenient choice for prior distribution is the beta distribution
7, ~Beta(a, , 8, )

ACED Example: «;; ~ Beta(1, 1) my; ~ Beta(l, 1)

For first task, constrain (7,, > 7,) to resolve indeterminacy in the
latent variable and avoid label switching
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Model Summary

6, ~ Categorical(})

2~ Dirichlet(1, 1)

(x;; | ;= ¢) ~ Bernoulli(r,;)
7, ~ Beta(l, 1)
my ~Beta(l, 1) I(my > 7))

.~ Beta(l, 1) for others obs.

JAGS Code
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JAGS Code
for (i in L:n){ ) o .
for(j in 1:){ (x; | 0; = ¢) ~ Bernoulli(z,;)
x[i,j] ~ dbern(pi[thetal[il,j])
}
}
p(x; | 6)
Referencing the 0 0 1
table for z;s in terms 1
of 6=1or2 — il
2 1-m, Ty
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JAGS Code

pi[1,1] ~ dbeta(1,1) 7, ~ Beta(1, 1)

pil2,1] ~ dbeta(1,1) T(PI[L,1],) 7, ~Beta(l, 1) I(my, > 7,,)

JAGS Code

for (i in 1:n){ 6, ~ Categorical())
theta[i] ~ dcat(lambdal[])
}

lambda[1:C] ~ ddirch(alpha_lambda[]) A ~ Dirichlet(1, 1)
for(cin 1:C){

alpha_lambdalc] <- 1
}
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for(c in 1:C){ 7~ Beta(l, 1) for remaining observables
for(j in 2:3){
pi[c,j] ~ dbeta(1,1)
}
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Markov Chain Monte Carlo
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Estimation in Bayesian Modeling

* Our “answer” is a posterior distribution
— All parameters treated as random, not fixed

 Contrasts with frequentist approaches to inference, estimation

— Parameters are fixed, so estimation comes to finding the single
best value

— “Best” here in terms of a criterion (ML, LS, etc.)

« Peak of a mountain vs. mapping the entire terrain of peaks,
valleys, and plateaus (of a landscape)
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What's In a Name?

Markov chain Monte Carlo

 Construct a sampling algorithm to simulate or draw from the
posterior.

* Collect many such draws, which serve to empirically
approximate the posterior distribution, and can be used to
empirical approximate summary statistics.

Monte Carlo Principle:

Anything we want to know about a random variable & can be
learned by sampling many times from f{6), the density of 6.

-- Jackman (2009)
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What's In a Name?

Markov chain Monte Carlo

« Values really generated as a sequence or chain
¢ tdenotes the step in the chain

o 00, 00,69, 00, 6D

* Also thought of as a time indicator

Markov chain Monte Carlo
« Follows the Markov property...
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The Markov Property

* Current state depends on previous position
— Examples: weather, checkers, baseball counts & scoring

» Next state conditionally independent of past, given the present
— Akin to a full mediation model

o p(OED | 9O, 9D, gD Y= p(6eD) | 60)
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Visualizing the Chain: Trace Plot

+£: Time series E]@

B

1 25 50 75 100
fteration
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Markov Chain Monte Carlo

» Markov chains are sequences of numbers that have the
Markov property

— Draws in cycle #+1 depend on values from cycle 7, but given
those not on previous cycles (Markov property)

+ Under certain assumptions Markov chains reach stationarity
* The collection of values converges to a distribution, referred to
as a stationary distribution
— Memoryless: It will “forget” where it starts
— Start anywhere, will reach stationarity if regularity conditions
hold
— For Bayes, set it up so that this is the posterior distribution
» Upon convergence, samples from the chain approximate the
stationary (posterior) distribution
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Assessing Convergence
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Diagnosing Convergence

+ With MCMC, convergence to a distribution, not a point

* ML:
— Convergence is when we’ve reached the highest point in the
likelihood,
— The highest peak of the mountain

« MCMC:
— Convergence when we’re sampling values from the correct
distribution,

— We are mapping the entire terrain accurately
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Diagnosing Convergence

* A properly constructed Markov chain is guaranteed to
converge to the stationary (posterior) distribution...eventually

« Upon convergence, it will sample over the full support of the
stationary (posterior) distribution...over an oo number of draws

* In a finite chain, no guarantee that the chain has converged or
is sampling through the full support of the stationary
(posterior) distribution

« Many ways to diagnose convergence

« Whole software packages dedicated to just assessing
convergence of chains (e.g., R packages ‘coda’ and ‘boa’)

MCMC 24




Gelman & Rubin’s (1992)
Potential Scale Reduction Factor (PSRF)

* Run multiple chains from dispersed starting points
» Suggest convergence when the chains come together

 If they all go to the same place, it’s probably the stationary
distribution

b[1] chains 1:3
30:0
200
100 ﬁ_,w& vmw
[o]10] e "V“"‘""M\l{"*“"ww I~ ke
i f
-20r0
T T T T T
1 250 500 750 100C
iteration
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Gelman & Rubin’s (1992)
Potential Scale Reduction Factor (PSRF)

* An analysis of variance type argument

¢ PSRForR=
Total Variance _ Between Chain Variance + Within Chain Variance
Within Chain Variance Within Chain Variance

« If there is substantial between-chain variance, will be >> 1

b[1] chains 1:3

1000 M/} ﬁ
B i 'W("W’”"r%u““**""ﬁdw“‘frv’,!”"‘?
2

1 250 500 750 100C
iteration
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Gelman & Rubin’s (1992)
Potential Scale Reduction Factor (PSRF)

* Run multiple chains from dispersed starting points

» Suggest convergence when the chains come together

» Operationalized in terms of partitioning variability

* Run multiple chains for 27 iterations, discard first half
» Examine between and within chain variability

* Various versions, modifications suggested over time
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Potential Scale Reduction Factor (PSRF)

« For any 6, for any chain c the within-chain variance is

1< -
. :ﬁ;(gfﬂ -0,

« For all chains, the pooled within-chain variance is

1 C 1 C T
W—EZWC—i

S (G0 -7, )
S cr-ng5" @)
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Potential Scale Reduction Factor (PSRF)

* The between-chain variance is
T &= =,
B=——-)>(6,.,-60)
e Z( o= 0)

* The estimated variance is

Var(0)=(T -1/T)W +(1/T)B
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Potential Scale Reduction Factor (PSRF)

« The potential scale reduction factor is

B Var(9)
w

e Ifcloseto 1 (e.g., < 1.1) for all parameters, can conclude
convergence
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Potential Scale Reduction Factor (PSRF)

» Examine it over “time”, look for R—> 1, stability of B and W

» Ifcloseto 1 (e.g., < 1.2, or <1.1) can conclude convergence

8.0
6.0
4.0

B 20
0.0

w 51 200 400
start-iteration
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Assessing Convergence: No Guarantees

Multiple chains coming together does not guarantee they have
converged

beta[3] chains 1:3
30.0

20.0
10.0
00
-10.0

-20.0

1 20000 40000 60000
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Assessing Convergence: No Guarantees

multiple chains come together does not guarantee they have
converged

betal3] chains 1:3 BEetal=] I
=00 -
=0 -
. 10
(M oo °°

‘/\ — 1. -
—=0 o -
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Assessing Convergence: No Guarantees

Multiple chains coming together does not guarantee they have
converged

beta[3] chains 1:3
30.0

20.0
10.0
00
-10.0

-20.0

1 20000 40000 60000
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Assessing Convergence

* Recommend running multiple chains far apart and determine
when they reach the same “place”
— PSREF criterion an approximation to this

— Akin to starting ML from different start values and seeing if they
reach the same maximum

— Here, convergence to a distribution, not a point
A chain hasn’t converged until all parameters converged
— Brooks & Gelman multivariate PSRF

b{1] chains 13

1 250 500 750 100C
iteration
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Serial Dependence
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Serial Dependence

+ Serial dependence between draws due to the dependent nature
of the draws (i.e., the Markov structure)
. p(lg(rﬂ) ‘ 9(:)J 9(:—1)J 9(:—2) ’) :p(H(zH) ‘ 19('))

» However there is a marginal dependence across multiple lags
» Can examine the autocorrelation across different lags

Autocorrelation

a[4] chain 1 b[2] chain 1
1.0 1.0
0.5 L 0.5 I
0.0 0.0 lh—.-______._
-0.5 -0.5
-1.0 -1.0
T T T T T T
0 20 40 0 20 40
lag lag
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Thinning
Thin=1 Thin=5
b[2] chain 1 b[2] chain 1

Sl ———

Thin=10

b[2] chain 1

0.0 1t sttt Lt
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Thinning
+ Can “thin” the chain by dropping certain iterations
Thin =1 - keep every iteration
Thin =2 - keep every other iteration (1, 3, 5,...)
Thin =5 - keep every 5" iteration (1, 6, 11,...)
Thin = 10 - keep every 10" iteration (1, 11, 21,...)
Thin = 100 - keep every 100" iteration (1, 101, 201,...)
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Thinning

+ Can “thin” the chain by dropping certain iterations
Thin =1 - keep every iteration
Thin =2 - keep every other iteration (1, 3, 5,...)
Thin =5 - keep every 5" iteration (1, 6, 11,...)
Thin = 10 - keep every 10" iteration (1, 11, 21,...)
Thin = 100 - keep every 100" iteration (1, 101, 201,...)
» Thinning does not provide a better portrait of the posterior
— A loss of information
* May want to keep, and account for time-series dependence
» Useful when data storage, other computations an issue
— I'want 1000 iterations, rather have 1000 approximately
independent iterations
» Dependence within chains, but none between chains
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Mixing
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Mixing

* We don’t want the sampler to get “stuck” in some region of
the posterior , or ignore a certain area of the posterior

* Mixing refers to the chain “moving” throughout the support of
the distribution in a reasonable way

MWWMW

relatively poor mixing

relatively good mixing
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Mixing

« Mixing # convergence, but better mixing usually leads to
faster convergence

« Mixing # autocorrelation, but better mixing usually goes with
lower autocorrelation (and cross-correlations between
parameters)

«  With better mixing, then for a given number of MCMC
iterations, get more information about the posterior

— Ideal scenario is independent draws from the posterior

« With worse mixing, need more iterations to (a) achieve
convergence and (b) achieve a desired level of precision for
the summary statistics of the posterior
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Mixing

+ Chains may mix differently at different times
» Often indicative of an adaptive MCMC algorithm

b[1] chains 1:3
3010
2010
1000 rﬂq‘
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iteration

relatively poor mixing relatively good mixing
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Mixing

< Slow mixing can also be caused by high dependence between
parameters
— Example: multicollinearity
* Reparameterizing the model can improve mixing
— Example: centering predictors in regression
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Stopping the Chain(s)
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When to Stop The Chain(s)

» Discard the iterations prior to convergence as burn-in
* How many more iterations to run?
— As many as you want ©
— As many as time provides
« Autocorrelaion complicates things
« Software may provide the “MC error”
— Estimate of the sampling variability of the sample mean
— Sample here is the sample of iterations
— Accounts for the dependence between iterations

— Guideline is to go at least until MC error is less than 5% of the
posterior standard deviation

« Effective sample size
— Approximation of how many independent samples we have
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Steps in MCMC in Practice
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Adapting MCMC - Automatic Discard

Steps in MCMC (1)

* Setup MCMC using any of a number of algorithms
— Program yourself (have fun ©)
— Use existing software (BUGS, JAGS)
« Diagnose convergence
— Monitor trace plots, PSRF criteria
 Discard iterations prior to convergence as burn-in
— Software may indicate a minimum number of iterations needed
— A lower bound
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Steps in MCMC (2)

« Run the chain for a desired number of iterations
— Understanding serial dependence/autocorrelation
— Understanding mixing

¢ Summarize results
— Monte Carlo principle
— Densities
— Summary statistics
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b[1] chains 1:3
300
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Y )
e A pets
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‘ 2‘50 5‘00 7‘50 160c
iteration
relgtively poor mixing relatively good mixing
during adaptive phase after adaptive phase
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ACED Example
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Model Summary

6, ~ Categorical(})

2~ Dirichlet(1, 1)

(x;; | ;= ¢) ~ Bernoulli(r,;)
7, ~ Beta(l, 1)

my ~Beta(l, 1) I(my > my)
m; ~ Beta(l, 1) for others obs.
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ACED Example
See ‘ACED Analysis.R’ for Running the analysis in R
See Following Slides for Select Results
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Convergence Assessment (1)

Convergence Assessment (2)
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Posterior Summary (2)
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95%
Time- HPD 95% HPD
Mean SD__ Naive SE series SE_ 0.025 025 0.5 0.75 0.975 Median lower Upper
lambda[ 1] 0.51 0.04 0 0 042 048 0.51 0.54 0.6 051 043 0.6
lambda[2] 049 0.04 0 0 04 0.46 049 052 0.58 049 04 057
pi[l.1] 0.13 0.04 0 0 0.06 0.1 0.13 0.16 0.23 0.13 0.05 022
pi[2.1] 0.84 0.04 0 0 0.75 0.81 0.84 087 0.91 0.84 0.75 092
pi[1.2] 022 0.05 0 0 0.12 0.18 022 0.26 033 022 012 033
pi[2.2] 0.98 0.02 0 0 0.93 097 0.99 099 1 0.99 094 1
pi[1.3] 0.02 0.01 0 0 0 0.01 0.02 0.03 0.06 0.02 0 0.05
pi[2.3] 0.19 0.04 0 0 0.12 017 0.19 022 0.28 0.19 012 027
pi[1.4] 0.03 0.02 0 0 0.01 0.02 0.03 0.04 0.07 0.03 0 0.06
pi[2.4] 023 0.05 0 0 0.15 02 023 026 033 023 015 033
pilL,5] 015 004 0 0 008 012 015 007 022 015 0.08 022
pil2.5] 064 005 0 0 053 06 064 067 074 0.64 053 074
pilL6] 017 004 0 0 01 014 017 02 025 017 01 025
pi[2.6] 0.82 0.05 0 0 0.72 0.79 0.82 0.86 0.92 0.82 0.73 092
theta[1] 2 0.06 0 0 2 2 2 2 2 2 2 2
theta[2] 1 0.02 0 0 1 1 1 1 1 1 1 1
theta[3] 1 0.01 0 0 1 1 1 1 1 1 1 1
theta[4] 197 017 0 0 1 2 2 2 2 2 2 2
theta[5] 117 038 0 0.01 1 1 1 1 2 1 1 2
theta[6] 1 0.01 0 o 1 1 1 1 1 1 1 1
theta[ 7] 1.01 0.07 0 0 1 1 1 1 1 1 1 1
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Summary and Conclusion

MCMC 61

Summary

Dependence on initial values is “forgotten” after a sufficiently
long run of the chain (memoryless)
Convergence to a distribution

— Recommend monitoring multiple chains

— PSRF as approximation
Let the chain “burn-in”

— Discard draws prior to convergence

— Retain the remaining draws as draws from the posterior
Dependence across draws induce autocorrelations

— Can thin if desired
Dependence across draws within and between parameters can
slow mixing

— Reparameterizing may help MCMC 62

Wise Words of Caution

Beware: MCMC sampling can be
dangerous!

-- Spiegelhalter, Thomas, Best, & Lunn (2007)
(WinBUGS User Manual)
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